
AC 2008-1613: ENHANCING DIGITAL SIGNAL PROCESSING EDUCATION
WITH AUDIO SIGNAL PROCESSING AND MUSIC SYNTHESIS

Ed Doering, Rose-Hulman Institute of Technology
Edward Doering received his Ph.D. in electrical engineering from Iowa State University in 1992,
and has been a member the ECE faculty at Rose-Hulman Institute of Technology since 1994. He
teaches courses in digital systems, circuits, image processing, and electronic music synthesis, and
his research interests include technology-enabled education, image processing, and FPGA-based
signal processing.

Sam Shearman, National Instruments
Sam Shearman is a Senior Product Manager for Signal Processing and Communications at
National Instruments (Austin, TX). Working for the firm since 2000, he has served in roles
involving product management and R&D related to signal processing, communications, and
measurement. Prior to working with NI, he worked as a technical trade press editor and as a
research engineer. As a trade press editor for "Personal Engineering & Instrumentation News," he
covered PC-based test and analysis markets. His research engineering work involved embedding
microstructures in high-volume plastic coatings for non-imaging optics applications. He received
a BS (1993) in electrical engineering from the Georgia Institute of Technology (Atlanta, GA).

Erik Luther, National Instruments
Erik Luther, Textbook Program Manager, works closely with professors, lead users, and authors
to improve the quality of Engineering education utilizing National Instruments technology.

During his last 5 years at National Instruments, Luther has held positions as an academic resource
engineer, academic field engineer, an applications engineer, and applications engineering intern.
Throughout his career, Luther, has focused on improving education at all levels including
volunteering weekly to teach 4th graders to enjoy science, math, and engineering by building
Lego Mindstorm robots. In his current position he manages the NI Textbook program and has had
the opportunity to collaborate on numerous textbooks including "Learning with LabVIEW" by
Robert H. Bishop and "Embedded Signal Processing with the Micro Signal Architecture" by W.S.
Gan, and S.M. Kuo.

Luther graduated from the University of Missouri - Columbia in 2003 with a bachelor's degree in
Electrical Engineering. He, his wife and son live in Austin, Texas.

© American Society for Engineering Education, 2008

P
age 13.538.1

Enhancing Digital Signal Processing Education with Audio Signal

Processing and Music Synthesis

Abstract

Audio signal processing and music synthesis are familiar, accessible and engaging motivators for

students to study digital signal processing (DSP). Hands-on project activities encourage deeper

understanding of DSP concepts, and are used regularly in ECE481, a course that covers music

synthesis for engineering majors at Rose-Hulman Institute of Technology. Students implement

and experiment with music synthesis algorithms on a computer to gain a better appreciation for

relationships between theory, sound, and visual representation of signals (time series, spectrum,

and spectrogram). The LabVIEW graphical programming platform provides extensive support

for DSP programming and soundcard operations, enabling students to quickly implement

algorithms using graphical dataflow programming. The interactive user interface elements

(controls and indicators) appear automatically while creating the graphical program, so the result

is inherently interactive. ECE481 was recently revised to use LabVIEW, and students reported a

high degree of satisfaction with the new approach.

Introduction

Music synthesis and audio signal processing offer students exciting applications of DSP

concepts. As students implement synthesis and filtering algorithms, they develop a deeper

understanding of the inter-relationships between the physical sound, its visual representations

such as time-domain waveform and spectrogram, and its mathematical model. ECE481,

Electronic Music Synthesis, an elective course in music synthesis for electrical and computer

engineering majors initially offered in 1998, helps students tie together numerous conceptual

threads from the required curriculum and strengthens their DSP programming skills with a series

of mini-projects
1
.

