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Engineering Student Motivation and Perceived Metacognition in 

Living-Learning Communities 

 

 

Abstract 

 

The effect of living-learning communities on students’ motivation in engineering and their 

perceived use of metacognitive strategies were evaluated for first year engineering students using 

quantitative methods. There were two living-learning communities studied: an honors 

community and a science and engineering community. Students in both communities were 

enrolled in specific sections of an introductory engineering course designated for them. Students 

were surveyed at the beginning and end of their first semester on campus while enrolled in the 

course. The survey used was assessed for construct validity using a series of factor analyses. 

There were several distinctions between the motivational profiles of students’ based on course 

section type (honors community, science and engineering community, and non-restricted 

sections of the course). The honors community seems to be attracting their targeted group of 

students, as students with higher mastery orientation and higher perceptions of their knowledge 

of cognition. Students in the science and engineering community were not significantly different 

than those in the non-restricted sections of the course at the beginning of the semester, but did 

have higher expectancies of success in their engineering course at the end of the semester.  
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Introduction  

 

A living-learning community (LC) is defined as a group of students that, “1) live together on 

campus, 2) take part in a shared academic endeavor, 3) use resources in their residence 

environment designed specifically for them, and 4) have structured social activities in their 

residential environment that stress academics”.
1(p10)

 The first intentional LC, known as the 

experimental college, was created by Alexander Meiklejohn at the University of Wisconsin from 

1927 to 1932. These communities became more common during the expansion of higher 

education in the 1950s and 1960s.
2
 Over the years, several variations of LCs have been 

implemented in universities throughout the United States to improve undergraduate educational 

experiences and are today considered to be a high-impact practice in higher education.
3
 

 

A LC is a type of community of practice, defined as a group of people engaging in collective 

learning in a shared domain. These communities have been shown to have positive effects on 

student integration, engagement, academic success, and persistence
1,2,4

; however, little research 

has examined how LCs influence factors in the affective domain. Within a community of 

practice there exist shared cultures, values, and goals, suggesting that LCs may influence these 

factors that lie within the affective domain.  

 

The goals of this research are to: 1) validate a survey instrument to assess student motivation and 

perceived use of metacognitive strategies and 2) examine the differences between engineering 

students at a land grant institution in the southeastern US participating in one of two LCs and 

engineering students not participating in an LC using the validated survey instrument. This 

quantitative study was conducted using an 82 item survey to evaluate student perceptions twice 

during their first semester. Responses were compared within the semester to evaluate variations 

in motivations and changes over time based on participation involvement in LCs, and were also 

compared to a similar cohort of students who did not participate in LCs. 

 

Living-Learning Communities 

 

In the two LCs analyzed in this study, students both live together in a residence hall and take 

specific classes together. Both LCs have dedicated study space in the basement of the residence 

halls, have faculty member presence in the dorm, and hold extra-curricular activities to promote 

student engagement and community growth. However, both LCs differ in terms of academic 

requirements for admittance to the program, resources available to the participants, and program 

goals.   

 

The honors LC (HC) has an interdisciplinary focus and is open to students in any major who 

meet minimum academic requirements. The mission of the HC at this institution is “to foster 

continued intellectual growth, to cultivate a lifelong respect for learning, and to prepare students 
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for lives as leaders and change-agents”
5
. Completion of the honors program requirements earns 

students a distinction on their academic record. Each year, approximately 300 students are 

admitted to the HC at this institution from all majors, with approximately 75 of those students 

entering the College of Engineering and Science. HC students are required to take at least one 

honors section of a class each semester where all students in the class are part of the honors 

college. Honors sections have slightly more stringent requirements than their non-honors 

equivalent of the class. For example, students may cover more course material throughout the 

semester or require a research project as part of the course.  

 

The science and engineering living-learning community (SEC) has an intradisciplinary focus and 

is only open to students pursuing degrees in science or engineering majors. The mission of the 

SEC is “to assist students in their transition to college and prepare them for their future academic 

and professional career by promoting: academic preparedness, professional development, 

interpersonal development, and community engagement”
5
. This year, approximately 400 

students at this institution were admitted to the SEC. Students participating in the SEC enroll in 

SEC specific sections of courses required for their major when available. This year SEC sections 

were available for two classes which also have honors sections and regular sections. SEC 

sections of a class have the same academic requirements of regular sections, but all students in 

the class live in the same residence hall. The SEC also holds tutoring sessions in the residence 

hall for the two classes.  

 

Frameworks 

 

For this work, student motivation is considered to be structured from 1) higher-level long-term 

goals that are semi-stable traits of the individual and 2) task-specific motivations that vary from 

task to task. To examine these levels of motivation and their interconnections, several relevant 

motivational theories were utilized to evaluate student motivations toward long-term goals and 

short-term tasks.  

 

One model for understanding how student motivation influences learning is the Motivated 

Action Theory presented by DeShon and Gillespie.
6
 This model posits that students are driven to 

perform actions by goals that are situated in different levels or time scales, from goals that are 

long-term and stable, to goals that are temporary and situated in the present. The students’ 

unique combinations of motivations toward long-term and short-term goals prompt students to 

act in certain ways.  

