
AC 2012-5090: ENHANCING EXPERTISE, SOCIABILITY, AND LITER-
ACY THROUGH TEACHING ARTIFICIAL INTELLIGENCE AS A LAB
SCIENCE

Prof. Stephanie Elizabeth August, Loyola Marymount University

Stephanie August is an Associate Professor and Special Assistant to the Chief Academic Officer for
Graduate Education at Loyola Marymount University, Los Angeles. She teaches courses in artificial in-
telligence, database management systems, and software engineering. Her research interests include appli-
cations of artificial intelligence including interdisciplinary new media applications, natural language un-
derstanding, argumentation, and analogical reasoning. She has several publications in these areas. August
is actively involved in the scholarship of teaching and learning community and is a 2006 CASTL Institute
Scholar (Carnegie Academy for the Scholarship of Teaching and Learning). She is currently directing
graduate and undergraduate students on two NSF-funded projects, to develop materials for teaching ar-
tificial intelligence through an experimental approach modeled after the lab sciences, and to develop a
Virtual Engineering Sciences Learning Lab in Second Life to provide an immersive learning environment
for introductory engineering and computer science courses. Her industry experience includes software
and system engineering for several defense C3I programs, and applied artificial intelligence research for
military and medical applications.

c©American Society for Engineering Education, 2012

P
age 25.569.1

Enhancing Expertise, Sociability and Literacy through Teaching
Artificial Intelligence as a Lab Science

Abstract

Artificial intelligence and software engineering course material can be interwoven and presented
in a lab experiment paradigm to provide experiential learning opportunities in which students
collaboratively solve problems. This approach has the potential to increase retention of women
and non-traditional computer science students in computer science courses, while reinforcing
best practices in software engineering.

Overview

The Teaching Artificial Intelligence as a Laboratory Science†

1 (TAILS) project is designed to
develop a new paradigm for teaching introductory artificial intelligence (AI) concepts by
implementing an experiment-based approach modeled after the lab sciences. It explores whether
structured labs with exercises that are completed in teams before students leave the classroom
can build a sense of accomplishment, confidence, community, and collaboration among students,
characteristics which have been shown to be critical to retain women and non-traditional
computer science students in the field.

TAILS presents to students an array of fundamental AI algorithms as a set of hands-on activities
made available through a database of lab activities, including software exercises and experiments
that provide experience with concepts from multiple perspectives and multiple modes of
representation. Best practices in software engineering will be reinforced in students through
careful design and documentation of the modules.

The proposed activities are designed to engage the kinetic learner and provide the “big picture”
that model-driven learners need to assimilate course material. Existing research has shown that
structured labs with exercises that can be completed before students leave the classroom build a
sense of accomplishment and confidence2,3. Progressively sophisticated experiments teach
inexperienced students and challenge more advanced students.

TAILS contributes two components to STEM education: a set of lab experiments to promote
student retention of concepts and retention of majors, and insight into student learning through
the labs. TAILS contributes to exemplary STEM education by creating learning materials and
strategies, implementing new instructional strategies, and assessing and evaluating student
achievement.

This paper describes the components, presents an example from adversarial search, and identifies
a mapping of outcomes and objectives to assessments.

† This material is based upon work supported by the National Science Foundation under Course, Curriculum, and

Laboratory Improvement (CCLI) Grant No. 0942454. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

P
age 25.569.2

Components of TAILS Lab Experiments

TAILS will deliver the tale of each AI algorithm or concept through a story with nine parts,
including a description of the concept, relevant applications, sample test data, design description,
exercises that guide the student in implementation, a test driver, suggested experiments, source
code that implements the algorithm, and complexity analysis. This choice of components is
patterned after the organization found in the files of software support that accompany Winston's
approach4 and standard software engineering practice. Previous work5 identified components that
model for the student an array of abstractions which they can use for presenting an algorithm or
concept, each geared toward a different audience.

The Idea provides an overview of the concept to be presented, a functional description that
avoids implementation details. This component contains references to additional sources of
information on the topic. When an algorithm is presented in the context of an application, such as
a game that uses heuristic search, the rules of the game will be included to orient the user. This
description of the concept is especially well suited to the non-computer scientist or when a
general introduction to the concept is needed. Students will learn that an extended version is
appropriate when the focus is on the big picture, while a minimal version (one-sentence) would
preface a presentation of additional information, such as a UML model of the algorithm.

