
Paper ID #26600

Enhancing the Success of Electronics and Mechanical Engineering Technol-
ogy Students with an Engineering Calculus II Class Utilizing Open-source
Mathematical Software

Dr. Erik A. Mayer, Pittsburg State University

Erik Mayer is a Professor at Pittsburg State University in Kansas where he has been instrumental in form-
ing the Electronic Embedded Systems emphasis in the Electronics Engineering Technology program. His
research interests are power electronics and embedded systems. He previously taught at Bowling Green
State University in Ohio where he worked with the Electric Vehicle Institute . In addition, he worked
at Visteon Corporation designing components for hybrid vehicles. He received his Ph.D. in Engineering
Science at the University of Toledo in Ohio.

Dr. Yaping Liu, Pittsburg State University

I teach a variety of mathematics classes at Pittsburg State University. In particular, Calculus I, II, III,
Engineering Calculus II, and Differential Equations are closely related to engineering.

Dr. David Miller, Pittsburg State University

David Miller completed a B.S. in biological systems engineering at the University of Nebraska, Lincoln,
in 2000, a master’s of science in bioengineering at Arizona State University in 2002, and a doctorate
in biomedical engineering at the University of Nebraska, Lincoln, in 2008. After completing his Ph.D.,
he worked in the medical industry as a product development engineer for three years before coming to
Pittsburg State University, where he is a member of the mechanical engineering technology faculty. He
teaches courses in engineering mechanics, heat transfer, engineering graphics, and product design. He
has designed products using AutoCAD, CATIA, Pro/E, and SolidWorks and is a certified SolidWorks
Professional.

Dr. Jeremy Wade, PacificSource Health Plans

Dr. Wade was an Assistant/Associate Professor of Mathematics at Pittsburg State University from 2009-
2016. He is currently an analyst at PacificSource Health Plans.

c©American Society for Engineering Education, 2019



Enhancing the success of electronics and mechanical engineering 
technology students with an Engineering Calculus II class 

utilizing open-source mathematical software 

Introduction 
 
Electronics Engineering Technology (EET) and Mechanical Engineering Technology (MECET) 
students were previously required to take Calculus I and II. However, EET and MECET students 
typically struggled with Calculus II. In response to this, faculty from the Mathematics and 
Engineering Technology departments created an Engineering Calculus II course as an alternative 
for EET and MECET majors. The proposed outcome of the new course was to motivate EET and 
MECET students to learn the mathematics and to be able to apply them in their field of study. 
The new Engineering Calculus II course focused on mathematic topics more relevant to EET and 
MECET. In addition, the course included laboratory projects which utilized the open-source 
SageMath software and illustrated the applications of the mathematics to EET and MECET. The 
effectiveness of the new Engineering Calculus II course was assessed using two methods. A final 
laboratory project was assigned at the end of the course and assessed with a rubric. In addition, 
the effect of the new course on EET students was assessed using the Electrical/Electronics 
Technology Outcome Assessment that was regularly used for assessment for ETAC/ABET 
accreditation. Approval to use student data was obtained from the university's Institutional 
Review Board (IRB) which ensures that the rights of the students were not violated. 
 
Course Development 
 
In 2014, faculty from the Mathematics and Engineering Technology departments began to meet 
to discuss the creation of the alternative Engineering Calculus II course for EET and MECET 
majors. It was decided that the new Engineering Calculus II course would differ from the 
traditional Calculus II class in two fundamental ways: the topics covered and the discussion of 
potential applications. 
 
The sequence of topics in the standard Calculus II course began with integration techniques of a 
single variable, proceeded to sequences and series, and ended with parametric equations, polar 
equations and vectors. It was decided that topics such as conics and series would not be included 
in the Engineering Calculus II course as they would have limited applications in EET and 
MECET. The topics of differential equations and matrices were added to Engineering Calculus II 
as they have more applications in EET and MECET. Through subsequent meetings between 
faculty, a textbook on engineering mathematics was chosen and it was established that the topics 
in Table 1 would be covered [1], [2]. 

