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Enhancing Digital Signal Processing Education with Audio Signal 

Processing and Music Synthesis 
 

 

Abstract 

 

Audio signal processing and music synthesis are familiar, accessible and engaging motivators for 

students to study digital signal processing (DSP). Hands-on project activities encourage deeper 

understanding of DSP concepts, and are used regularly in ECE481, a course that covers music 

synthesis for engineering majors at Rose-Hulman Institute of Technology. Students implement 

and experiment with music synthesis algorithms on a computer to gain a better appreciation for 

relationships between theory, sound, and visual representation of signals (time series, spectrum, 

and spectrogram). The LabVIEW graphical programming platform provides extensive support 

for DSP programming and soundcard operations, enabling students to quickly implement 

algorithms using graphical dataflow programming. The interactive user interface elements 

(controls and indicators) appear automatically while creating the graphical program, so the result 

is inherently interactive. ECE481 was recently revised to use LabVIEW, and students reported a 

high degree of satisfaction with the new approach. 

 

Introduction 

 

Music synthesis and audio signal processing offer students exciting applications of DSP 

concepts. As students implement synthesis and filtering algorithms, they develop a deeper 

understanding of the inter-relationships between the physical sound, its visual representations 

such as time-domain waveform and spectrogram, and its mathematical model. ECE481, 

Electronic Music Synthesis, an elective course in music synthesis for electrical and computer 

engineering majors initially offered in 1998, helps students tie together numerous conceptual 

threads from the required curriculum and strengthens their DSP programming skills with a series 

of mini-projects
1
. 

 

The choice of computational platform for mini-projects and in-class demonstrations is a key 

design decision for the course. Richard Hamming once said “the purpose of computing is insight, 

not numbers,” and students gain manifold insights when they interact with a signal processing 

system of their own creation. The choice of a development environment for optimum student 

learning revolves around two critical issues: (1) the total time required to transform a concept 

into a working system, and (2) the degree to which the system is interactive. Frustration results 

when the development process takes too long or is too complicated. In addition, the finished 

system should be as real-time and interactive as possible in order for the benefits of “computing 

for insight” to be fully realized. Text-based programming using m-scripts and the MATLAB 

program have traditionally enabled ECE481 students to implement a computer music algorithm 

as an m-script to produce an audible waveform. However, the additional development effort 

required to transform that script into a user-friendly, GUI-based, and interactive “musical 

instrument” is prohibitive for most student projects. 

 

LabVIEW by National Instruments offers a unique graphical dataflow programming 

environment in which an interactive user interface automatically emerges during the 
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programming process.  A finished “VMI” (virtual musical instrument) built with LabVIEW is 

immediately and inherently interactive by virtue of LabVIEW’s front panel controls-and-

indicators paradigm. This aspect and extensive built-in functionality for signal processing, 

analysis, math, and sound card control come together in LabVIEW to give students an 

unparalleled means to create an interactive virtual musical instrument with a reasonable 

development effort. 

 

Three years ago LabVIEW was adopted as the programming environment for the DSP 

prerequisite course,
2,3

 and LabVIEW was likewise adopted as the programming tool for ECE481 

to take advantage of student programming experience as well as the technical advantages offered 

by LabVIEW. 

 

This paper will describe the music synthesis course topics and mini-projects. Several LabVIEW 

examples will be presented, and end-of-term assessment results of the new course format will be 

discussed. 

 

ECE481: Electronic Music Synthesis 

 

ECE481, Electronic Music Synthesis, is 10-week course that explores the technical side of 

electronic music synthesis, including topics such as analog synthesis, MIDI (Musical Instrument 

Digital Interface) standard, modulation techniques, additive and subtractive synthesis, physical 

modeling, and reverberation. Analog synthesis has largely been replaced by digital methods, but 

the mathematical models of analog synthesis still form foundation for many synthesis 

algorithms, including signal sources (periodic as well as noise), envelopes, and filters. MIDI is 

an interesting subject in its own right, and also serves as the basis for translating standard MIDI 

music files into control information to “play” a synthesis algorithm as a musical instrument. 