The Applications section sets the algorithm in context and provides descriptions of real world
applications that use the concept. Graphics, such as a soccer-playing robot or a game board and
related references support the visual learner, and provide additional avenues of exploration.
Knowledge of applications enables students to explain the significance of the algorithm to a
general audience.

Sample Input/Process/Output contains an annotated trace of the program in execution, including
system input, a description of the processing taking place, and display of the resulting output.
Interactive demonstrations of the concept will be included where feasible to allow the student to
run live demonstrations, as well as experiment with various forms of input. Sample
Input/Process/Output (IPO) corresponds to the concept of operations and user manuals, and
supports black box testing of the concept using the related source code. A readme file describing
the procedure for running the demonstration will be included. An IPO example is useful for
establishing the scope of program, and as the preface to a detailed design description.

Implementation-independent Design Description provides an abstract, high-level view of the
system implementing the algorithm. Both textual descriptions and diagrams allow the user to
explore the design in a top-down manner. This description is language-independent for clarity
and longevity. Programming languages used to implement algorithms and programming
environments change far more rapidly than the ideas implemented and TAILS code is not
restricted to a particular software platform. Having the design in addition to the code enables the
student to evolve a system at the design level, rather than at the code level. A developer would
present this model when reviewing the overall design of the algorithm before a technical
manager or as a preface to a review of the actual code. P

age 25.569.3

Implementation-specific “HINT” File(s) contain part of the code needed to implement an
algorithm or concept in a particular programming language, and guidelines or HINTs the user
can use to implement the remainder of the code. For example, a program for visiting the nodes of
a tree would be provided with the enqueing technique stubbed out. The student would be
instructed to write the code that would transform the program into one that does a depth-first,
breadth-first, or non-deterministic search. A hint file for at least one language will be included
for each concept and will include file header and comment blocks, and follow an established
coding style, reinforcing coding standards. A readme file describing the procedure for compiling
and running the student's code will be included for each HINT file.

Test Suite and Driver(s) are provided for each implementation-specific HINT file that will run
the student's program and test it using the data in the test suite. The student can then compare the
expected results with the results generated. At least one of the tests will correspond to running
the example in the IPO discussed above. A readme file describing the procedure for running the
test will be included for each driver along with directions for downloading the specific
programming environment needed, since TAILS source code will be written for a variety of
platforms.

Experiments give students a starting point for interacting with both the concept and the code.
This section lays out the preparation needed to complete the experiments and provides a set of
increasingly complex tasks for students to complete collaboratively in pairs. Some tasks can be
completed by students with any level of sophistication during a single class period, while others
are suitable as course projects for advanced students. The experiment assignments include an
implementation-independent set of test data and expected results, as well as ideas for
enhancements and extensions, and go beyond the basic testing outlined for the test driver above.
They also include an implementation language-dependent test driver with trial input and
expected output for the simpler experiments, which is useful to verify that the code has been
correctly implemented. The HINT files, test drivers and experiment drivers will be repeated for
each implementation. For example, there might be a Java version, a C++ version, and a Common
Lisp version of an implemented concept.

Source Code will be provided because learning by example is a powerful paradigm for mastering
a new subject. We offer the ending of the tale -- solutions to the exercise in the HINT files, as
well as more extensive implementations readily available from other sources. Many students,
especially non-majors, benefit from having solutions provided in order to fully understand the
material and gain a sense of accomplishment as they experiment with the code. In the case of an
algorithm implemented within a game, having access to a fully functioning version of the game
will facilitate learning for those students not familiar with the game. Majors have ample
opportunity to write original code in software engineering, database, and capstone courses.
Providing both the implementation-independent design description with the corresponding
source code models best practices in software engineering. Providing an executable version of a
program, such as a game that uses heuristic search, allows students to understand its functionality
first hand before trying to implement it.

Complexity Analysis complements the work done in a data structures or algorithms class, and
reveals the various ways that complexity can be measured for this particular problem. Students

P
age 25.569.4

can analyze the changes they have made in the experiments measuring, for example, time to
execute vs. memory required. A developer presents the complexity analysis to an audience
considering whether the design meets performance requirements.

Sample Course Module: Adversarial Search - Implementation of the Minimax Algorithm
for Nine Men's Morris 6

The Tale of the minimax algorithm is told in the context of the zero-sum game Nine Men’s
Morris (NMM), a strategy board game using adversarial search. Highlights of module
components are summarized here.

