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Engineering Future Chemical Engineers:  Incorporation of 

Process Intensification Concepts into the Undergraduate 

Curriculum. 
 

ABSTRACT 

 

Process intensification (PI) encompasses a broad spectrum of activities focused on 

identifying fundamental limitations in a chemical production route, and 

developing or combining processes to minimize resource utilization and optimize 

product quality.  Such activities are essential to industrial competitiveness as they 

can enhance safety, increase operating efficiency, lower energy usage, reduce 

capital costs, and/or reduce waste emissions and process hazards. Improving 

processes using PI concepts requires engineers to integrate many fundamental 

concepts and goes beyond traditional unit operations.    Engineers are often taught 

how to synthesize a process by linking together standard unit operations, but are 

frequently not trained to synthesize processes through linking together 

fundamental concepts in new ways for novel and efficient process designs.  This 

project seeks to correct this deficiency through the development of instructional 

modules for use in existing courses.  

 

Four core chemical engineering courses are targeted:  fluid flow operations, heat 

transfer operations, mass transfer operations, and chemical reactor design.  Over 

the three-year CCLI project, activities/modules will be developed and 

incorporated into each of these courses, with each activity/module focusing on a 

particular element from the process intensification spectrum and designed to also 

enhance vertical concept integration.  This poster presentation will focus on the 

activities and modules developed in Year 1. 

 

INTRODUCTION AND BACKGROUND 

 

The chemical industry faces numerous challenges in the coming years due to 

decreasing availability of raw material and energy resources.  Thus, existing 

processes must operate in an efficient manner, with maximum yield of products 

from a fixed feedstock.  Development and design of new chemical processes 

requires chemical engineers to sequence production steps to accomplish the 

necessary transformative steps taking the feed material and converting it in to a 

product or products with acceptable market value.  The manner in which the 

conversion is accomplished may vary slightly from company to company; 

however, the traditional approach has been to sequence single-purpose unit 

operations to accomplish the conversion.  This has been a very successful strategy 

in the past, and has been the model for instruction of chemical engineering design 

education.   

 

In recent years, a paradigm has begun to emerge in the industry, whereby two or 

more steps in the production sequence are combined to yield a more energy 

efficient or more environmentally friendly process to accomplish multiple steps 
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simultaneously.  The reduced energy footprint is often accompanied by a decrease 

in capital cost, as these multiple steps are accomplished in a single piece of 

equipment. 

 

The need to align chemical engineering design education with this new paradigm 

is essential for the U.S. chemical industry to remain competitive in the coming 

decades.  However, the premise of the project investigators is that process 

intensification education and activities cannot simply be considered in the final 

stages of design, and not only in an upper level elective course, but must permeate 

throughout the undergraduate chemical engineering curriculum.  Thus, 

instructional materials are being developed for a sequence of four core chemical 

engineering undergraduate courses.  Typically, these courses are taken prior to the 

student enrolling in the senior design course (or courses).  The four core courses 

that are targeted are: 1) fluid flow operations; 2) heat transfer operations; 3) mass 

transfer operations; and 4) reactor design.  The first three of these courses are 

typically grouped as the ‘unit operations’ courses and are taught at the sophomore 

and junior levels.  The last course may be taken prior to the senior year design 

courses, or during the first semester of the senior year simultaneously with the 

first course in the design sequence.   

 

Process Intensification 

 

Process intensification was identified by the NSF as early as 1993 as a specific 

area in which research endeavors should be concentrated to meet the needs of the 

chemical industry [1]; in excess of 75 archival articles were published on process 

intensification topics in 2009 [2].  Benefits of process intensification activities 

include [3,4]:  1) novel or enhanced products; 2) improved chemistry; 3) 

enhanced safety; 4) improved processing; 5) energy and environmental benefits; 