 

Motivations Towards Long-Term Goals 

 

Expectancy x Value 

Students' motivations toward long-term goals are evaluated through Expectancy x Value theory, 

which focuses on the expectation of how one will perform on a task and how much one values a 
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task or its outcomes.
7
 Expectancy x Value theory posits that three main criteria must be met for 

motivated action: a) With enough effort, the performance can be achieved; b) If achieved, 

performance will lead to desired outcomes; and c) Those outcomes will lead to satisfaction.
7
 

Research applying Expectancy x Value theory has shown that engineering students who have 

higher expectations will have better academic performance
8
, and those who see higher value for 

a task will persist longer.
7
 Expectancy x Value theory has been developed to examine students' 

motivations toward long-term goals at a degree or course level.
7
  

 

Expectancy was operationalized to assess how students expected to do in an introductory 

engineering course. Survey items evaluating expectancy include, “I expect to do well in this 

engineering course” and, “I am confident I can do an excellent job on the assignments and tests 

in this engineering course”. 

 

Future Time Perspective 

Different motivational constructs have been used under the achievement motivation umbrella to 

examine the influence of motivation on engineering student academic performance.
9
 Husman 

and Lens have expanded these frameworks to include the factor of time, examining students’ 

perceptions of the future and how the future relates to present tasks.
10

 Future Time Perspective 

(FTP) posits that the temporal distance of student goals paired with the perceived instrumentality 

of a current task, will influence student actions in the present 
10

. FTP research has shown that 

students who have stronger academic motivations often have stronger or more detailed 

perceptions of the future and its impact on academic goals, which correlates to improved 

persistence and performance on academic tasks.
10

  The FTP framework explicitly examines 

students’ long-term goals, and is appropriate for application in examining engineering students’ 

motivation.
11–13

 

 

The FTP theoretical framework was operationalized to assess students’ perceptions of the present 

and future in relation to their engineering degrees and their desire to be engineers. For this work, 

it was assumed that all students who have entered into a college-level engineering program 

consider graduating with a degree to be part of their future; thus, the time point of graduation 

was chosen as the future time point under consideration. Students’ perceptions of the present 

were evaluated in terms of how their views of the engineering field were guiding their views of 

their current engineering course. Students’ perceptions of the future were evaluated in terms of 

how first-year students viewed the future in relation to their engineering degree and their desire 

to be an engineer. Survey items evaluating future perceptions include, “My interest in 

engineering outweighs any disadvantages I can think of'”, and “I want to be an engineer”. Survey 

items evaluating present perceptions include, “I will use the information I learn in this 

engineering course in the future” and, “What I learn in my engineering course will be important 

for my future occupational success”.  
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Task-Level Motivations 

 

Self-efficacy 

Bandura's work in self-efficacy examines motivations toward short-term tasks.
14

 Self-efficacy 

speaks to students’ specific perceptions on how they will perform on a task.
15

 Self-efficacy has 

been shown to influence the use of learning strategies on tasks related to students' courses.
16

 

While self-efficacy and expectancy are correlated constructs when examining goals with the 

same time scale
8
, self-efficacy was developed to examine short-term tasks that require a high 

level of granularity
17

 and makes it more useful for examining motivations toward short-term 

goals. 

 

For this work, problem solving items were adapted from the Attitudes and Approaches to 

Problem Solving survey
18

 to appropriately assess student self-efficacy for various problem 

solving tasks, and were then placed on a scale from 0-100.
17

 This change allows us to examine 

motivation toward problem solving tasks (short-term tasks) that are distinct from motivation 

related to students’ goal of obtaining an engineering degree (long-term goals).
6
 Using the 100 

point scale rather than a 5-point Likert scale allows us to get better gradation of student 

responses for a detail oriented tasks.
17

 Survey items assessing problem solving self-efficacy 

asked students to “Please rate how certain you are that you can do each of the things listed 

below” followed by items such as “Drawing pictures or diagrams to answer multiple-choice 

engineering problems” and “Checking my work for errors when I have obtained an unreasonable 

solution”. 

 

Goal orientation  

The literature describes three types of goal orientation: mastery approach, performance 

approach,
19

 and work avoid.
20

 Mastery goal orientation is defined as holding knowledge and 

understanding as the main purpose for learning, while performance approach goal orientation 

focuses on positive judgment from others as the main purpose for learning.
21

 Studies have shown 

that both mastery and performance approach goals can be linked to “outcomes of motivation, 

affect, strategy use, and performance”.
20

 In a study examining achievement goals’ effect on 

college students’ success, performance approach goals and course performance were correlated 

while mastery goals were shown to correlate with continued subject interest.
22

 Another distinct 

type of goal orientation, which applies to students, is work avoidance orientation.
23–25

