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Abstract  
 
This study examines the impact of a brief (10-15 minute) annealing and cold working classroom 
intervention on student learning outcomes in the Materials and Manufacturing Selection in Design 
course. The intervention, designed to fit seamlessly into the course schedule, uses active learning 
strategies to help students describe the microstructural evolution and the corresponding effects on 
material properties during cold working, annealing, and phase transformations. Through short 
demonstrations and problem-solving activities, students observe how these processes influence 
material characteristics, enhancing both their conceptual understanding and ability to apply this 
knowledge. Results show that these brief, focused interventions significantly improve student 
engagement, retention, and learning outcomes in complex technical topics. This work extends prior 
research in materials science education1, demonstrating the effectiveness of short, active learning 
strategies in reinforcing key learning objectives. 
 

Introduction  
 
Classroom demonstrations are a valuable tool for conveying concepts in challenging subjects. They 
help reinforce and stimulate students’ learning2,3,4 and increase their engagement. Interactive 
demonstrations have been shown to offer numerous benefits, including improved performance, 
development of independent learning skills, critical thinking, and problem-solving abilities. Adding 
demonstrations not only increases enjoyment but also positively impacts learning. 
Students often exhibit misunderstandings or misconceptions regarding certain concepts5,6,7. To 
address this, we propose introducing short demonstrations and activities that can be easily 
implemented in typical lab or classroom settings. These experiential learning activities are designed 
to combat misconceptions, increase student engagement, enhance learning, and improve the 
retention of concepts8. Additionally, these activities serve as a tool to enhance critical thinking 
skills. 
In designing these demonstrations, we reviewed the literature for best practice guidelines9,10,11. 
Miller et al. emphasized the importance of correctly observing a demonstration to achieve 
conceptual understanding12. They noted that a lack of learning or understanding can occur when 
experiments do not proceed as expected.  
An essential element of an effective demonstration is allowing students to predict the outcome. In 



2 
 

Proceedings of the 2025 ASEE Gulf-Southwest Annual Conference 
The University of Texas at Arlington, Arlington, TX 

Copyright  2025, American Society for Engineering Education 
 

 

addition to this approach, we also reviewed the underlying physics and, where possible, included 
hands-on elements to actively engage students and make the demonstrations more interactive. 
Other elements we implemented included keeping the demonstrations short, attention-grabbing, and 
conducted in small groups. Using this framework, as depicted in Figure 1, a short demonstration 
intervention and activities were developed.  

  
Figure 1. Proposed framework for implementation of demonstrations13. 

 
Intervention Preparation and Post Quiz 

Eight sets of samples were prepared using the following procedure: 
• Use annealed 360-brass. 12 bars 
• Dimensions – 6 inches long, 1 inch wide and ¼ inch thick.  
• Reduce thickness by 60% to approximately 8-10 inches 
• Cut them into ½ inch wide pieces. 
• Anneal 8 to 1100 °F for 90 minutes and furnace cool.  
• Anneal 8 for 10 minutes at 1100F.  
• Leave the remaining as is. 

Figure 2 shows a set of samples that are color coded based on the cold working and annealing case. 
The samples were cleaned to make all look the same.  
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Figure 2. Color-coded Cold-worked and Annealed Samples, Red: fully annealed, Blue: annealed to 

1100 °F for 90 minutes, and White: annealed to 1100 °F for 10 minutes. 
 
These sets of samples are handed to student teams during the class. Teams are asked to identify 
which one was the cold worked, completely annealed, and partially annealed.  Teams are asked to 
bend the specimens and get a “hands-on” feel of which would easier or harder to bend and justify 
why. This exercise takes around 5-10 minutes with class discussion and Q&A. The Baseline and 
Study groups are two sections of the same course taught by the same instructor having around 80 
student each. 
 

Table 1. Sample Quiz Questions for Both Study and Baseline Groups. 
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Point Biserial Correlation Coefficients for both groups vary across questions, but all of these 
questions had positive values indicating good differentiators between the top 25%, lower 25%, and 
the rest of the students. Students were asked to justify their answers for these questions. This 
helped in propping their understanding and analyzing misconceptions they had a bout the topic.  
 
Post Quiz Results  
 

 
Figure 3. Comparison of Quiz Averages of Baseline and Study Groups. 

 
The mean value of the Study group (7.56/10.00) is higher than that of the Baseline group 
(6.57/10.00), with both groups exhibiting relatively similar standard deviations. Figure 4 shows the 
distribution of the quiz results as a histogram for both baseline and study groups. The results of the 
study group showed clear improvement over that of the baseline. More students are getting higher 
correct answers and higher score values of the quiz. The natural distribution also reflects this. The 
statistical Z-test was performed where the p-value obtained is very small, less than the common 
significance level of 0.05, indicating a statistically significant difference between the Baseline and 
Study groups. This suggests that the intervention in the Study group had a significant effect 
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compared to the Baseline group. 

 
Figure 4. Histogram Comparisons of Baseline and Study Group. 

 
 
 

Summary and Conclusions 
  

Short class interventions do not consume a lot of class time but their impact on student learning 
outcome in the Materials and Manufacturing Selection in Design course were measured and showed 
a statistically significant improvement with more than 95% confidence. Students’ engagement with a 
hands-on experience helped students understand hard concepts of cold working, annealing, 
temperature, and time and their impact on the physical material behavior.  
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