Hearing an algorithm in a musical context provides many new insights not otherwise possible by 

simply listening to individual tones. Modulation techniques (AM and FM) familiar from the 

communications systems course take on new meaning when the modulation frequency is in the 

audio range. Additive synthesis generalizes the Fourier series to permit independent time-varying 

frequency and amplitude trajectories of the harmonics (known as “partials”). Subtractive 

synthesis invokes much of the DSP material learned in the prerequisite course, and introduces 

time-varying filters. Reverberation also broadens student DSP background by covering comb 

filters and all-pass filters. 

 

Most students choosing this elective course play a musical instrument, sing, or are avid music 

listeners. Examples of historically significant musicians, instruments, and compositions are 

frequently presented in class. As an end-of-term project, students create a two-minute 

composition using synthesis techniques learned throughout the quarter, and then present their 

work as a concert for interested students, faculty, and staff. Hatfield Hall auditorium is a 

relatively new world-class facility on the Rose-Hulman campus, and students enjoyed hearing 

their work in this setting. 

 

All ECE481 course material including lecture notes and mini-projects has recently been 

converted to on-line format. Hosted on Connexions
4
, Musical Signal Processing with LabVIEW  

(http://cnx.org/content/m15510) is a multimedia educational resource for students and faculty 
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that augments traditional DSP courses and supports dedicated courses in music synthesis and 

audio signal processing. Each of the learning modules blends video, text, sound clips, and 

LabVIEW virtual instruments (VIs) into explanation of theory and concepts, demonstration of 

LabVIEW implementation techniques to transform theory into working systems, and hands-on 

guided project activities. Screencasts – videos captured directly from the computer screen with 

audio narration and a hallmark of this resource – use a mixture of hand-drawn text, animations, 

and video of the LabVIEW tool in operation to provide a visually rich learning environment. A 

companion paper
5
 discusses delivery and production aspects of these learning modules. 

 

Mini-Projects 

 

Students engage the course material by completing a series of mini-projects. The course does not 

have a dedicated lab time, but selected class days are devoted to the projects which then become 

assigned homework to be finished outside of class. The mini-projects are implemented in 

LabVIEW and include the following activities: 

 

Musical Intervals and the Equal-Tempered Scale – www.cnx.org/content/m15440 – Discover 

why musical intervals are specified as ratios, and derive the equation to convert a MIDI note 

number to frequency. 

 

Analog Synthesis Composition  – www.cnx.org/content/m15443 – Emulate a modular analog 

synthesizer using signal sources (sinewave, squarewave, triangle wave, and noise) and amplitude 

envelopes to create a simple piece of music. 

 

MIDI File Writer – www.cnx.org/content/m15054 – Implement a set of low-level routines to 

create MIDI messages, timing information, and tracks. Combine the routines to assemble a 

binary standard MIDI file. 

 

DSB-SC AM (Ring Modulation) and SSB-AM (Pitch Shifting) – www.cnx.org/content/m15468 – 

Use double-sideband suppressed carrier AM to modulate tones and speech. Use single-sideband 

AM as a pitch shifter for speech signals. 

 

FM Synthesis and Chowning Instruments – www.cnx.org/content/m15495 – Experiment with the 

FM equation when the carrier and modulation frequencies are in the audio frequency range. Use 

FM to emulate a variety of physical instruments. 

 

Additive Synthesis and Spectrogram Art – www.cnx.org/content/m15446 – Create a general-

purpose sinusoidal oscillator whose frequency and amplitude tracks user-defined trajectories in 

time. Sum the outputs of multiple oscillators to model physical instruments and to create sounds 

by drawing arbitrary spectrograms. 

 

Linear Predictive Coding (LPC) and Cross Synthesis – www.cnx.org/content/m15479 –  Create 

a time-varying filter by extracting the time-varying formants (resonant peaks) of a speech signal, 

and then excite the filter using a music signal to create the effect of a “talking instrument.” 

 

LabVIEW Implementation Examples 
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Originally developed in 1986, LabVIEW is a cross-platform software development environment 

used by scientists and engineers for instrument control, data acquisition, control design / 

simulation, automation, and a variety of other technical computing applications. As a full 

programming language with extensive built-in functionality for signal processing, analysis, math, 

sound card I/O, LabVIEW is well suited to the needs of signal processing education. 