6) capital cost reduction; and 7) low inventories.  Key to the endeavor is an ability 

to identify the limitation(s) in a process, and knowledge of mechanisms that may 

be employed to eliminate them.  One of the barriers identified by Tsouris and 

Porcelli [3,4] as well as Stankiewicz and Moulijn [5] is the sequential, unit 

operations-oriented approach typically used in undergraduate chemical 

engineering education.  Much of the activity in the process intensification area has 

been in the European community [4]. Interestingly, the University of Newcastle 

on Tyne in the UK has established a graduate curriculum in chemical engineering 

focused on “intensified processing” [6]).  Recently, it has been suggested that 

Chemical Engineering Education (ChE Ed) should include aspects of integrated 

concepts at the undergraduate level [7,8].  Also posed by these proponents is the 

question “Should ChE Ed include new disciplines such as … process 

intensification and miniaturization technology?” In the United States, the process 

intensification discussion is still primarily conducted in industry and by academic 

research teams [4]; to the knowledge of the project team, incorporation of process 

intensification at the undergraduate level has not been explored to date.  
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The incorporation of process intensification across the curriculum requires a 

critical examination of traditional topics currently taught in each course, and 

identification of appropriate topics that may allow expansion of existing 

instruction to concepts directly related to the tenants of process intensification.  

Integration of concepts from one course to subsequent courses is also an essential 

component of this incorporation process.  The ability of students to successfully 

perform this integration has been a recent interest of the project team [9]. Further, 

it is believed that the development of process intensification modules would 

significantly impact academia and the diverse industries relying on chemical 

engineers because students trained to be versatile thinkers are more likely to 

conceive novel, more efficient production routes leading to innovative processes 

with respect to energy and material efficiencies. 

 

U.S. Educational Needs 

 

Chemical engineering departments in the U.S. cannot afford to be complacent 

about ChE Ed given the need for global competitiveness.  A CCR/NSF Discipline 

Wide Curriculum Workshops panel was convened to determine what chemical 

engineering curricular changes are necessary to keep the U.S. competitive [10].  

The panel concluded “the curriculum should integrate all organizing principles 

and basic supportive sciences throughout the educational sequence”, that “all 

organizing principles should be operative in the curriculum throughout the 

sequence”, and that “the curriculum should be consistently infused with relevant 

and demonstrative laboratory experiences.”  There is a critical need for chemical 

engineers to be conversant in synthesizing and optimizing unit operations.  The 

new process intensification examples require the integration of concepts across 

four core courses, reinforce these concepts throughout the curriculum, and 

provide examples of how the combination of basic principles from different unit 

processes are required to solve real problems. 

 

PROJECT ACTIVITIES 

 

An overarching structure to the development of instructional modules has been 

developed.  A minimum of three modules for each of the four core courses will be 

developed over the three year project.  Table 1 summarizes the concepts that will 

be targeted over the project lifetime.   

 

The instructional materials in development focus on concepts critical to process 

intensification, with an emphasis on both cross-fertilization and vertical 

integration.  For example, in Year 1, instructional materials for the mass transfer 

operations course focus reactive distillation, an intensified process where reaction 

and separation are carried out simultaneously in an integrated reactor/column.  To 

build on this coupling of separation and reaction, Year 2 instructional materials 

for the reactor design course focus on SMBR technology (simulated moving bed 

reactor), which combines reaction with adsorption.  Thus, the concept of coupling 

reaction and separation is reinforced through these activities. 
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Year 1 Activities 

 

Both fluid flow operations and reactor design courses were taught during the Fall 

2009 semester.  Heat transfer operations and mass transfer operations are being 

taught during the Spring 2010 semester.  A total of 52 students completed the 

fluid flow operations course, while 41 students completed the reactor design 

course.  As this is the first year for single semester offerings of the unit operations 

courses in the CHE department, enrollment in the heat transfer operations and 

mass transfer operations courses during Spring 2010 is higher, standing at 

approximately 60 in each course.   

 

In addition to the module development and activities planned as part of the CCLI 

project, one additional activity was undertaken during the Fall 2009 semester.  In 

the freshman seminar offered to chemical engineers, an introduction to process 

intensification was provided, after limited discussion of the unit operations 

approach to chemical engineering education.  The developed Powerpoint 

presentation will be made available to chemical engineering educators interested 

in adapting it to their programs.  Additionally, a survey of chemical engineering 

education efforts as they pertain to process intensification is in development. 

 

Fluid Flow Operations 

 

The module implemented in the Fall 2009 offering of Fluid Flow Operations was 

on the Bernoulli’s Equation (BE), Mechanical Energy Balance (MEB), and 

Reynolds Number (NRe).  The specific objectives of this module were to: 1) 

demonstrate knowledge of the physical meaning of each term in the standard and 

expanded forms of the Bernoulli equation (Mechanical Energy Balance); 2) 

investigate the relative magnitude of individual terms in the Bernoulli Equation 

and the physical interpretation of each; and 3) evaluate Reynolds number to 

demonstrate the importance of length scales on fluid mechanics.   