 Students 

with a work avoidance goal orientation prefer to work on academic tasks that are easy and can be 

completed in a short amount of time. 
25

 Specifically, work avoidance oriented students look to 

evade work and are not concerned with the views of others. Students with work avoidance goal 

orientation try to minimize their effort for academic tasks, and this type of orientation has been 

linked with “poor academic outcomes”.
25

 Research applying goal orientation frameworks often 

do not consider the timeframe that students are operating within, and more often consider goals 

that are only proximal in time.  
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For this work, goal orientation items were adapted from the work of Shell and Husman (2008).
26

 

These items were originally created by Schraw, Horn, Thorndike-Christ, and Bruning (1995)
27

 

and then adapted to be measured using a scale developed by Dweck
21

. Survey items spanning the 

constructs of mastery approach, performance approach, and work avoidance goal orientations 

asked students to “Use the scale given (5 point Likert-type) to rate how important achieving each 

of the following is to you in this class from Very Unimportant to Very Important” followed by 

items such as, “Really understanding this course’s material”, “Remembering enough from this 

class to impress people”, and “Not having to work too hard in this class”. Shell and Husman used 

these items in a study on undergraduates at a large Southwestern university in which they studied 

the connection between the dimensions of control and the different goal orientations. In this 

work it was shown that mastery goal orientation contributes to knowledge building/surface 

learning, while work avoidance orientation contributes to learned helplessness.
26

 

 

Metacognition  

 

Like motivation, metacognition has been shown to play an important role on problem solving 

performance, a key goal of many engineering programs.
28,29

 The level of knowledge one has 

about their own thinking processes and their ability to regulate those processes describes their 

level of metacognition.
30

 Metacognitive tasks have a broad impact on problem solving 

performance because these higher-level executive functions such as planning, monitoring, 

evaluating, and revising guide problem solving processes and are vital in monitoring progress 

towards goals.
31

 Students using limited metacognitive processes typically are unable to identify 

and correct errors in problem solving attempts. Metacognitive tasks have been shown to be 

correlated to successful problem solving attempts.
28

 There are two distinct components of 

metacognition: knowledge about cognition and regulation of cognition. Knowledge of cognition 

refers to the reflective aspect of metacognition and includes three components: declarative 

knowledge (knowledge about self and about strategies), procedural knowledge (knowledge about 

how to use strategies), and conditional knowledge (knowledge about when and why to use 

strategies).
32

 Knowledge of cognition has been shown to play a key role in decision making and 

performance.
33–35

 Regulation of cognition refers to an individual’s ongoing cognitive processes 

and includes five skills: planning, information management strategies, comprehension 

monitoring, debugging strategies, and evaluation.  These skills have been suggested to play a 

critical role in problem solving as they allow learners to organize and monitor their thinking.
35

 

 

Metacognition was operationalized in this work to assess students’ perceptions of their ability to 

use metacognitive strategies when solving an engineering problem. Items were adapted from Lee 

et al.’s (2009) work originally used to assess elementary students’ use of metacognition when 

solving an everyday problem, which were originally based on Schraw and Dennison’s work.
32

  

 

Survey items to assess students’ perceptions of their ability to use metacognitive strategies asked 

students to “Please rate your agreement for each item on a scale from Strongly Disagree to 
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Strongly Agree. When solving an engineering problem…” followed by items such as, “I think I 

know whether I have understood the problem well” and “I try to think in the ways that have 

worked in the past”. It is important to note that we are measuring student’s perceptions of their 

use of metacognition and not their metacognition because we are not directly observing their use 

of metacognitive skills as they solve problems.  

 

Methods 

 

Participants 

Students enrolled in a first-year engineering (FYE) course at a southeastern land grant university 

participated in this study. This included five sections taken by students of an honors community 

(HC), seven sections taken by students of a science and engineering community (SEC), and 

eleven sections taken by students not involved in an LC.  

 

A survey was administered (described in the subsequent section) at the beginning and end of the 

Fall 2013 semester to all students in the FYE course. There were 11 weeks between 

administrations of the survey. Of the 1094 students surveyed at the beginning of the Fall of 2013, 

297 were in the SEC, 126 were in the HC, and 671 were in other sections open to all engineering 

students. A total of 880 students completed the survey at the end of the Fall 2013 semester with 

227 students in the SEC, 123 students in the HC, and 509 students in other sections open to all 

engineering students. The difference in responses at the beginning and end of the semester is in 

part due to the number of students who withdrew from the course (approximately 18%). We 

were able to match 640 of the beginning of the semester responses to the end of the semester 

responses. This includes 156 students in the SEC, 98 students in the HC, and 384 students in 

other sections open to all engineering students. The discrepancy in matched surveys is due to 

students choosing to not report identifying information such as student ID number when they 

filled out the surveys.  

 

Survey 

The 82-item survey included items on motivation (goal orientation, self-efficacy, FTP, and 

expectancy-value) and metacognition (knowledge of cognition and regulation of cognition) as 

described in the theoretical frameworks section above. Items were five point, anchored Likert-

type items except self-efficacy items, which were on a 100 point response scale. The survey was 

broken down into four sections as outlined in  

Table 1. Part I included items related to goal orientation which included 3 constructs: 

performance approach, mastery, and work avoidance. Part II of the survey asked students 

questions related to their attitudes and beliefs about their experiences in their current engineering 

course and in their major, including Expectancy and Future Time Perspective items. Part III of 

the survey asked students to reflect on the metacognitive processes they use when solving an 

engineering problem. Part IV asked students to rate their confidence in doing problem solving 

P
age 24.504.8



related tasks when solving an engineering problem as a means to assess students’ problem 

solving self-efficacy.  