 

Programming with LabVIEW involves working with Virtual Instruments (VIs), which are 

LabVIEW programs that consist of a block diagram and a front panel. The block diagram can 

contain graphical and textual components that represent the algorithm. The front panel 

component of a VI can include numerical inputs, dials, sliders, graphs and other user interface 

elements.   

 

The following examples illustrate several LabVIEW implementation styles suitable for in-class 

demonstrations and student mini-projects. 

 

Chowning FM Instrument 

Pioneered by John Chowning in the 1970s, FM synthesis can emulate a wide range of natural 

instrument sounds using only two sinusoidal oscillators and suitable time-varying envelopes
6
. 

The FM equation is 

 

 ( ) ( ) sin(2 ( )sin(2 ))C My t a t f t i t f tr r? - , (1) 

 

where fC is the carrier frequency in Hz, fM is the modulation frequency in Hz, a(t) is the 

amplitude envelope, and i(t) is the time-varying modulation index. The carrier frequency 

specifies the center of the FM spectrum, the modulation frequency determines the spectral 

density, and the modulation index controls the bandwidth. Figure 1 illustrates several choices for 

numerical parameters and envelope shapes a(t) and i(t) to emulate the sounds of a bell, wood-

drum, and brass instrument. 

 

Figure 2 shows the LabVIEW implementation of Equation 1. The block diagram is grouped into 

front-panel controls (user inputs), envelope generators, time basis generator, FM equation 

calculation, and front-panel indicators (waveform plots). The FM equation implementation uses 

“G code” graphical programming style, i.e., the algorithm is coded by wiring together native 

LabVIEW graphical icons. Thicker orange wires distinguish arrays from scalar values. 

 

Pressing the “run” button  on either the block diagram window or front panel window (or 

pressing Ctrl+R) runs the program to create and play the audio waveform one time. Variations on 

a theme can be explored by changing the front-panel numerical values and re-running the 

program. This example typifies the “run-once” programming style; changing a front-panel 

control does not cause a response until the VI is run again. 

 

Continuous interaction with the equation encourages deeper insight into the relationship between 

equation parameters and the corresponding spectrum and sound. The block diagram of Figure 3 

embeds the FM equation, front-panel controls and indicators, and soundcard output icon in a 

while-loop structure to create continuous audio output with interactive controls. The spectrum 
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display is also continuously updated. Sliders and a knob on the front panel (Figure 3b) allow 

point-and-click control of the equation parameters; numerical values may also be entered 

directly. Clicking on the various tabs of the “TripleDisplay” indicator 

(www.cnx.org/content/m15430) visualizes the output signal in both the time and frequency 

domains. 

 

This example illustrates the “run continuously” programming style using polled front-panel 

controls. The two code sections that produce inputs to the while-loop structure – soundcard setup 

and time basis setup – execute one time when the VI starts. Execution then continues indefinitely 

inside the while-loop structure until the front-panel “stop” button is pressed, causing execution to 

transfer to soundcard cleanup and error handling. Audio is produced one block at a time, with a 

block length of 0.25 seconds. The sound card “write” icon in the lower right of the while-loop 

structure sets the pace for the while-loop, causing the front-panel controls contained within the 

loop to be polled once every quarter of a second. 

 

Algorithm in Musical Context 

 

Playing a synthesis algorithm as if it was a musical instrument provides more insight than is 

possible by listening to individual tones. As an example, the subtractive synthesis technique 

known as the Karplus-Strong plucked string algorithm
7
 produces a remarkably life-like sound 

using only a delay line, a low-pass filter, and a noise source. The signal flow diagram of the 

algorithm (Figure 4) reveals an IIR filter structure suitable for student analysis as a project or in-

class activity
1
. A real-time interactive LabVIEW implementation is used to listen to individual 

notes, which provides an initially satisfactory result. 

 

The “MIDI JamSession” LabVIEW application VI (www.cnx.org/content/m15053) provides a 

means to listen to the plucked string algorithm played as a “virtual musical instrument” (VMI) 

using a MIDI music file to serve as the musical score. The VMI is a LabVIEW sub-VI 

(analogous to a subroutine or function call) that produces an array of audio samples when given 

information about the desired duration, frequency, and amplitude of the note. Figure 5 shows the 

plucked string algorithm signal flow diagram implemented as a VMI. The LabVIEW MathScript 

node illustrates how standard m-script can be incorporated directly into the block diagram. 