There is currently a movement within the mathematics community to cover topics more 
applicable to STEM fields earlier in the calculus sequence [3]. The sequence of course topics in 
Engineering Calculus II closely aligns with the proposed sequence in this movement because of 
the removal of the largely theoretical sections on sequences and series and the inclusion of topics 
in differential equations and matrices. 

 



 
Table 1: Lectures and lab experiments for Engineering Calculus II 
 

Lecture topics Labs 
EET MECET 

Review of differentiation and integration Introduction to Sage 
Integration: substitution, integration by parts, 
trigonometric functions, mean and root-mean-
square (rms) 

Calculating the dc and 
rms values of periodic 
waveforms 

Centroid of an area 

Complex numbers: introduction, operations, 
polar form, exponential form 

Using phasors to 
analyze ac circuits 

Spring-mass-damper 
behavior 

Matrices: introduction, determinants, 
operations, inverses, linear systems  

Branch-current 
analysis 

3D and 2D motion 
of an object 

Vectors: introduction, products, angle Permanent-magnet dc 
motor 

3D moment about a 
point 

Partial derivatives: rules, rate of change, chain 
rule, applications 

Differential form of 
Gauss's law 

2D motion of a Fluid 

Polar coordinates: introduction, polar curves, 
applications 

Phasors in Cartesian 
and polar coordinate 
systems 

Transverse and 
radial coordinates of 
a robot arm 

Multiple integrals: double, triple, applications 
 

Integral form of 
Gauss's law 

Volume and surface 
area of objects 

First order differential equations: introduction, 
separable, homogeneous, linear 

Timing applications of 
RC circuits 

Emptying of a 
water-filled tank 

Second order differential equations: 
homogeneous, inhomogeneous, particular 
solutions 

Series RLC circuit Spring-mass-damper 
system 

Laplace transforms: introduction (No lab) 
Review and final lab project Series RL circuit Manufacture of heat 

transfer plugs 
 

In standard calculus courses, the discussion of the applications of the mathematics is limited and 
often overlooked in order to provide more theoretical depth. This benefits mathematics students 
who will be focusing more on the theory. However, this is detrimental to engineering technology 
students who would benefit more from the discussion of applications. Thus, laboratory projects 
that involved the applications of the mathematics studied were included in Engineering Calculus 
II. It was hypothesized that the labs would further increase student motivation by illustrating 
EET and MECET applications of the mathematics covered in the lecture. 

A university grant was received in 2016 for Mathematics, EET, and MECET faculty to create a 
lab manual for Engineering Calculus II. The lab manual consisted of an EET laboratory project 
and a MECET laboratory project for each topic as shown in Table 1 [2], [4]. The laboratory 
projects consisted of problems to be solved using the open-source SageMath software [5]. The 
laboratory projects illustrating the applications of integration are shown in Appendices A and B. 
The laboratory project in Appendix A was developed for MECET students and covers the 



centroid of an area. The laboratory project in Appendix B was developed for EET students and 
covers the calculation of the dc and rms values of periodic waveforms. 
  
Assessment 
 
The effectiveness of the new Engineering Calculus II class was assessed using two methods. A 
final laboratory project was assigned at the end of the Engineering Calculus II course and then 
assessed. In addition, the effects of the new course on EET students was assessed using the 
Electrical/Electronics Technology Outcome Assessment that was regularly used for assessment 
for ETAC/ABET accreditation [2], [6]. Approval to use student data was obtained from the 
university's Institutional Review Board (IRB) which ensures that the rights of the students were 
not violated. 
 
A final laboratory project was used to assess the effectiveness of the Engineering Calculus II 
course by assessing the students’ ability to set-up and solve EET and MECET problems using 
SageMath and mathematical techniques learned in the course. The final laboratory project was 
assigned at the end of the semester and was assessed using the rubric in Table 2 [2]. The projects 
were assigned a rating of 4 (Exceptional) to 0 (No Credit) in four weighted categories: math 
comprehension (50%), concept comprehension (30%), SAGE technique (10%), and technical 
communication (10%). 
 
In 2016 and 2017, a total of 16 students took the Engineering Calculus II course. The assessment 
results of the final laboratory projects are shown in Table 3. The number of projects that received 
each rating is listed for each category. It can be seen from Table 3 that by using the weights of 
the categories, the weighted average rating was 2.3. This rating was between the “Meets 
Expectations” and “Above Expectations” ratings. Therefore, the average student performance on 
the final laboratory project exceeded expectations. 
 