 

Activity #1: Tank and Pipe Flow Laboratory (optional assignment) 

 

The students were exposed to a tank/piping system through an experimental 

laboratory.  In order to approximate hydrostatic equilibrium, the tank level was 

maintained at approximately the same level throughout the experiment.  Specific 

elements of the module included:  1) comparison of internal flows with varying 

tube diameter, pressure drop, velocity, and volumetric flow rates.  Each team of 

students participated in collecting time and collected water volume from three 

different systems, each with a different discharge pipe diameter.  The students 

calculated their experimental volumetric flow rates and then compared their 

results to the values given by the Bernoulli equation.  Experimental error, 

statistical t-tests, and entrance effects on frictional losses were discussed in 

context of these results.  To further reinforce important aspects of these elements, 

student teams used MS Excel™ to prepare a spreadsheet that allowed them to 
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quickly compare calculated Reynolds numbers, pressure drops, and velocities 

(average and maximum) and visualize changes in velocity profiles when the 

hydrostatic pressure, entrance effects, and fluid properties were varied.   

 

Even though this laboratory was optional (held outside of the assigned class time), 

100% of the students participated in this optional laboratory assignment.  Their 

work was very useful in demonstrating the Bernoulli equation, design impacts on 

the loss term, experimental error, and the importance of each group member's 

efforts to the project's success.  The student feedback on both their interest in a 

hands-on activity and their self-perceived learning from this activity were both 

very high, as assessed by an in-class survey.  Time did not allow for the analytical 

and experimental results to be compared to computation solutions.  But a CFD 

module and discussion of computational solution methodologies will be added the 

next time this course is taught. 

 

Activity #2: Comparison of Approaches: Shell Balances, Equations of Continuity 

& Motion, and Bernoulli Equation/Mechanical Energy Balance 

 

This assignment involved conceptual understanding of velocity profiles, 

momentum, average velocity, volumetric flow rates, surface force, etc. and was 

combined with a comparison of different methods for obtaining these expressions 

for horizontal pipe flow, a film flowing down an inclined plane, and a vertical 

pipe.  The students were first instructed in depth on the Bernoulli Equation and 

the Mechanical Energy Balance and the physical meaning and origins of the 

mathematical form for each term.  Once an understanding of the Bernoulli 

Equation and the Mechanical Energy Balance had been demonstrated, the 

students were introduced to the shell balance development method, including the 

derivation of a differential equation to describe the system and the mathematical 

solution using boundary conditions.  They were also introduced to the Equation of 

Continuity and Equations of Motion, in 3-D form for rectilinear, cylindrical, and 

spherical coordinate systems.  The physical meanings of each term were discussed 

and a methodology was given for the elimination of terms based on an 

understanding of ‘givens’ and appropriate assumptions for particular systems.  

The students were asked to complete several assignments using these different 

methods to demonstrate their ability to understand and use all three methods. 

 

This exercise required a somewhat higher level of conceptual understanding of 

fluid mechanics than might be traditionally required in a sophomore-level fluids 

course.  However, these different methods and the physical interpretation and 

mathematical representation of fluid mechanics are very important for the 

students as they examine relative magnitudes (and so resistance to momentum 

transport) and physical interpretation of mathematical terms in any equation.  The 

students seemed to conceptually have the most difficulty with the shell balance 

method.  Defining the ‘shell’ presented difficulty, but was overcome in many 

students through the repeated exposure (practice) with this method and objects 

brought into class to represent ‘layers’ of fluid in different geometries. 
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Heat Transfer Operations 

 

During the Spring 2010 semester, project activities will focus on heat transfer in 

small volumes and microchannels.  These activities will build on the fluid flow 

knowledge gained by students during the Fall 2009 semester.  In the heat transfer 

operations course, extensive coverage of conduction is provided.  Students are 

exposed to conduction in ideal geometries (flat slab, cylindrical pipe), as well as 

conduction through many layers of materials (wall insulated, insulated pipes, 

jacketed reactors), all of which are macro-scale. To help enhance the necessary 

fundamental understanding of conduction, while simultaneously alerting students 

to subject overlap, in-class and homework activities will focus on heat transfer in 

small volumes of fluids.  Small volume systems will become more prevalent in 

process intensification as more is done with less volume and in new geometries.  