 

Table 1: Summary of the frameworks and constructs included in each part of the original survey.  

  Frameworks Constructs (# items) 

Part I Goal Orientation 

Mastery (5) 

Performance approach (5) 

Work avoidance (3) 

Part II 

Expectancy x Value Expectancy (11) 

Future Time Perspective  
Present perceptions of engineering (10) 

Future perceptions of engineering (9) 

Part III Metacognition  
Knowledge (12) 

Regulation (13) 

Part IV Self-efficacy Problem solving self-efficacy (14) 

 

Factor Analysis 

Exploratory factor analyses (EFA) were calculated for each part of the survey using the survey 

responses received at the beginning of the Fall 2013 semester (n=1094) to assess the construct 

validity of each part of the survey. Scree plots and the literature on each framework were used to 

determine the number of factors to test during the analysis. Items that loaded below 0.4 were 

removed from the analysis.
36

 A list-wise deletion was used to account for missing data. This 

analysis was run in R using the nFactor package with a promax rotation as it allows for 

correlation between variables.
37

 

 

Confirmatory factor analyses (CFA) were utilized for each part of the survey that loaded during 

the original EFA using the survey responses received at the end of the Fall 2013 semester 

(n=880) to confirm that the hypothesized model for each part of the survey provides a good fit to 

the data. This analysis was run in R using the laavan package for structural equation modeling.
38

 

Missing data for both EFA and CFA was handled by performing list-wise deletions.  

 

General Linear Models 

General linear models with each factor from the factor analysis as the dependent variable were 

used to examine differences among section types for the beginning of the semester responses 

(n=1094), end of the semester responses (n=880), and changes in responses from the beginning 

to the end of the semester (n=640). When significant differences existed among the section types, 

pairwise comparisons between the section types were considered using t-tests with pooled 

standard deviation estimates. Prior to building the models, chi-square analysis was used to 

determine if demographics and gender were independent of section type (HC, SEC, and no LC). 

Gender along with its interaction with section type were included in each analysis. 
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Results and Discussion 

 

Survey Validation  

Exploratory factor analysis (EFA) was used to validate the survey items’ measurement of their 

intended constructs.  Parts I, II, and III of the survey factored according to literature into the 

constructs displayed above in Table 1 using the survey responses collected at the beginning of 

the semester. The EFAs for Parts I (Goal Orientation), II (Expectancy x Value and Future Time 

Perspective), and III  (Metacognition) of the survey were used to inform “measurement models” 

that were examined with confirmatory factor analyses (CFAs) conducted with the survey 

responses collected at the end of the semester. The CFA analyses reported in Tables 2-4 suggest 

that the measurement model fits the data with some limitations.  

 

The chi-square statistic for Part I of the survey is 3778.332, making it significant. The degrees of 

freedom reported are 55. With CFA, the chi-square test indicates the difference between the 

observed and expected covariance matrices. Chi-square statistics close to zero with p-values 

greater than 0.05 indicate that there is statistically no difference between these matrices, 

indicating a good fit. The large chi-square value in this model is likely due to the large sample 

size. The chi-square statistic is often considered to be problematic because it is sensitive to 

sample size as it can be artificially inflated and significant without indicating a poorly fitting 

model with large sample sizes 
39,40

. Another measure of fit in CFA is the Root Mean Square 

Error of Approximation (RMSEA), which is related to the residuals in the model. Values for 

RMSEA range from zero to one, with smaller values indicating a better model fit. Acceptable 

model fit is indicated by a value of 0.1 
39

 or less and a good model fit is indicated by a value of 

0.08 or less 
41

. The RMSEA is 0.086 for this model indicating an acceptable fit. Another fit 

statistic to consider is the Comparative Fit Index (CFI) which assesses the improvement of the 

proposed model compared to an independence model where the observed variables are 

uncorrelated 
42

. CFI values range from zero to one, with larger values indicating a better fit; 

acceptable model fit is indicated by a value of 0.9 
39,43

. The CFI for this model is 0.930 

indicating an acceptable fit.  

The chi-square statistic for Part II of the survey is 8858.887 with 136 degrees of freedom and is 

significant. As with Part I of the survey, this large chi-square value is likely due to the large 

sample size 
39

. The RMSEA and CFI are 0.096 and 0.894 respectively indicating that the fit is 

borderline acceptable as the RMSEA is below 0.1 but the CFI is not above 0.90.  