Table 2: Rubric for final laboratory project 

  
Exceptional 

(A=4) 

Above 
Expectations 

(B=3) 

Meets 
Expectations      

(C =2) 

Below 
Expectations 

(D=1) 
No Credit 

(F=0) 

M
at

h 
C

om
pr

eh
en

si
on

 (5
0%

) Elegant solution.  
Student obtains 
correct result 
using correct 
reasoning, 
logically 
connected steps, 
and precise 
operations. 

Able to provide 
solid reasoning 
and perform 
necessary 
operations to reach 
a correct 
conclusion. May 
miss some steps or 
have minor 
calculation errors. 

Able to perform 
basic operations 
to reach a 
conclusion. 
May have 
flawed 
reasoning or 
missing some 
key steps, but 
the work is 
correct for the 
most part. 

Able to set up 
mathematical 
equation and 
perform some 
operations, 
but unable to 
provide solid 
reasoning or 
reach a 
correct 
conclusion.   

Not able to 
set up 
mathematic
al equation 
or do basic 
operations. 

 



Table 2 (continued): Rubric for final laboratory project 

  
Exceptional 

(A=4) 

Above 
Expectations 

(B=3) 

Meets 
Expectations      

(C =2) 

Below 
Expectations 

(D=1) 
No Credit 

(F=0) 

C
on

ce
pt

 C
om

pr
eh

en
si

on
 (3

0%
) In addition to 

being able to 
rearrange 
equations to 
solve problem, 
student is able to 
make inferences 
to problems 
outside the scope 
of the lab 
activity but 
relevant to his 
major. 

Able to 
recognize the 
connection 
between 
mathematical 
equations and 
engineering 
concepts in order 
to fully resolve 
the problem at 
hand. 

Able to 
rearrange 
equations to suit 
the needs of Lab 
problem.  May 
not be able to 
fully describe 
rationale. 

Able to 
recognize 
some equations 
and 
engineering 
concepts, but 
unable to make 
the necessary 
connections so 
that the 
problem can be 
fully 
understood. 

Unable to 
draw 
conclusions 
about 
engineering 
content 
based on 
math 
concept. 

SA
G

E
 T

ec
hn

iq
ue

 (1
0%

) Elegant code.  
Streamlined 
processes.  Fully 
commented with 
easy-to-follow 
instructions for 
use. 

Functional code, 
clear structure, 
and correctly 
defined 
variables. May 
have redundancy 
or may lack full 
comments or 
explanation.  

Functional code.  
Some 
unnecessary 
recursion.  Major 
variables defined 
in comments.  
May lack 
descriptions of 
variables & 
processes. 

Functional 
code, but with 
multiple errors.  
Unnecessary/fe
w comments. 
No/few 
variables 
defined in 
comments. 

Non-
functional 
code.  No 
comments. 

Te
ch

ni
ca

l C
om

m
un

ic
at

io
n 

(1
0%

) 

Graphics are 
correct, complete 
and elegant. 
Report is 
presented in a 
structured format 
to provide clear 
understanding 
and easy read. 
Adds to 
discussion of 
topics. 

Able to produce 
quality graphics 
or succinctly 
synthesize 
results to 
accompany math 
concepts.  Axis 
labels with units, 
properly 
formatted labels, 
aligned axes, 
appropriately 
scaled to fit 
available space.  

Able to produce 
graphics or 
provide results 
of lab activity to 
accompany math 
concepts.  May 
not be optimally 
scaled for 
available space.  
Axis labels may 
not have units or 
proper format for 
audience.  Line 
style/color may 
not be optimal. 

Able to 
produce 
graphical 
content, but it 
is in the wrong 
format or 
scale.  Line 
and marker 
color/style/wei
ght causes 
confusion.  
No/few labels 
or legends.  
Text results are 
difficult to 
interpret. 

Unable to 
produce any 
graphical 
output when 
required.  
Text output 
does not 
describe 
solution. 