The choice of computational platform for mini-projects and in-class demonstrations is a key

design decision for the course. Richard Hamming once said “the purpose of computing is insight,

not numbers,” and students gain manifold insights when they interact with a signal processing

system of their own creation. The choice of a development environment for optimum student

learning revolves around two critical issues: (1) the total time required to transform a concept

into a working system, and (2) the degree to which the system is interactive. Frustration results

when the development process takes too long or is too complicated. In addition, the finished

system should be as real-time and interactive as possible in order for the benefits of “computing

for insight” to be fully realized. Text-based programming using m-scripts and the MATLAB

program have traditionally enabled ECE481 students to implement a computer music algorithm

as an m-script to produce an audible waveform. However, the additional development effort

required to transform that script into a user-friendly, GUI-based, and interactive “musical

instrument” is prohibitive for most student projects.

LabVIEW by National Instruments offers a unique graphical dataflow programming

environment in which an interactive user interface automatically emerges during the

P
age 13.538.2

programming process. A finished “VMI” (virtual musical instrument) built with LabVIEW is

immediately and inherently interactive by virtue of LabVIEW’s front panel controls-and-

indicators paradigm. This aspect and extensive built-in functionality for signal processing,

analysis, math, and sound card control come together in LabVIEW to give students an

unparalleled means to create an interactive virtual musical instrument with a reasonable

development effort.

Three years ago LabVIEW was adopted as the programming environment for the DSP

prerequisite course,
2,3

 and LabVIEW was likewise adopted as the programming tool for ECE481

to take advantage of student programming experience as well as the technical advantages offered

by LabVIEW.

This paper will describe the music synthesis course topics and mini-projects. Several LabVIEW

examples will be presented, and end-of-term assessment results of the new course format will be

discussed.

ECE481: Electronic Music Synthesis

ECE481, Electronic Music Synthesis, is 10-week course that explores the technical side of

electronic music synthesis, including topics such as analog synthesis, MIDI (Musical Instrument

Digital Interface) standard, modulation techniques, additive and subtractive synthesis, physical

modeling, and reverberation. Analog synthesis has largely been replaced by digital methods, but

the mathematical models of analog synthesis still form foundation for many synthesis

algorithms, including signal sources (periodic as well as noise), envelopes, and filters. MIDI is

an interesting subject in its own right, and also serves as the basis for translating standard MIDI

music files into control information to “play” a synthesis algorithm as a musical instrument.

Hearing an algorithm in a musical context provides many new insights not otherwise possible by

simply listening to individual tones. Modulation techniques (AM and FM) familiar from the

communications systems course take on new meaning when the modulation frequency is in the

audio range. Additive synthesis generalizes the Fourier series to permit independent time-varying

frequency and amplitude trajectories of the harmonics (known as “partials”). Subtractive

synthesis invokes much of the DSP material learned in the prerequisite course, and introduces

time-varying filters. Reverberation also broadens student DSP background by covering comb

filters and all-pass filters.

Most students choosing this elective course play a musical instrument, sing, or are avid music

listeners. Examples of historically significant musicians, instruments, and compositions are

frequently presented in class. As an end-of-term project, students create a two-minute

composition using synthesis techniques learned throughout the quarter, and then present their

work as a concert for interested students, faculty, and staff. Hatfield Hall auditorium is a

relatively new world-class facility on the Rose-Hulman campus, and students enjoyed hearing

their work in this setting.

All ECE481 course material including lecture notes and mini-projects has recently been

converted to on-line format. Hosted on Connexions
4
, Musical Signal Processing with LabVIEW

(http://cnx.org/content/m15510) is a multimedia educational resource for students and faculty

P
age 13.538.3

that augments traditional DSP courses and supports dedicated courses in music synthesis and

audio signal processing. Each of the learning modules blends video, text, sound clips, and

LabVIEW virtual instruments (VIs) into explanation of theory and concepts, demonstration of

LabVIEW implementation techniques to transform theory into working systems, and hands-on

guided project activities. Screencasts – videos captured directly from the computer screen with

audio narration and a hallmark of this resource – use a mixture of hand-drawn text, animations,

and video of the LabVIEW tool in operation to provide a visually rich learning environment. A

companion paper
5
 discusses delivery and production aspects of these learning modules.