The chi-square statistic for Part III of the survey is 7412.098 with 190 degrees of freedom and is 

significant, again, likely due to the large sample size. The RMSEA and CFI are 0.070 and 0.902 

respectively. These fit parameters suggest that the model is acceptable as these parameter values 

are within the acceptable fit range.  
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The fit parameters for the CFAs of each part of the survey are borderline acceptable. The 

acceptable fit rather than good fit may be explained in part by using the beginning of the 

semester surveys to determine the factors (EFA) and end of the semester surveys to confirm the 

model (CFA). Over the semester the students’ attitudes and perceptions of engineering and their 

engineering problem solving practices may have become less inconsistent as they gained more 

experience in their engineering course. Additionally, the loss of those students who withdrew 

from the introductory course may be enough to shift the overall pattern of responses, thus 

making the CFA population slightly different from the EFA population. 

 

Table 2: Confirmatory Factor Analysis (CFA) Estimates for Part I (Goal Orientation) of the 

Survey 

To summarize acceptable values: Item reliability (R
2
 )≥ 0.50, Construct Reliability ≥ 0.70, and 

Average Variance Extracted ≥ 0.50.  

 
 

Table 3: Confirmatory Factor Analysis (CFA) Estimates for Part II (Future Time Perspective 

and Expectancy) of the Survey 

To summarize acceptable values: Item reliability (R
2
 )≥ 0.50, Construct Reliability ≥ 0.70, and 

Average Variance Extracted ≥ 0.50.  

 
 

Construct Item

Standardized 

Factor 

Loadings 

Standard 

Error

Item 

Reliability 

(R^2)

Construct 

Reliability

Average 

Variance 

Extracted

Remembering enough from this class to impress other people. 0.526 0.041 0.277

Doing better than the other students in this class on tests and assignments. 0.661 0.038 0.437

Impressing the instructor with your performance. 0.733 0.037 0.537

Getting the highest grade in this class. 0.421 0.046 0.177

Proving to other people that you are a good student. 0.59 0.038 0.348

Knowing more than you did previously about these course topics. 0.733 0.024 0.537

Really understanding this course's material. 0.863 0.022 0.745

Feeling satisfied that you got what you wanted from this course. 0.772 0.026 0.596

Getting a passing grade with as little studying as possible. 0.842 0.033 0.709

Getting through the course with the least amount of time and effort. 0.956 0.03 0.914

Not having to work too hard in this class. 0.754 0.03 0.569

0.679

0.476

0.759

Performance Approach

Mastery

Work Avoid

0.833

0.727

0.890

Construct Item

Standardized 

Factor 

Loadings 

Standard 

Error

Item 

Reliability 

(R^2)

Construct 

Reliability

Average 

Variance 

Extracted

I expect to do well in this engineering course. 0.754 0.024 0.569

I am confident I can do an excellent job on the assignments and tests in this 

engineering course. 0.829 0.025 0.687

Considering the difficulty of this engineering course, the teacher, and my skills, 

I think I will do well in this engineering course. 0.826 0.023 0.682

I am certain I can master the skills being taught in this engineering course. 0.777 0.022 0.604

I am certain I can understand the most difficult mterial presented in the 

readings for this engineering course. 0.689 0.028 0.475

I am confident I can undersand the most complex material presented by the 

instructor in this engineering course. 0.696 0.028 0.484

I believe I will receive an excellent grade in this engineering course. 0.777 0.03 0.604

What I learn in my engineering course will be important for my future occupational success.0.794 0.028 0.630

I will use the information I learn in my engineering course in other classes I will take in the future.0.804 0.025 0.646

My course work is preparing me for my first job. 0.73 0.032 0.533

I will not use what I learn in this engineering course. -0.705 0.031 0.497

I will use the information I learn in this engineering course in the future. 0.826 0.025 0.682

I am confident about my choice of major. 0.752 0.031 0.566

My interest in engineering outweighs any disadvantages I can think of. 0.804 0.028 0.646

I am considering switching majors. -0.728 0.036 0.530

I want to be an engineer. 0.84 0.029 0.706

Engineering is the most rewarding future career I can imagine. 0.669 0.035 0.448

Present 0.749 0.549

Future 0.722 0.526

Expectancy 0.908 0.649
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Table 4: Confirmatory Factor Analysis (CFA) Estimates for Part III (Metacognition) of the 

Survey 

To summarize acceptable values: Item reliability (R
2
 )≥ 0.50, Construct Reliability ≥ 0.70, and 

Average Variance Extracted ≥ 0.50.  

 
 

Part IV of the survey, which included items on problem solving self-efficacy, did not hold as a 

factor with all of the items factoring below the cutoff of 0.4. As a result, this part of the survey 

was not used in subsequent CFA or regression analyses. It is likely that these items did not hold 

as a factor because at the time of the survey the students had only been in engineering for 

approximately two weeks, making it difficult for them to assess their confidence in solving an 

engineering problem. As such, an exploratory factor analysis (EFA) was conducted on Part IV 

using the survey responses collected at the end of the semester (n=880) since at this time the 

students had more experience with solving engineering problems making them more likely to 

assess their confidence in performing specific tasks. Using the end of the semester survey 

responses, Part IV of the survey held as one factor, as expected.
44

 The factor loadings of specific 

items from Part IV of the survey are in Table 5 below.  