 
 



Table 3: Assessment results of final laboratory project for 2016-2017 (Total of 16 students). 

  
Exceptional 

(4) 

Above 
Expectations 

(3) 

Meets 
Expectations      

(2) 

Below 
Expectations 

(1) 

No 
Credit 

(0) 
Average 
score: 

Math 
Compre-
hension 
(50%) 

2 1 12   1 2.2 

Concept 
Compre-
hension 
(30%) 

  12 3   1 2.6 

SAGE 
Technique 
(10%) 1 6 8   1 2.4 

Technical 
Commu-
nication 
(10%) 

1  13 1 1 1.9 

Weighted average score: 2.3 
 
 
In the EET program at Pittsburg State University, assessment data is regularly collected for 
ETAC/ABET accreditation using the Electrical/Electronics Technology (EET) Outcome 
Assessment [6], [7]. This assessment tool was developed by SME, the Electrical/Electronics 
Department Heads Association (ECETDHA), and IEEE. The EET Outcome Assessment consists 
of multiple-choice questions designed to assess EET knowledge [8]. EET students participate in 
the EET Outcome Assessment when they are seniors. 
 
To assess the effect of the Engineering Calculus II class on EET students, the results of the EET 
Outcome Assessment were used [2], [6]. The EET Outcome Assessment consisted of questions 
arranged into categories by topic. The question categories that were hypothesized to be most 
influenced by Engineering Calculus II were identified. These question categories are listed in 
Fig. 1 and included complex numbers, ac circuits, and RC and RL circuits. The number of 
questions in each category is listed in parentheses. 
 
In 2016-2018, 36 EET students participated in the EET Outcome Assessment. Out of these 36 
students, three had taken the Engineering Calculus II course. Fig. 1 shows the comparison 
between the average percentage of correct answers for the Engineering Calculus II students and 
the other students for each question category. It can be seen that Engineering Calculus II students 
had a higher average percentage of correct answers in the following categories: Phase 
Relationships, Frequency Response, Maximum Power Transfer, Complex Numbers and Phasors, 
and Inductance and Inductors. 
 



 

 Figure 1:  EET Outcome Assessment results for 2016–2018. 

While Fig. 1 appears to show that Engineering Calculus II students appear to excel in several 
categories, it must be taken into account that only three Engineering Calculus II students took the 
EET Outcome Assessment. In addition, the questions on the EET Outcomes Assessment are 
multiple-choice and have four possible answers [8]. Thus, the probability that a student could 
randomly guess the correct answer on a question is 25%. 

For the Phase Relationships category, there was one question and all three Engineering Calculus 
students got the question correct (100%). The probability of all three students guessing the 
correct answer randomly is 1.56%. So, there is a high probability that the higher average number 
of correct responses for this category was due to student knowledge gained from Engineering 
Calculus II as opposed to random guessing of the answers. 

For the Maximum Power and Frequency Response categories, there was one question and two 
out of three Engineering Calculus students got the question correct (66.7%). The probability of 
two out of three students guessing the correct answer randomly is 14.1%. So, there is a high 
probability that the higher average number of correct responses for these categories was also due 



to student knowledge gained from Engineering Calculus II as opposed to random guessing of the 
answers. 

Engineering Calculus II students appeared to perform better in the Complex Numbers and 
Phasors and Inductance and Inductors categories. However, each of these categories had one 
question and only one Engineering Calculus student got the question correct (33.3%). If the 
students randomly guessed the answers, the probability of one out of three students getting the 
correct answer is 42.2%. So, there is a good chance that the higher percentage of correct answers 
in these categories was the result of randomly guessing the answers. 

There are categories for which it appears that Engineering Calculus II students have done a lot 
worse than other students. No Engineering Calculus II students got the correct answer (0%) in 
the following categories: Simplified RL and RC Transients, AC Power, Power Factor and 
Triangle, Timers and Relaxation Oscillators. However, the probability that all three students 
guessed an incorrect answer on the question is 42.2%. So, there is a good chance that the 0% of 
correct answers in these categories was also the result of randomly guessing the answers. 