Mini-Projects

Students engage the course material by completing a series of mini-projects. The course does not

have a dedicated lab time, but selected class days are devoted to the projects which then become

assigned homework to be finished outside of class. The mini-projects are implemented in

LabVIEW and include the following activities:

Musical Intervals and the Equal-Tempered Scale – www.cnx.org/content/m15440 – Discover

why musical intervals are specified as ratios, and derive the equation to convert a MIDI note

number to frequency.

Analog Synthesis Composition – www.cnx.org/content/m15443 – Emulate a modular analog

synthesizer using signal sources (sinewave, squarewave, triangle wave, and noise) and amplitude

envelopes to create a simple piece of music.

MIDI File Writer – www.cnx.org/content/m15054 – Implement a set of low-level routines to

create MIDI messages, timing information, and tracks. Combine the routines to assemble a

binary standard MIDI file.

DSB-SC AM (Ring Modulation) and SSB-AM (Pitch Shifting) – www.cnx.org/content/m15468 –

Use double-sideband suppressed carrier AM to modulate tones and speech. Use single-sideband

AM as a pitch shifter for speech signals.

FM Synthesis and Chowning Instruments – www.cnx.org/content/m15495 – Experiment with the

FM equation when the carrier and modulation frequencies are in the audio frequency range. Use

FM to emulate a variety of physical instruments.

Additive Synthesis and Spectrogram Art – www.cnx.org/content/m15446 – Create a general-

purpose sinusoidal oscillator whose frequency and amplitude tracks user-defined trajectories in

time. Sum the outputs of multiple oscillators to model physical instruments and to create sounds

by drawing arbitrary spectrograms.

Linear Predictive Coding (LPC) and Cross Synthesis – www.cnx.org/content/m15479 – Create

a time-varying filter by extracting the time-varying formants (resonant peaks) of a speech signal,

and then excite the filter using a music signal to create the effect of a “talking instrument.”

LabVIEW Implementation Examples

P
age 13.538.4

Originally developed in 1986, LabVIEW is a cross-platform software development environment

used by scientists and engineers for instrument control, data acquisition, control design /

simulation, automation, and a variety of other technical computing applications. As a full

programming language with extensive built-in functionality for signal processing, analysis, math,

sound card I/O, LabVIEW is well suited to the needs of signal processing education.

Programming with LabVIEW involves working with Virtual Instruments (VIs), which are

LabVIEW programs that consist of a block diagram and a front panel. The block diagram can

contain graphical and textual components that represent the algorithm. The front panel

component of a VI can include numerical inputs, dials, sliders, graphs and other user interface

elements.

The following examples illustrate several LabVIEW implementation styles suitable for in-class

demonstrations and student mini-projects.

Chowning FM Instrument

Pioneered by John Chowning in the 1970s, FM synthesis can emulate a wide range of natural

instrument sounds using only two sinusoidal oscillators and suitable time-varying envelopes
6
.

The FM equation is

 () () sin(2 ()sin(2))C My t a t f t i t f tr r? - , (1)

where fC is the carrier frequency in Hz, fM is the modulation frequency in Hz, a(t) is the

amplitude envelope, and i(t) is the time-varying modulation index. The carrier frequency

specifies the center of the FM spectrum, the modulation frequency determines the spectral

density, and the modulation index controls the bandwidth. Figure 1 illustrates several choices for

numerical parameters and envelope shapes a(t) and i(t) to emulate the sounds of a bell, wood-

drum, and brass instrument.

Figure 2 shows the LabVIEW implementation of Equation 1. The block diagram is grouped into

front-panel controls (user inputs), envelope generators, time basis generator, FM equation

calculation, and front-panel indicators (waveform plots). The FM equation implementation uses

“G code” graphical programming style, i.e., the algorithm is coded by wiring together native

LabVIEW graphical icons. Thicker orange wires distinguish arrays from scalar values.

Pressing the “run” button on either the block diagram window or front panel window (or

pressing Ctrl+R) runs the program to create and play the audio waveform one time. Variations on

a theme can be explored by changing the front-panel numerical values and re-running the

program. This example typifies the “run-once” programming style; changing a front-panel

control does not cause a response until the VI is run again.