 

 

 

 

 

 

 

 

 

 

 

Construct Item

Standardized 

Factor 

Loadings 

Standard 

Error

Item 

Reliability 

(R^2)

Construct 

Reliability

Average 

Variance 

Extracted

I set a goal before solving the problem. 0.613 0.032 0.376

I ask myself how well I have solved the problem once I have finished. 0.637 0.03 0.406

I ask myself if I have considered all options when solving the problem. 0.695 0.026 0.483

I ask myself now and then if I am meeting my goal. 0.709 0.029 0.503

I ask myself about the case before starting to solve the problem. 0.692 0.027 0.479

I summarize what I have learned after solving the problem. 0.614 0.034 0.377

I ask myself if I have considered all options after I solve the problem. 0.702 0.028 0.493

I ask myself whether I have considered my process carefully before I make a 

choice. 0.725 0.026 0.526

I find myself pausing regularly to check my understanding. 0.458 0.032 0.210

I consider several ways to solve the problem before I answer. 0.667 0.028 0.445

After I have solved a problem, I ask myself whether there is an easier way to 

solve it. 0.563 0.032 0.317

I think I know whether I have understood the problem well. 0.643 0.023 0.413

I know what kind of information is most important. 0.649 0.022 0.421

I think I am good at sorting out the information presented in the problem. 0.653 0.023 0.426

I can make myself solve the problem when I need to. 0.67 0.024 0.449

I find myself using helpful methods naturally when I solve the problem. 0.738 0.023 0.545

I know how well I did after solving the problem. 0.585 0.028 0.342

I am aware of the plans I use when solving the problem. 0.695 0.025 0.483

I try to think in the ways that have worked in the past. 0.641 0.023 0.411

I use different plans to solve the problem depending on the situation. 0.699 0.024 0.489

Knowledge 0.877 0.400

Regulation 0.887 0.526

P
age 24.504.12



 

Table 5: Exploratory Factor Analysis Estimates for Part IV (Problem Solving Self-Efficacy) 

 
 

 

Comparison of Motivation and Metacognition Factors by Course Section Type  

Using the factors presented in this paper, general linear models were used to explore differences 

between HC, SEC, and non-LC sections of a FYE course. For this work, we considered three 

datasets. Dataset 1 included survey responses from students collected at the beginning of the 

semester (n=1094) and was used to characterize initial differences between the three types of 

sections. Dataset 2 was made up of survey responses collected from students at the end of the 

semester (n=880) and was used to examine the differences between the section types at the end 

of the course. Dataset 3 included the change for each survey item for students who completed 

both administrations of the survey (n=640) and was used to examine changes that occurred over 

the course of the semester. 

 

Dataset 1: Beginning of the semester responses  

General linear models were used to determine if certain motivation and metacognition profiles 

were evident in students enrolled in HC, SEC, or non-LC sections of the course at the beginning 

of the semester. Pearson’s Chi-squared test was used to determine if race and gender were 

associated with section type. Gender was found to be associated with section type (p-

value=0.00098 and race was found not to be associated with (p-value=0.3047). As such, gender 

and its interaction with section type were included in each model. The results of these analyses 

are displayed in Table 6. 

 

  

Item Factor Loading

Determine what may be wrong with a problem's solution if the answer 

seems unreasonable. 
0.68

Check my work for errors. 0.63

Determine which approach is more reasonable, if two appraoches to solve 

an engineering problem gave different answers.
0.67

Identify the engineering principles in the problem before looking for 

corresponding equations.
0.79

Solve challenging engineering problems. 0.66

Draw pictures and/or diagrams to represent the situations described in 

engineering problems.
0.68

Learn from the problem's solution after I solve each engineering homework 

problem.
0.66

Solve an engineering problem symbolically before plugging in the numbers. 0.81

Use different approaches to solve an engineering problem when one does 

not work.
0.4
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Table 6: Beginning of the semester, general linear model analyses results and follow-up pairwise 

comparisons using t-tests with pooled standard deviation estimates results. Section type means 

within a row with different letters significantly differ (α = 0.05). Overall F test significant ( 
.
 , *, 

**) for section type at an alpha of 0.1, 0.05, and 0.001, respectively.  

 Mean ± Standard Deviation 

HC SEC Non-LC 

Expectancy* 4.158 ± 0.662
a
 3.989 ± 0.681

b
 3.983 ± 0.675

b
 

Future*** 3.374 ± 0.521
a
 3.567 ± 0.506

 b
 3.593 ± 0.499

 b
 

Mastery 
.
 4.744 ± 0.485

a
 4.529 ± 0.710

b
 4.627 ± 0.626

ab
 

Knowledge 
.
 4.069 ± 0.380

 a
 3.935 ± 0.535

 b
 3.985 ± 0.488

 ab
 

 

For students enrolled in the HC sections, there were higher reported levels of expectancies 

compared to students in the SEC and non-LC sections at the beginning of the semester. 