The Idea provides an overview of the minimax algorithm, alpha-beta pruning and heuristics.
These are illustrated with examples from tic-tac-toe. The history of Nine Men’s Morris (NMM),
which traces its roots back to 2000 BCE, gives the student a context for the game, and outlines
its rules and strategies for play. Details of the human machine interface (HMI) for NMM appear
in figure 1.

Figure 1. Nine Men’s Morris HMI and game board details.

Several applications of minimax with alpha beta pruning are described, conveying a sense of its
broad range of usefulness. These include the automated chess player Deep Blue, Envelope
Constrained Filters used in radar pulse compression and real-time pursuit evasion algorithms.

Sample Input/Process/Output illustrates the user interface for NMM game play and modes of
play (human vs. human, human vs. computer, computer vs. computer) and briefly describes the
reasoning used to make automated plays.

Implementation-independent Design Description includes system overview and architecture
diagrams, as well as class and sequence diagrams using the Unified Modeling Language, along P

age 25.569.5

with narrative to augment the diagrams. Figures 2-4 provide examples of the code and data
design documentation.

 Figure 2. System overview diagram focused on HMI. Figure 3. Software architecture diagram

Figure 4. Map of nodes on NMM game board.

Implementation-specific “HINTs” corresponding to each of the experiments outline the details
of code changes required by the exercises and offer illustrative snippets of code to guide the
student.

Test Suite and Driver(s) describes and identifies test preparations, descriptions, and the process
used to test the NMM minimax agent and its graphical user interface (GUI). The test
environment is defined, including details about workstation requirements, software requirements,
and the test environment setup. Test descriptions which define prerequisite conditions, test
inputs, expected test results, criteria for evaluating results, the test procedure, and assumptions
and constraints for testing are provided. Lastly, the features to be tested and those which are not
tested are identified.

The Experiments section as shown in figure 5 identifies the prerequisite knowledge and
preparation and provides an overview of experiments that range from learning how to play NMM

P
age 25.569.6

to enhancing its performance. Figure 6 provides additional detail for experiment #2. Students
complete a subset of the exercises according to the course in which the module is used, their
maturity as a programmer, and course requirements.

Well-designed and commented Source Code includes an implementation for the GUI, game
board, and computer player agent.

Complexity Analysis reviews the time and space requirements for the minimax algorithm and
minimax with alpha-beta pruning.

Pre-lab preparation Read relevant textbook section on adversarial search; attend classroom presentation
on and discussion of the topic; study TAILS module overview, which includes a brief discussion of the
minimax algorithm and an overview of the Nine Men's Morris (NMM) board game; read TAILS description
of applications of minimax to chess, Envelope Constrained Filters used in radar pulse compression, and
pursuit evasion algorithms; study the TAILS sample input/process/output and the implementation-
independent design description which provides use cases, requirements for the related software
components, and UML diagrams of the code. Meet with lab partner to preview the TAILS exercises and
implementation-specific hints for implementing segments of the code.

Lab experiment #1: Becoming Familiar with Nine Men’s Morris (30 min.) Become familiar with the NMM
game by playing a version online with classmates.

Lab experiment #2: Baseline the NMM Agent (30 min.) Play against the NMM computer player agent
and collect statistics on performance agent to use as baseline in subsequent experiments.

Lab experiment #3: Alpha-beta Pruning and Performance (60 min.) Enhance agent's source code by
adding alpha-beta pruning to the minimax algorithm provided. Compare performance to baseline.

Lab experiment #4: Importance of Evaluation Function (60 min.) Improve the evaluation function
implemented in experiment #3. Compare performance to baseline.

Lab experiment #5: Taking Advantage of Symmetry (16 hours - class project) Add a state generator to
omit symmetrical states from the generated successor states. Improve the evaluation function
implemented in experiment #3. Compare performance to baseline.

Lab experiment #6: Caching States (16 hours - class project) Add a state generator to cache successor
states until branches they belong to are no longer needed. Compare to baseline.

Post-lab wrap-up Students compare code and results, prepare a lab report that includes complexity
analysis of their work and the entire game. Results are compiled into a written lab report and discussed in
class. Students complete relevant assessments.

Figure 5. Nine Men’s Morris experiments for studying adversarial search.