 

Students enter the filename of a MIDI file in the upper left text entry box of MIDI JamSession 

(Figure 6) to load the note and timing information, and then specify the name of the VMI file in 

the associated track number the text entry boxes on right panel. Pressing “Render Audio” causes 

MIDI JamSession to repeatedly invoke the student’s VMI to render one note at a time and insert 

each note into the finished audio file at the proper time. MIDI JamSession includes additional 

features such as rendering a subrange of the total duration, left/right pan controls to place an 

instrument in the stereo sound field, individual channel mutes, and the option to save the audio to 

a .wav sound file. 

 

Listening to the MIDI JamSession rendering of a MIDI file using the basic Karplus-Strong 

implementation of Figure 4 instantly reveals that the pitch accuracy is poor, especially for higher 

frequencies. Chords sound especially out of tune. The students are now able to better appreciate 

the role of the delay line in setting the pitch of the synthesized notes. Since the delay line length 
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N is an integer, and the pitch is fS/N (fS is the sampling frequency in Hz), the pitch cannot be set 

with sufficient precision necessary to render the MIDI music file. An all-pass filter is then 

introduced as a means to insert a fractional delay into the signal flow diagram. After some 

additional analysis, the MathScript node text of Figure 5 can be modified slightly to introduce 

the all-pass filter, whose filter coefficients are selected to fine-tune the pitch frequency for each 

note. Rendering the same MIDI file with the updated algorithm yields impressive results. 

 

Assessment Results 

 

An end-of-term student survey was developed to assess the effectiveness of the course elements. 

Twenty questions were developed to which the student would respond “strongly agree,” “agree,” 

“weakly agree,” “weakly disagree,” “disagree”, and “strongly disagree:”  

 

1. The course helped me to better understand the relationship between frequency-domain 

concepts and time-domain concepts; 

2. I am more confident in my ability to work with binary computer files (e.g., bit 

manipulations, file read/write); 

3. * I am now more skilled at implementing my ideas on a computer; 

4. * I have a better understanding of how DSP can be applied in real systems; 

5. I have developed an increased interest in music; 

6. * I spend more time thinking about what I hear; 

7. * I had fun in this course; 

8. * It was helpful to see the details of LabVIEW coding techniques discussed in class; 

9. Implementing the concepts on the computer helped me to fully understand the concepts; 

10. This was a useful course; 

11. * I have a better understanding of digital filtering concepts; 

12. * It was important to be able to hear examples of the various techniques while discussing 

them in class; 

13. * The musical examples (CDs at the beginning of selected classes) stimulated my interest 

in the material; 

14. * I would recommend this course to my friends; 

15. The miniprojects were effective at helping me to practice the concepts; 

16. LabVIEW is an effective way for me to implement the concepts learned in class; 

17. * My LabVIEW skills have improved as a result of this course; 

18. The miniprojects were effective at helping me to understand the concepts; 

19. * The interactivity offered by the LabVIEW frontpanel user interface was important for 

lab projects in this course; and 

20. The interactivity offered by the LabVIEW front-panel user interface would be important 

for lab projects in any DSP-related course. 

 

Of 19 enrolled students in the course, 13 participated in the survey, or 68% of the class. 

Admittedly the total number of students surveyed is low, making statistical analysis 

inappropriate. Class sizes are limited to 30-40 students at Rose-Hulman, and the elective course 

ECE481 has a typical enrollment of 20 to 25 students. Additional assessment data will continue 

to be collected for future offerings of the course. 

 

P
age 13.538.7



Figure 7 shows the student response histograms for each question. The student response to all 

survey questions was positive, with only a few “disagree”-type responses. Statements generating 

the strongest responses, defined as a majority of the students responding “strongly agree,” are 

flagged with an asterisk in the list above. 

 

According to the survey results, the large majority of students agreed that they had developed 

improved understanding of DSP concepts (Questions 4, 11) as well as the ability to implement 

those concepts (Questions 3, 17). The students also indicated that they were motivated by the 

course topics and structure (Questions 6, 7, 13, 14). The students also agreed that the 

interactivity offered by LabVIEW was important (Question 19). 