Summary 
 
It was seen how faculty from the Mathematics and Engineering Technology departments created 
the alternative Engineering Calculus II course for EET and MECET majors. The new course 
differed from the traditional Calculus II class in two fundamental ways: the topics covered were 
tailored to EET and MECET and potential applications of the mathematics were included in 
laboratory projects. The laboratory projects also used the open-source SageMath software. 

The assessment of the final laboratory projects showed that students were able to apply what 
they learned in the new Engineering Calculus II course and apply their knowledge to engineering 
technology applications. It can be seen from Table 3 that when the projects were evaluated with 
the rubric in Table 2, the weighted average score was 2.3 which was between the “Meets 
Expectations” and “Above Expectations” ratings. 

Through the use of the EET Outcome Assessment, it appears that Engineering Calculus II is 
having a positive effect on EET students. Engineering Calculus II students had a higher average 
percentage of correct answers than other students in five question categories as shown in Fig. 1. 
However, out of the 36 EET students that participated in the EET Outcome Assessment, only 
three of them had Engineering Calculus II. This brought up the question of whether the higher 
percentage in some of the categories was merely due to the probability of student guessing the 
correct answer. It was determined that the higher average percentage of correct answers in three 
of the categories had a high probability of being caused by student knowledge gained from 
Engineering Calculus II. 

The collaboration between the Mathematics and Engineering Technology department on the 
Engineering Calculus II course is anticipated to continue. It is anticipated that many students will 
benefit from future offerings of this course. 
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Figure 2.2: For any function f(x) we can identify a rectangular element, shown in green.
By taking successively smaller rectangles (i.e. shrinking dx) and adding the areas we
approach the true area under this curve.

To find the centroid of the area under the curve, we first divide the region into small slices,
the thin rectangle in the shaded area being a typical slice. The area of the rectangle, with
width dx and height y = f(x), is given by dA = ydx. In general, we can see that the

centroid of a rectangle is described by the coordinates (x, y) =

(
base

2
,
height

2

)
. In the

case of the rectangular element in Figure 2.2, the y-coordinate of the centroid would

obviously be ȳel =
y

2
=

f(x)

2
. Since dx will be made as small as possible, we can

say that
dx

2
' dx, and that the x-coordinate of the centroid of the element would be

x̄el = x +
dx

2
' x + dx ' x. Equation 2.1 shows the coordinates for the centroid of an

integral element.

Appendix A: Centroid of an Area

For any geometric shape or area, there exists a point at which all of the area can be 
said to be concentrated. This point is called the centroid, and is denoted by a coordinate 
pair, (x̄, ȳ). When analyzing a structure for strength or suitability for a given application, 
the centroid is often used to replace a distributed load – a load that does not occur at 
a discrete location – by a point load. For many shapes (triangles, squares, circles, etc) 
the centroid has been readily determined; however, for irregular shapes the centroid must 
often be calculated using integrals.

Consider the shape in Figure 2.2. The curve represents some function that describes the 
loading. For problems related to distributed loads, the area under the curve represents 
the total load on the structure.



(x̄el, ȳel) =

(
x,
f(x)

2

)
(2.1)

Once the centroid and area of the rectangular element have been determined, we can
calculate the centroid of the whole region. One way is to use moments relative to the two
coordinate axes. Refer to Programme 20, Frame 12 (p.856) of our textbook [5]. Also refer
to any standard calculus book for more details. For a region described by the area under
the function y = f(x) on the interval [a, b], the formula for the centroid is shown below.

x̄ =

∫ b

a

xydx∫ b

a

ydx

=

∫ b

a

xf(x)dx∫ b

a

f(x)dx

, ȳ =

1

2

∫ b

a

y2dx∫ b

a

ydx

=

1

2

∫ b

a

[f(x)]2dx∫ b

a

f(x)dx

.

All integrals are taken over the entire length of the curve. In the case of Figure 2.2, the
limits of integration would be from 0 to a. For problems involving loads, the line of action
of the concentrated load is vertical, so the y-coordinate of the centroid is not used, and
is usually not reported.

Problem 2.1. Let the distributed load (in Newtons/meter) on the beam shown in Figure
2.3 be represented by the function f(x) = 6x2 − x3 and the length of the beam L = 4 m.