P
age 25.569.7

Lab experiment #2: Baseline the NMM Agent (30 min.) Play against the NMM computer player agent and
collect statistics on performance agent to use as baseline in subsequent experiments.
Description
In this experiment you will be playing several games against the provided adversarial agent. This agent
implements the basic MINIMAX algorithm with a depth cut-off at level six. For details about the MINIMAX
algorithm see the Background Section located in the Laboratory Idea. The purpose of this experiment is to
baseline the performance of the provided adversarial agent. This baseline will then be used in the follow-up
experiments to show either performance improvement or degradation after modifications are made to the
agent’s source code.
Hypothesis
Write your hypothesis stating the outcome you expect to see when you play against this agent ten times. Your
hypothesis should have the following format: “I think that if I … then …”.
Materials Needed
• this laboratory guide;
• a clean copy of the source, and;
• a computer with the Tcl/Tk Interpreter installed.

See the Test Environment section of this laboratory guide for details about the environment required to run
this experiment.
Setup
There is only one step needed to setup this experiment: Copy
the provided Nine Men’s Morris source code to a scratch area.
Procedure
Play against the agent at least ten times. Record the results of
the games you play against your modified adversarial agent
and record the result using the table provided.
Observations
Record the results of the games you play against your
modified adversarial agent and record the results again.
Conclusions
• What conclusions can you make about this experiment?
• Did you prove the hypothesis correct?
• How would you improve this experiment?
• How can the hypothesis be applied?

 Win Tie Loss
Game 1
Game 2
Game 3
Game 4
Game 5
Game 6
Game 7
Game 8
Game 9
Game 10
Totals

Figure 6. Details of Experiment #2.

TAILS Outcomes, Objectives, and Assessments

The TAILS project addresses learning outcomes in five categories: skills, concepts,
communication, application, and research. The learning outcomes, specific objectives for each
outcome and their planned assessments are shown in table 1. We will rely in part of the Dewar-
Bennett Knowledge Expertise Grid7 to analyze our data. The grid defines criteria for summative
evaluation that can be adapted for evaluating knowledge of engineering-related content and rates
a student's affective and cognitive knowledge in terms of the student's level of expertise. We are
in the process of defining the rubrics that can be used to grade student work and assess the
outcomes in a reliable manner. Scoring rubrics will be developed for products produced by
students, student writing, and open-ended responses on exams. Information learned about student
accomplishment of the outcomes will be used to improve the course, both as it is in progress, and
for future offerings of the course.

P
age 25.569.8

Table 1. TAILS learning outcomes.

Category Outcome Objective Assessment
Skills Students will

demonstrate the ability to
solve problems
collaboratively

Student will demonstrate
collaboration and
teamwork skills

Students will work in pairs to
complete the lab activities, then:
• Complete a teamwork attitude
questionnaire8

• Write a team process log to
record perceptions about
collaboration8

Concepts Students will
demonstrate knowledge
of artificial intelligence
concepts

Students will
demonstrate recall and
general understanding of
AI concepts

• Answer exam questions
• Complete pre- and post-tests
• Explain and write software code
• Draw a concept map9 p.197-202

 Students will
demonstrate a deep
understanding of course
concepts

• Contrast multiple concepts9 p.168
• Define and give one example of a
course concept9 p.38

 Students will
demonstrate knowledge
of software engineering
practices

Students will
demonstrate proficiency
in software engineering
practices at background-
appropriate (grade- and
major-appropriate) level

• Specify requirements for a
software program

• Complete a domain-level design
for a software program

• Design an algorithm at an
implementation-specific level

• Reverse engineer software for an
algorithm

Communication Students will be able to
describe course concepts
at multiple levels of
abstraction

Students will be able to
describe course concepts
clearly and without
technical jargon

• Write an elevator statement9 p.183-

187 geared toward the student's
grandmother to describe the
concept

 Students will be able to
describe course concepts
for a classmate or
technical manager

• Write an algorithm in pseudocode
to describe the concept for a
technical manager

Application Students will be able to
identify applications of AI
concepts

Students will be able to
identify real world
applications for AI
concepts beyond those
provided in course
materials

• Complete application cards9 p.236-

239

Research Students will
demonstrate curiosity
about course material

Students will
demonstrate the ability to
extend course concepts

• Describe one new experiment that
can be used in conjunction with
each algorithm studied; explain
the objective of the experiment
and why this is a worthwhile
objective

• Describe one enhancement to the
algorithm studied and explain why
the enhancement is worthwhile

 P
age 25.569.9

Conclusion and Future Work

TAILS contributes to the STEM education knowledge base by promoting individual efforts to
solve a programming assignment while building an education community through laboratory
work that encourages cooperation and teamwork among students. The paradigm can be adapted
to computer science courses at all academic levels and is expected to increase participation in the
field by shortening the time required to prepare undergraduates to engage in research.