Continuous interaction with the equation encourages deeper insight into the relationship between

equation parameters and the corresponding spectrum and sound. The block diagram of Figure 3

embeds the FM equation, front-panel controls and indicators, and soundcard output icon in a

while-loop structure to create continuous audio output with interactive controls. The spectrum

P
age 13.538.5

display is also continuously updated. Sliders and a knob on the front panel (Figure 3b) allow

point-and-click control of the equation parameters; numerical values may also be entered

directly. Clicking on the various tabs of the “TripleDisplay” indicator

(www.cnx.org/content/m15430) visualizes the output signal in both the time and frequency

domains.

This example illustrates the “run continuously” programming style using polled front-panel

controls. The two code sections that produce inputs to the while-loop structure – soundcard setup

and time basis setup – execute one time when the VI starts. Execution then continues indefinitely

inside the while-loop structure until the front-panel “stop” button is pressed, causing execution to

transfer to soundcard cleanup and error handling. Audio is produced one block at a time, with a

block length of 0.25 seconds. The sound card “write” icon in the lower right of the while-loop

structure sets the pace for the while-loop, causing the front-panel controls contained within the

loop to be polled once every quarter of a second.

Algorithm in Musical Context

Playing a synthesis algorithm as if it was a musical instrument provides more insight than is

possible by listening to individual tones. As an example, the subtractive synthesis technique

known as the Karplus-Strong plucked string algorithm
7
 produces a remarkably life-like sound

using only a delay line, a low-pass filter, and a noise source. The signal flow diagram of the

algorithm (Figure 4) reveals an IIR filter structure suitable for student analysis as a project or in-

class activity
1
. A real-time interactive LabVIEW implementation is used to listen to individual

notes, which provides an initially satisfactory result.

The “MIDI JamSession” LabVIEW application VI (www.cnx.org/content/m15053) provides a

means to listen to the plucked string algorithm played as a “virtual musical instrument” (VMI)

using a MIDI music file to serve as the musical score. The VMI is a LabVIEW sub-VI

(analogous to a subroutine or function call) that produces an array of audio samples when given

information about the desired duration, frequency, and amplitude of the note. Figure 5 shows the

plucked string algorithm signal flow diagram implemented as a VMI. The LabVIEW MathScript

node illustrates how standard m-script can be incorporated directly into the block diagram.

Students enter the filename of a MIDI file in the upper left text entry box of MIDI JamSession

(Figure 6) to load the note and timing information, and then specify the name of the VMI file in

the associated track number the text entry boxes on right panel. Pressing “Render Audio” causes

MIDI JamSession to repeatedly invoke the student’s VMI to render one note at a time and insert

each note into the finished audio file at the proper time. MIDI JamSession includes additional

features such as rendering a subrange of the total duration, left/right pan controls to place an

instrument in the stereo sound field, individual channel mutes, and the option to save the audio to

a .wav sound file.

Listening to the MIDI JamSession rendering of a MIDI file using the basic Karplus-Strong

implementation of Figure 4 instantly reveals that the pitch accuracy is poor, especially for higher

frequencies. Chords sound especially out of tune. The students are now able to better appreciate

the role of the delay line in setting the pitch of the synthesized notes. Since the delay line length

P
age 13.538.6

N is an integer, and the pitch is fS/N (fS is the sampling frequency in Hz), the pitch cannot be set

with sufficient precision necessary to render the MIDI music file. An all-pass filter is then

introduced as a means to insert a fractional delay into the signal flow diagram. After some

additional analysis, the MathScript node text of Figure 5 can be modified slightly to introduce

the all-pass filter, whose filter coefficients are selected to fine-tune the pitch frequency for each

note. Rendering the same MIDI file with the updated algorithm yields impressive results.

Assessment Results

An end-of-term student survey was developed to assess the effectiveness of the course elements.