Additionally, students in the HC sections had higher perceptions of their knowledge of cognition 

and higher mastery orientation compared to students in the SEC sections. Students enrolled in 

the HC sections had lower reported levels of future perceptions than students enrolled in the SEC 

and non-LC sections (Table 6). Students whose academic performance is traditionally high often 

expect to maintain these high grades; this is reflected by the HC section having higher reported 

expectancies. As the HC is restricted to students with superior academic achievement and their 

mission is focused on developing students who are life-long learners, it seems reasonable that 

students with higher levels of mastery goal orientation would be attracted to the HC. The 

knowledge of cognition construct includes processes that facilitate the reflective aspect of 

metacognition. This suggests that students who feel that they know when, why, and/or how to 

use metacognitive strategies when solving an engineering problem may choose to join and 

participate in the HC in hopes of gaining more from the HC section than a non-LC section of the 

course. Lower ratings of future perceptions of engineering are difficult to explain through 

quantitative methods. It is possible that these students have broader future goals where becoming 

an engineer is simply a stepping stone to their future career, such as studying biomedical 

engineering before continuing to medical school to become a doctor. Alternately, students may 

be studying engineering for reasons other than their positive perceptions of the field such as 

others pushing them toward engineering based on their high academic achievement in high 

school. Finally, as students enter an engineering program they often have a limited understanding 

of what it means to be an engineer, and have yet to develop engineering related future goals.  

 

SEC sections reported higher future perceptions of engineering, lower perceptions of knowledge 

of cognition, lower mastery orientation, and lower expectancies compared to students in the HC 

section at the beginning of the semester. Like students in the SEC sections of the course, students 

in the non-LC sections had higher future perceptions of engineering and lower expectancies than 

students in the HC section. No significant differences were observed between students in the 

SEC and non-LC sections. High future and low expectancies reflect students’ strong desires to be 
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engineers despite having some insecurity about their ability to solve engineering problems. 

Based on the results from the beginning of the semester survey responses there are no clear 

motivational or metacognitive differences between students in the SEC and non-LC sections of 

the course, despite the mission of the SEC, which is to prepare students for engineering courses 

and provide students with extra resources.   

 

Dataset 2: End of the semester responses  

General linear models were used to characterize differences in certain motivation factors of 

students in HC, SEC, or non-LC sections of the course at the end of the semester. Pearson’s Chi-

squared test was repeated, due to a differing population, to determine if demographics and 

gender were associated with section type. Gender was found to be associated (p-value=0.000873) 

and demographics were found not to be associated with section type (p-value=0.184). As such, 

gender and its interaction with section type were included in each model. The results of these 

analyses are displayed in Table 7. 

 

Table 7: End of the semester, general linear model analyses results and follow-up pairwise 

comparisons using t-tests with pooled standard deviation estimates results. Section type means 

within a row with different letters significantly differ (α = 0.05). Overall F test significant (*, **) 

for section type at an alpha of 0.05 and 0.001, respectively.  

 Mean ± Standard Deviation 

HC SEC Non-LC 

Expectancy* 3.966 ± 0.527
ab

 4.066 ± 0.531
a
 3.920 ± 0.533

b
 

Future** 3.408 ± 0.556
a
 3.618 ± 0.487

 b
 3.550 ± 0.564

 b
 

Performance* 3.195 ± 0.800
a
 3.453 ± 0.688

b
 3.351 ± 0.744

b
 

 

At the end of the semester, students in the HC section had significantly lower future perceptions 

of engineering and performance goal orientation than students in the other two sections (Table 

7). This may indicate that students who completed the survey at the end of the semester in the 

SEC and non-LC sections have a higher drive for grade based performance than the students in 

the HC section of the course. The lower perceptions of the future for HC sections are consistent 

with what was seen at the beginning of the semester. At the end of the semester, students in the 

SEC had higher expectancies of success than students in the non-LC sections. This suggests that 

at the end of the term the students in the SEC sections are more confident in their abilities to 

succeed in their engineering course than the students in the non-LC sections.  

 

The interaction between section type and gender was found to be significant in the overall model 

for future perceptions of engineering at the end of the semester. Significant differences in future 

perceptions of engineering were found between the females in the HC sections compared to 

females in the non-LC and SEC sections with p-values of 0.0052 and 0.0018, respectively. The 

mean future perception of engineering for women in HC, SEC, and non-LC sections are 3.204 ± 

0.580, 3.574 ± 0.550, and 3.483 ±0.622, respectively. This suggests that women in the HC 
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sections are not seeing engineering as a possible future career as much as women in other 

sections. Some possible reasons to consider are that women in HC have other careers that they 

are considering and women in HC are not exposed to careers in engineering that they can 

identify with resulting in less positive future perceptions of engineering. No significant 

differences in future perceptions of engineering were observed between males in the three 

sections. 

 

Dataset 3: Changes in responses from beginning to end of the semester  

Since looking at the beginning and end of the semester responses only provides snapshots in time 

for the overall groups, an additional dataset was created that included changes in students 

responses for each item on the survey from beginning to end of the semester. Using this merged 

dataset, General linear models were used to investigate changes in motivation and metacognition 

profiles that were evident in students enrolled in HC, SEC, or non-LC sections of the course.  