Computing and software are ubiquitous. There is a compelling need for software engineering
education in computer science10,11 and engineering12,13,14,15, as well as animation, biology and
other disciplines in which computing plays an ever increasing role. The TAILS model
demonstrates a technique for integrating software engineering concepts that can be used in
computing-intensive courses beyond traditional computer science programs.

Alpha testing is underway on the initial version of the adversarial search/Nine Men’s Morris
module. Work has begun on developing course materials for unification, basic and informed
search and conceptual clustering algorithms and we continue to define rubrics used to grade
student work and assess outcomes in a consistent manner. Future considerations include the
possibility of building upon laboratory projects developed as part of the Machine Learning
Experiences in AI framework16 or the Model AI Assignments presented at the Symposium on
Educational Advances in Artificial Intelligence17.

References

[1] August, Stephanie E. CCLI: Enhancing Expertise, Sociability and Literacy through Teaching Artificial

Intelligence as a Lab Science. NSF Grant no.0942454, 2010.
[2] Beyer, S., Rynes, K., Perrault, J., Hay, K., Haller, S. Gender differences in computer science students. SIGCSE

’03, 2003, pp.49-53.
[3] Strok, D. Women in AI. IEEE Expert, 7:4, August 1992, pp.7-22.
[4] Winston, Patrick Henry. Artificial Intelligence. 3rd edition. Addison-Wesley, Reading MA, 1992.
[5] August, S.E. Integrating Artificial Intelligence and Software Engineering: An Effective Interactive AI

Resource... does more than teach AI. In Mehdi Khosrowpour (Ed.), Proceedings of the 2003 Information
Resource Management Association International Conference). Hershey PA: Information Resource Management
Association, 2003, pp. 17-19.

[6] Shields, Matthew. Adversarial search: An implementation of the minimax algorithm for Nine Men's Morris.
CMSI 677 class project, LMU, spring 2009.

[7] Dewar, Jackie and Bennett, Curtis. 8-dimensional Mathematical Knowledge-expertise Grid.
http://myweb.lmu.edu/carnegie/webport/knowgrid.htm, Loyola Marymount University, 2004. (last accessed 10
January 2012)

[8] OERL: Online Evaluation Resource Library. http://oerl.sri.com/home.html (last accessed 10 January 2012)
[9] Angelo, Thomas A. and Cross, K. Patricia. Classroom Assessment Techniques; A Handbook for College

Teachers. 2nd edition. San Francisco: Jossey-Bass, 1993.
[10] Pour, Gilda; Griss, Martin L.; and Lutz, Michael. The push to make software engineering respectable.

Computer, May 2000, pp.35-43.
[11] Lethbridge, Timothy C. What knowledge is important to a software professional? Computer, May 2000, 44-50.
[12] Long, L.N. The Critical Need for Software Engineering Education. CROSSTALK, The Journal of Defense

Software Engineering, 10(1), January 2008, pp.6-10. P
age 25.569.10

[13] IEEE Computer Society and the ACM. “Curriculum Guidelines for Undergraduate Degree Programs in
Software Engineering.” http:// sites.computer.org/ccse/SE2004Volume.pdf. 2004. (last accessed 10 January
2012)

[14] Sanders, P. Improving Software Engineering Practice. CROSSTALK, The Journal of Defense Software
Engineering, January 1999, pp. 4-7.

[15] Vaughn, R. Software Engineering Degree Programs. CROSSTALK, The Journal of Defense Software
Engineering, 13(3), March 2000, pp. 7-9.

[16] MLeXAI: Machine Learning Experiences in AI: A Multi-Institutional Project. NSF DUE 0716338.
http://uhaweb.hartford.edu/compsci/ccli/index.htm (last accessed 11 January 2012)

[17] Model AI Assignments, Symposium on Educational Advances in Artificial Intelligence. http://eaai.stanford.edu/
(last accessed 11 January 2011)

P
age 25.569.11