Twenty questions were developed to which the student would respond “strongly agree,” “agree,”

“weakly agree,” “weakly disagree,” “disagree”, and “strongly disagree:”

1. The course helped me to better understand the relationship between frequency-domain

concepts and time-domain concepts;

2. I am more confident in my ability to work with binary computer files (e.g., bit

manipulations, file read/write);

3. * I am now more skilled at implementing my ideas on a computer;

4. * I have a better understanding of how DSP can be applied in real systems;

5. I have developed an increased interest in music;

6. * I spend more time thinking about what I hear;

7. * I had fun in this course;

8. * It was helpful to see the details of LabVIEW coding techniques discussed in class;

9. Implementing the concepts on the computer helped me to fully understand the concepts;

10. This was a useful course;

11. * I have a better understanding of digital filtering concepts;

12. * It was important to be able to hear examples of the various techniques while discussing

them in class;

13. * The musical examples (CDs at the beginning of selected classes) stimulated my interest

in the material;

14. * I would recommend this course to my friends;

15. The miniprojects were effective at helping me to practice the concepts;

16. LabVIEW is an effective way for me to implement the concepts learned in class;

17. * My LabVIEW skills have improved as a result of this course;

18. The miniprojects were effective at helping me to understand the concepts;

19. * The interactivity offered by the LabVIEW frontpanel user interface was important for

lab projects in this course; and

20. The interactivity offered by the LabVIEW front-panel user interface would be important

for lab projects in any DSP-related course.

Of 19 enrolled students in the course, 13 participated in the survey, or 68% of the class.

Admittedly the total number of students surveyed is low, making statistical analysis

inappropriate. Class sizes are limited to 30-40 students at Rose-Hulman, and the elective course

ECE481 has a typical enrollment of 20 to 25 students. Additional assessment data will continue

to be collected for future offerings of the course.

P
age 13.538.7

Figure 7 shows the student response histograms for each question. The student response to all

survey questions was positive, with only a few “disagree”-type responses. Statements generating

the strongest responses, defined as a majority of the students responding “strongly agree,” are

flagged with an asterisk in the list above.

According to the survey results, the large majority of students agreed that they had developed

improved understanding of DSP concepts (Questions 4, 11) as well as the ability to implement

those concepts (Questions 3, 17). The students also indicated that they were motivated by the

course topics and structure (Questions 6, 7, 13, 14). The students also agreed that the

interactivity offered by LabVIEW was important (Question 19).

Most students enrolled in the course had exposure to both m-script programming as well as

LabVIEW coding prior to taking the course. Two additional survey questions were included to

address the conversion of ECE481 to the LabVIEW programming platform:

21. Answer these questions only if you would have preferred to use m-script programming at

the beginning of the term:

‚ Now that I have completed this course, I believe that [m-scripts would have been |

LabVIEW is] a better way to implement the mini-projects

‚ Now that I have completed this course, I believe that [m-scripts would have been |

LabVIEW is] a better way to implement the in-class demonstrations

22. Answer these questions only if you had preferred using LabVIEW at the beginning of the

term:

‚ Now that I have completed this course, I believe that [m-scripts would have been |

LabVIEW is] a better way to implement the mini-projects

‚ Now that I have completed this course, I believe that [m-scripts would have been |

LabVIEW is] a better way to implement the in-class demonstrations

Six students (46% of survey participants) answered Question 21, indicating their original

preference for m-script programming at the beginning of the course. By the end of the course, all

six selected LabVIEW as a better way to implement the in-class demonstrations, and five of the

six selected LabVIEW as a better way to implement the mini-projects.

Six students answered Question 22, indicating their original preference for LabVIEW

programming. All six maintained LabVIEW as their preference for both the mini-projects and

the in-class demonstrations.

Conclusions

Audio signal processing and music synthesis have been successfully applied to motivate students

to study digital signal processing. ECE481, an elective music synthesis course for electrical and

computer engineering majors, has been enhanced by adopting LabVIEW as the programming

platform for student mini-projects and in-class demonstrations. Implementing computer music

algorithms as a LabVIEW block diagram and interactive front-panel offers students an ideal way

to create “virtual musical instruments” with reasonable design effort. Assessment results for the

P
age 13.538.8

first offering of ECE481 using LabVIEW as the programming platform show that a large

majority of the students report that the course improved their understanding of DSP concepts as

well as their ability to implement those concepts, and that the course topics and structure were

motivating. The students also concluded that LabVIEW was an effective programming platform

for the course.

