

Engineering is Elementary

Developed by the Museum of Science, Boston

Developed by the Museum of Science, Boston

Agricultural Engineering: Designing Hand Pollinators

http://www.eie.org/engineering-elementary/resources/were-going-make-hand-pollinator

Julie Mock Grade 1 Lake Elmo, MN

Children CAN engineer . . . in fact, children SHOULD engineer.

Mission

Make engineering education relevant, accessible, and inclusive.

Core Commitments

- Create problem-solvers
- Engage ALL students

- Classroom-tested
- Scalable
- Research-based

Engaging ALL Children

Under represented served performing

Gender

Race

Ethnicity

Income

English Learners

Disability

Special Education

Developed by the Museum of Science, Boston

EiE's Engineering Habits of Mind

Children who develop engineering habits of mind . . .

Develop and use processes to solve problems	Investigate properties and uses of materials
Consider problems in context	Construct models and prototypes
Envision multiple solutions	Make evidence-based decisions
Innovate processes, methods, and designs	Persist and learn from failure
Make tradeoffs between criteria and constraints	Assess the implications of solutions
Use systems thinking	Work effectively in teams
Apply math knowledge to problem solving	Communicate effectively
Apply science knowledge to problem solving	See themselves as engineers

EiE's Portfolio

Problem-solving

Innovation

Engineering Design Process

Apply science

Apply math

Engineering Integrates with Science

Physical Science

	SCIENCE TOPIC	ENGINEERING FIELD
a)	Water	Environmental
nce	Air & Weather	Mechanical
th Science	Earth Materials	Materials
	Landforms	Geotechnical
Earth	Astronomy	Aerospace
ш	Rocks	Materials
Science	Insects/Plants	Agricultural
	Human Body	Biomedical
	Plants	Package
) S	Ecosystems	Environmental
Life	Organisms/ Basic Needs	Bioengineering

SCIENCE TOPIC	ENGINEERING
	FIELD
Simple Machines	Industrial
Balance & Forces	Civil
Sound	Acoustical
Electricity	Electrical
Solids & Liquids	Chemical
Magnetism	Transportation
Energy	Green
Floating & Sinking	Ocean
Light	Optical

Transportation Engineering: Designing a Maglev System

http://www.eie.org/engineering-elementary/resources/we-made-it

Kathleen Murphy Garcia Grade 4 Medford, MA

Multiple solutions

Failure

Persistence

"Now I know how engineers feel when things they design don't work the first time, but I still want to be one."

Identifying as an engineer

Materials Engineering: Designing Walls

http://www.eie.org/engineering-elementary/resources/im-ready-engineer

Chentel Neat Grade 2 Hollywood, FL

http://www.eie.org/engineering-elementary/resources/who-can-be-engineer-you-can

Chentel Neat Grade 2 Hollywood, FL

Children learn STEM subjects better when classroom instruction includes engineering

Research Results

Children who use EiE perform significantly better than control students on questions about:

- engineering
- technology
- science

"Last summer I thought engineers only made electronics. Now I think engineers design stuff to solve a problem."

Thinking outside the bubble...

How important are each of the following activities to the work of an engineer?	- Not important		Sort of important		Very importan
47. Repairing engines	0	0	0	3	
48. Using their creativity	0	1	2	3	4
49. Understanding science	0	1	2	3	0
50. Reading about inventions	0	1	2	3	(4)
51. Using power tools to fix things	0	1	2	3	0
52. Using power tools to build things	0	1	2	6	4
53. Writing down their ideas	0	1	2	3	10
54. Fixing broken things for other people	0	1	2	•	4
55. Writing reports for other engineers	0	1	•	3	0
56. Brainstorming different ideas	0	1	2	3	4
57. Driving people from place to place	0	1	2	3	0
58. Telling other people what they find out	0	1	2	3	•

Research Results

Children who use EiE are more likely than control students to indicate that they are interested in engineering as a career.

Research Results: Underrepresented

Students from underrepresented groups . . .

Females English-language learners

Low-income Students with an IEP

Minorities underrepresented in engineering

showed increased . . .

Interest

Engagement

Performance

when using EiE compared to when they worked with their. . .

Science curriculum

School in general

www.eie.org EiE@mos.org

Christine Cunningham: ccunningham@mos.org