1. What is the total magnitude of the load?

2. Where is its centroid located?

Figure 2.3: If a beam is loaded with a distributed load, the area under the curve can be
replaced by a single load, the magnitude being the area under the curve, at a point along
its length at the centroid of the area.



Problem 2.2. In order to balance a platform, engineers neet to know where its centroid
is located. If the area of the platform is described by the function g(x) = 4(x − 6)2 (see
Figure 2.4),

1. what is the total amount of material that must be used to construct the platform
(i.e. the total area)?

2. where should the engineers place the support to keep it from collapsing (i.e. the
centroid)?

3. Show your centroid on a graph.

Figure 2.4: A platform represented by the area under the curve g(x) = 4(x− 6)2



Appendix B: Calculating the dc and rms

Values of Periodic Waveforms

dc Value

An important parameter of periodic waveforms is the dc value of the waveform. The dc
value can be found for either voltage or current waveforms. The dc value is the average
value of the waveform over one period. Recall that in Calculus I, we defined the average
value of a function f(x) on an interval [a, b] to be

aver(f) =
1

b− a

∫ b

a

f(x)dx

Programme 19, Frames 23-25 (p.844-845) in [5] provides some numerical examples. Refer
to Figure 2.5 for the geometric interpretation of aver(f).

Figure 2.5: The average value of f(x) is such that “Cut” = “Fill” so that the area of the
rectangle with length (b− a) and height aver(f) is equal to the area of the region under

the curve y = f(x): (b− a)aver(f) =

∫ b

a

f(x)dx.

If a voltage waveform is given as a function of time v(t), then the dc value of the waveform
is given by:

Vdc =
1

T

∫ T

0

v(t)dt (2.2)

where T is the period of the waveform. Likewise, if a current waveform is given as a
function of time i(t) with period T , then the dc value of the waveform is given by:

Idc =
1

T

∫ T

0

i(t)dt. (2.3)



rms Value

Another important parameter of periodic waveforms is the root-mean-square (rms) value
of the waveform. Literally, it is the square root of the mean value of the square of the
waveform. The rms value can be found for either voltage or current waveforms. If a
voltage waveform is given as a function of time v(t), then the rms value is given by:

Vrms =

√
1

T

∫ T

0

v2(t)dt. (2.4)

Likewise, if a current waveform is given as a function of time i(t), then the rms value is
given by:

Irms =

√
1

T

∫ T

0

i2(t)dt. (2.5)

Refer to Programme 19, Frames 26-29 (p.846-847) in [5] for some examples on the calcu-
lation of rms values.

As have been illustrated earlier, you can find these integrals easily using Sage once the
function v(t) or i(t) is given. But sometimes a function contains constants that are not
explicitly specified. For example, the function f(t) = α sin(βt) has two parameters α and
β that are not given. How do we find the dc value and the rms value of f(t) then? The
answer is simple: do the integrals symbolically. First, since sin t has period 2π, the period
of f(t) is given by

T =
2π

β
.

Recall that in the syntax of the integral command there is a variable of interest. In the
following code, we declare all the parameters, together with t, as variables. Then in the
command integral(f,t,0,T) we name t as the variable of integration. This is necessary
because otherwise Sage gets confused and will give you an error message. If there is only
one variable in the function, you can omit this variable in the command. Now try

var(’t,alpha,beta’)

f(t)=alpha*sin(beta*t); T=2*pi/beta

integral(f,t,0,T)

and we get an error message, which ends with the question

Is beta positive or negative?

Sage wants to make sure that the upper limit of integration T is bigger than the lower
limit 0, so β has to be positive (technically a negative value also works). We guarantee
this by adding the command assume(beta>0). In case you have made other assumptions
about β (this may happen in a long worksheet), we also use the forget command to undo
all earlier assumptions. Otherwise you may get a ValueError message:



Assumption is inconsistent.

Now we have

var(’t,alpha,beta’)

forget()

assume(beta>0)

f(t)=alpha*sin(beta*t); T=2*pi/beta

dc=integral(f,t,0,T)/T; rms=sqrt(integral(f^2,t,0,T)/T)

dc; rms

| (t, alpha, beta)

| 0

| sqrt(1/2)*sqrt(alpha^2)

This means fdc = 0 and frms =
√
α2/2. If we also assume α > 0, the rms value will be

frms = α/
√

2.