Bibliography

1. Doering, E. R., “Making Music with MATLAB: An Electronic Music Synthesis Course for Engineering

Students,” pp. 3581-3584 in Proceedings of the 1999 International Conference on Acoustics, Speech, and

Signal Processing, Volume 6, 1999.

2. Yoder, M.A., and B.A. Black, “A Study of Graphical vs. Textual Programming for Teaching DSP,” 2006 ASEE

National Annual Conference Proceedings, Chicago, IL.

3. Yoder, M.A., and B.A. Black, “Teaching DSP First with LabVIEW,” Digital Signal Processing Workshop, 12th

- Signal Processing Education Workshop, 4th , pp.278-280, Sept. 2006.

4. Baraniuk, R.G., C.S. Burrus, D.H. Johnson, and D.L. Jones, “Sharing Knowledge and Building Communities in

Signal Processing,” IEEE Signal Processing Magazine, pp. 10-16, Sep 2004.

5. Shearman, S., E. Luther and E.R. Doering, “Applying an Interactive, Modular Approach to Effectively Teach

Signal Processing Concepts,” 2008 ASEE National Annual Conference Proceedings, Pittsburgh, PA.

6. Dodge, C., and T.A. Jerse, Computer Music: Synthesis, Composition, and Performance, 2nd ed., Schirmer

Books, 1997.

7. Moore, F.R., Elements of Computer Music, Prentice-Hall, 1990.

P
age 13.538.9

Figure 1: Chowning FM instrument parameter choices for three types of emulated instrument

sounds. H denotes the harmonicity ratio fm/fc, and Imax and Imin indicate the modulation index

maximum and minimum values, respectively. w1(t) and w2(t) depict the envelope shape for the

amplitude envelope a(t) and modulation index i(t), respectively.

P
age 13.538.10

(a)

(b)

Figure 2: LabVIEW implementation of Chowning FM instrument showing (a) block diagram and

(b) front-panel controls configured for “wood-drum” instrument.

P
age 13.538.11

(a)

(b)

Figure 3: LabVIEW implementation of interactive FM equation showing (a) block diagram and

(b) front-panel controls. Sliders and a knob facilitate easy manipulation of the equation’s

parameters.

P
age 13.538.12

Figure 4: Signal flow diagram for Karplus-Strong plucked string algorithm. The input sequence

x[n] is a burst of white noise (N samples) followed by zero to initialize the delay line with noise.

The low-pass filter is a two-point running sum.

P
age 13.538.13

Figure 5: Karplus-Strong plucked string algorithm implemented by a MathScript node to create a

“virtual musical instrument” (VMI) suitable for MIDI JamSession. The sections labeled “do not

modify” appear in a standard VMI template and ensure proper connectivity to MIDI JamSession.

P
age 13.538.14

Figure 6: “MIDI JamSession” front panel. Upon entering the MIDI file name in the upper left

text-entry box, the application reads the MIDI file and extracts note and timing information. One

or more “virtual musical instruments” (specially-formatted LabVIEW VIs) entered in the text-

entry boxes on the right side specify the algorithms to be used to render the note and timing

information to an audio waveform.

P
age 13.538.15

Figure 7. Student survey results for assessment questions. Response categories are A = strongly

agree, A = agree, a = weakly agree, d = weakly disagree, D = disagree, and D = strongly

disagree. Vertical scale is percentage response in each category.

0

50

100

1 2 3 4 5

0

50

100

6 7 8 9 10

0

50

100

11 12 13 14 15

A A a dD D
0

50

100

16

A A ad D D
0

50

100

17

AAadDD
0

50

100

18

AAadDD
0

50

100

19

AAadD D
0

50

100

20

P
age 13.538.16