Pearson’s Chi-squared test was used to determine if race and gender were associated with section 

type. Gender was found to be associated with section type (p-value=0.0213) and race was found 

not to be associated with section type (p-value=0.197). As such, gender and its interaction with 

section type were included in each model. The results of these analyses are displayed in Table 8. 

 

Table 8: Changes in responses from beginning to end of the semester general linear model 

analyses results and follow-up pairwise comparisons using t-tests with pooled standard deviation 

estimates. Section type means within a row with different letters significantly differ (α = 0.05). 

Overall F test significant ( 
. 
) for section type at an alpha of 0.1.  

 Mean ± Standard Deviation 

 HC SEC Non-LC 

Expectancy 
.
 -1.137 ± 2.653

a
 -0.528 ± 2.216

b
 -0.573 ± 2.275

b
 

Mastery 
.
 -0.184 ± 0.794

a
 0.0427 ± 0.722

 b
 -0.0995 ± 0.889

 ab
 

 

Students in the HC sections of the course were found to have statistically significant changes in 

expectancy compared to students in the SEC and non-LC sections of the course. The expectancy 

of success for students in HC sections decreased more than that of students in the other sections 

(Table 8). This result mirrors previous work with engineering students indicating decreased 

expectancy over the course of a year.
8,45,46

 Students may enter an engineering program with pre-

existing ideas about their abilities and by the end of their first semester they are confronted with 

the reality that they may not be able to perform at that level in college courses. Additionally, 

students in the HC sections were found to have statistically significant changes in mastery goal 

orientation compared to students in the SEC sections. Mastery goal orientation slightly decreased 

over the course of the semester for students in HC sections, while slightly increasing for students 

in the SEC sections (Table 8). The change observed in HC students may indicated a shift from 

learning to performance as students neared final examinations, which account for a significant 

portion of their grade.  
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Conclusions 

 

This study validated a survey instrument that measures students’ affect toward engineering.  It 

was utilized to measure the impact of living-learning communities on the motivation and 

perceived metacognitive strategies of first year engineering students during their first university 

engineering course. Distinct motivation profiles, groupings of significant motivation factors, 

emerged for HC, SEC, and non-LC student populations.  

 

The HC seems to be attracting their targeted group of students, as students with higher mastery 

orientation and higher perceptions of their knowledge of cognition. Students in the SEC were not 

significantly different than those in the non-LC sections of the course at the beginning of the 

semester, but did have higher expectancies of success in their engineering course at the end of 

the semester. At the end of the semester, women in the HC sections of the course had 

significantly lower future perceptions of engineering than the women in the SEC and non-LC 

sections of the course. The expectancy of success for students in HC sections decreased more 

than that of students in the other sections. Additionally, mastery goal orientation slightly 

decreased over the course of the semester for students in HC sections, while slightly increasing 

for students in the SEC sections. 

 

The students’ level of perceived use of metacognitive practices remained unchanged throughout 

the semester. The LCs or the course as a whole may consider including pedagogical 

interventions that build metacognitive skills.  No comparisons have yet to be made between 

courses based on variations in teaching methods.  

 

Implications for Practice  

This survey has potential benefits beyond research purposes.  It can be a useful tool for 

instructors to learn more about their students by identifying the affective needs of his or her 

class. Professors could then address these needs by modifying their teaching style to appeal to 

the motivations of each population of students. Another potential use of the tool is as an 

evaluation tool to determine readiness for advanced programs such as early admittance, research 

groups, internships, or summer school. Further work would be required to establish the validity 

of this application of the survey and to establish admittance criteria. 

 

Limitations and Future Work 

One of the limitations of this work is that the interpretation of items has not been assessed so it is 

possible that students are misinterpreting items. As such, future work will include further 

validation and reliability testing of the survey to include test-retest and focus groups. During the 

focus groups, special attention will be paid to the items that have low item reliability, and to 

interpreting the meaning of the lower ratings of future perceptions of engineering for students in 

the HC. The CFA results report in this paper are borderline acceptable which could have been 
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caused by the two samples (beginning of the semester and end of the semester survey responses) 

used to test the model being more unique than we expected. While the same students were used 

to determine and then test the model, they had been in a semester of engineering which likely 

altered their perceptions and motivations towards engineering. Future work will determine if two 

separate models are more appropriate with one representing the beginning of the semester and 

one the end of the semester. In the general linear model analysis, grade point average and course 

grade were not controlled for, both of which have been shown in other work to be connected to 

student motivation. In future work, these two variables will be controlled for to provide a more 

robust analysis of the data. Additionally, the stability of the survey items has not been assessed 

yet and may have an effect on the results from dataset 3 as the differences that were observed 

could have something to do with the stability of the items in those two factors. Future work will 

include assessing the stability of the survey items, so that the natural noise that occurs in 

responses can be appropriately taken into account. The work avoid construct is understudied in 

the field of engineering and requires further exploration to understand how a motivational 

construct with limited ties to social evaluation influences academic performance.  
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