Carry out these calculations by hand and check that the answers are correct.

Calculating the Power Used by a Resistor

The instantaneous power used by a resistor can be found by:

p(t) =
v2(t)

R
(2.6)

or
p(t) = i2(t)R (2.7)

where v(t) is the dc voltage across the resistor, i(t) is the dc current through the resistor,
and R is the resistance.

In a direct-current (dc) circuit where the voltage across the resistor and the current
through the resistor are constant, the voltage and current can be given as:

v(t) = V (2.8)

and
i(t) = I. (2.9)

Using (2.6), (2.7), (2.8), and (2.9), the instantaneous power used by a resistor can be
calculated by:

p(t) =
V 2

R
(2.10)

or
p(t) = I2R. (2.11)



When the voltage and current are changing, it is more practical to rate the resistor using
the average power P rather than the instantaneous power. The average power is given
by:

P =
1

T

∫ T

0

p(t)dt. (2.12)

Substituting (2.6) and (2.7) into (2.12) gives:

P =
1

T

∫ T

0

v2(t)dt

R
(2.13)

and

P =
1

T

∫ T

0

i2(t)Rdt. (2.14)

It can be seen that using (2.10), (2.11), and (2.12), that the instantaneous and average
power are the same in a dc circuit with constant voltages and currents:

P =
V 2

R
(2.15)

or
P = I2R. (2.16)

The rms value of the voltage across a resistor will deliver the same average power to the
resistor as a constant voltage of the same value. For example, a voltage source with a
changing voltage that has an rms value of 5 V will deliver the same power to a resistor
as a dc voltage source that is a constant 5 V. The average power used by the resistor can
be calculated using Vrms in place of V in equation (2.15):

P =
V 2
rms

R
. (2.17)

The derivation of the equation for the rms voltage can be done by equating (2.17) to
(2.13):

V 2
rms

R
=

1

T

∫ T

0

v2(t)dt

R
. (2.18)

Solving for Vrms yields (2.4).

Likewise, the rms value of the current through a resistor will deliver the same average
power to the resistor as a constant current of the same value. For example, a changing
current that has an rms value of 2 A will deliver the same power to a resistor as a dc
current that is a constant 2 A. The average power used by the resistor can be calculated
using Irms in place of I in equation (2.16):

P = I2rmsR. (2.19)



The derivation of the equation for the rms current can be done by equating (2.19) to
(2.14):

I2rmsR =
1

T

∫ T

0

i2(t)Rdt. (2.20)

Solving for Irms yields (2.5).

Problem 2.3. In an electric power grid that delivers an alternating-current (ac) voltage
to homes, the voltage is ideally sinusoidal and can be given by the equation:

v(t) = Vpeak sin(2πft) (2.21)

where Vpeak is the amplitude of the sinusoid. f is the frequency of the sinusoid which is
related to the period T by:

f =
1

T
. (2.22)

1. Derive the equation for the dc value of the sinusoid given by (2.21).

2. Derive the equation for the rms value of the sinusoid given by (2.21).

3. Using Sage, calculate the dc value of the sinusoid given by (2.21) if Vpeak = 169.7V
and f = 60Hz.

4. Using Sage, calculate the rms value of the sinusoid given by (2.21) if Vpeak = 169.7V
and f = 60Hz.

Problem 2.4. The voltage of a pulse-width modulated (PWM) voltage source can be
given as:

v(t) =

{
Vpeak : nT ≤ t ≤ nT +DT

0 : nT +DT < t < (n+ 1)T

where n = 0, 1, 2, . . . and 0 ≤ D ≤ 1. D is the duty cycle which can be varied to set the
dc value of the PWM voltage source and T is the period.

1. Derive the equation for the dc value of the PWM voltage source.

2. Derive the equation for the rms value of the PWM voltage source.

3. Using Sage, calculate the dc value of the PWM voltage source if Vpeak = 12V and
D = 0.6.

4. Using Sage, calculate the rms value of the PWM voltage source if Vpeak = 12V and
D = 0.6.
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