Typical applications of these fundamental phenomena are found in microdevices 

and microreactors as well as in the intensified absorption cycle air conditioner 

[32, 54] where heat transfer in thin films is exploited.   

 

Mass Transfer Operations 

 

Tennessee Eastman successfully commercialized reactive distillation in its methyl 

acetate process [55, 56].  UOP developed the ‘Ethermax’ technology in the early 

90s where ethers (methyl tert-butyl ether, tert-amyl methyl ether) were produced 

by the reactive distillation of methanol and isobutylene/isoamylene feedstocks 

[56].  These commercial successes provide an excellent starting point for the 

discussion of the advantages of this coupling of processes for intensification.  For 

successful implementation of reactive distillation, phase equilibria and reaction 

kinetics must both be favorable over an overlapping temperature range.  A 

discussion of the key elements of the reactive distillation process is contained in 

the currently used text.  Because students enrolled in this class will not take 

reactor design until the following semester, only qualitative discussion will be 

included and will focus on the elimination of the reactor through incorporation of 

a reactive section in the distillation tower. Since MSU students use the process 

simulator ChemCAD in their courses, an existing ChemCAD example will be 

used for instruction.  A new ChemCAD example problem will be developed for 

use as a homework exercise.   

 

Reactor Design 

 

In the chemical reactor design, plug flow reactors are examined in detail.  Under 

this project, the expansion of a jacketed plug flow reactor to examine coupling 

two reactions via heat exchange was examined during the fall semester.  One of 

the tenets of process intensification is the more efficient use of energy combined 

with coupling of process units to yield a smaller equipment footprint.  The 

coupling of an endothermic reaction on the tube side of a jacketed plug flow 

reactor with an exothermic reaction in the jacket provides for such an efficient use 

P
age 15.489.8



of energy.  Additionally, the use of a membrane reactor with the transfer of a 

product/reactant across the membrane provides additional opportunities for 

process intensification.   

 

During the Fall 2009 semester, one module was developed and used in the 

Chemical Reactor Design course.  This module focused on the coupling of 

endothermic and exothermic chemical reactions.  Students in this course had not 

been exposed to the concepts of process intensification in earlier chemical 

engineering courses; thus, a general introduction to process intensification was 

also provided, so that they would have an understanding of why it might be 

desirable to carry out multiple processes/process steps in a single piece of 

equipment.  This general introduction was also used in a discussion of chemical 

engineering education during the seminar offered to chemical engineering 

freshmen.   

 

The topic of membrane reactors was already an element of instruction in the 

reactor design course.  Thus, this provided an excellent platform from which to 

introduce the coupling of reactions.  In examining membrane reactors, 

equilibrium limited reactions provide the foundation for examining how the 

removal of a reaction product allows for one to achieve a conversion greater than 

the equilibrium conversion at a given temperature.  Dehydrogenation reactions 

often fall into this category.  The coupling of hydrogenation/dehydrogenation 

reactions was explored in the module.  Examination of this couple provides for 

one to examine whether the advantages come from energy exchange only, mass 

exchange only, or exchange of both mass and energy.  Additionally, the influence 

of relative concentrations, their impact of reaction rates, and mode of operation 

(cocurrent versus countercurrent) were also explored.  This module was 

developed as a presentation.  Current efforts are focused on using the Authorware 

(Adobe Systems) software to allow the module to be fully interactive, and self-

contained.   

 

Work has also begun on the module for year 2.  This module is focused on 

simulated moving bed reactor (SMBR) technology, where chemical reaction is 

coupled with adsorption in a single operation.   

 

SUMMARY 

 

Integration of key concepts related to process intensification across multiple core 

chemical engineering courses provides the opportunity for students to become 

both familiar with the tenets of process intensification as well as be equipped to 

examine intensified process alternatives during the senior design courses.  As 

students progress through the four course sequence, it is expected that their 

foundation will become stronger in these tenets and they will be better equipped 

to face the challenges that will be present when they graduate and enter the 

chemical engineering workforce. Assessment of student learning and module 

effectiveness is currently underway. 
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