 

Most students enrolled in the course had exposure to both m-script programming as well as 

LabVIEW coding prior to taking the course. Two additional survey questions were included to 

address the conversion of ECE481 to the LabVIEW programming platform: 

 

21. Answer these questions only if you would have preferred to use m-script programming at 

the beginning of the term: 

‚ Now that I have completed this course, I believe that [m-scripts would have been | 

LabVIEW is] a better way to implement the mini-projects  

‚ Now that I have completed this course, I believe that [m-scripts would have been | 

LabVIEW is] a better way to implement the in-class demonstrations 

 

22. Answer these questions only if you had preferred using LabVIEW at the beginning of the 

term: 

‚ Now that I have completed this course, I believe that [m-scripts would have been | 

LabVIEW is] a better way to implement the mini-projects  

‚ Now that I have completed this course, I believe that [m-scripts would have been | 

LabVIEW is] a better way to implement the in-class demonstrations 

 

Six students (46% of survey participants) answered Question 21, indicating their original 

preference for m-script programming at the beginning of the course. By the end of the course, all 

six selected LabVIEW as a better way to implement the in-class demonstrations, and five of the 

six selected LabVIEW as a better way to implement the mini-projects. 

 

Six students answered Question 22, indicating their original preference for LabVIEW 

programming. All six maintained LabVIEW as their preference for both the mini-projects and 

the in-class demonstrations. 

 

Conclusions 

  

Audio signal processing and music synthesis have been successfully applied to motivate students 

to study digital signal processing. ECE481, an elective music synthesis course for electrical and 

computer engineering majors, has been enhanced by adopting LabVIEW as the programming 

platform for student mini-projects and in-class demonstrations. Implementing computer music 

algorithms as a LabVIEW block diagram and interactive front-panel offers students an ideal way 

to create “virtual musical instruments” with reasonable design effort. Assessment results for the 
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first offering of ECE481 using LabVIEW as the programming platform show that a large 

majority of the students report that the course improved their understanding of DSP concepts as 

well as their ability to implement those concepts, and that the course topics and structure were 

motivating. The students also concluded that LabVIEW was an effective programming platform 

for the course. 
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Figure 1: Chowning FM instrument parameter choices for three types of emulated instrument 

sounds. H denotes the harmonicity ratio fm/fc, and Imax and Imin indicate the modulation index 

maximum and minimum values, respectively. w1(t) and w2(t) depict the envelope shape for the 

amplitude envelope a(t) and modulation index i(t), respectively. 
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(a) 

 

 
(b) 

 

Figure 2: LabVIEW implementation of Chowning FM instrument showing (a) block diagram and 

(b) front-panel controls configured for “wood-drum” instrument. 
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(a) 

 

 
(b) 

 

Figure 3: LabVIEW implementation of interactive FM equation showing (a) block diagram and 

(b) front-panel controls. Sliders and a knob facilitate easy manipulation of the equation’s 

parameters. 
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Figure 4: Signal flow diagram for Karplus-Strong plucked string algorithm. The input sequence 

x[n] is a burst of white noise (N samples) followed by zero to initialize the delay line with noise. 

The low-pass filter is a two-point running sum. 
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Figure 5: Karplus-Strong plucked string algorithm implemented by a MathScript node to create a 

“virtual musical instrument” (VMI) suitable for MIDI JamSession. The sections labeled “do not 

modify” appear in a standard VMI template and ensure proper connectivity to MIDI JamSession.  
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Figure 6: “MIDI JamSession” front panel. Upon entering the MIDI file name in the upper left 

text-entry box, the application reads the MIDI file and extracts note and timing information. One 

or more “virtual musical instruments” (specially-formatted LabVIEW VIs) entered in the text-

entry boxes on the right side specify the algorithms to be used to render the note and timing 

information to an audio waveform. 
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Figure 7. Student survey results for assessment questions. Response categories are A = strongly 

agree, A = agree, a = weakly agree, d = weakly disagree, D = disagree, and D = strongly 

disagree. Vertical scale is percentage response in each category. 
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