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Introduction:

During the past three years we have introducectmatromagnetics students to differenf@ims. We
teach a sequence of 8uwrses irelectromagnetidundamentals at BYU. The sequence begins with basic
principles and concludes with advanced concepts, including Greens functions, asymptotidsmand
anisotropic materials. In addition to these basic principtagses, we offer afipations ©urses in
antennas, microwave circuit design, remote sensing, radar, nonlinear and Faicgraoyl fiber optics.
We have found that expressing baslectromagnetic principles in terms of differentfarms as a
supplement to vector analysis aids the students at all levels in understanding electromagnetic theory.

The use of differentialorms is widespread in the physics community tipatarly in gravitation and
relativistic eleatodyramics prodems. Several researcherdvacate the use of differentidorms in
electrical engineering, among the most outspoken is Burke.

The test of a mathematical formalismh®wn in the aplications. Alhough | have long been convinced
of this, it was emphasized to me again wheadiadkd to teach a gduateelectrodynamics course using
differential fams instead of the usuaéctor notaton. | exgcted only modest gains, but in fact it made a
tremendous improvement. The mathiesebecame "transparentind the unddying physical structures

became visible (William L. Burke, Applied Differential Geometry, Cambridge University Press,
1985)

Proponents point out that forms provide iéiddal insight into the nature of electromagnetics, simplify
derivations, and provide notational compactness.

If differential forms are as beniefal as proponentsclaim, why have they not come into more

widespread use in electrical engineering electromagnetics? One opiniapréssed by Georges A.
Deschamps:

The differential fans approach has notyet had any impact on engineering initgp of its
convenience, compactness, and many othelitggga The main reason for this is, of course, the lack of
exposure in engineering publications: the entire literature on the subject of elagtmetits is written in
vector calculus notabin. It is hoped that this &icle will help remove this obstacle to a wider use of these
techniques, and demonstrate some of the real advantages of this new notgieorges A. Deschamps,

Fellow IEEE, Electromagnetics and Diferential Forms, Proceedings of theBEE, Vol. 69, No. 6, June
1981)
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Although Deschamps’s tcle and others are quite useful inroducing differetial forms to sgcialists in
electromagnetics, they haveone little to promote the use of differdal forms in the broader
electromagnetics community. If differentfarms are to gain a widexcceptance in electrical engineering,
not only should researchers andgditioners be made familiar with them, but studehtsikl be exposed to

them in the undergraduate curriculum.

Presentation of differentialorms to undergradites in electrical engineering requires a different
approach thameachingforms to gradates. In arrently awailable articles and texts differentimrms are

usually presented in the most general and complex manner even to beginners.

Presenters begin w

differential geomet/, exterior algebra, and compleretric space descriptions. This is contrary to the
common approach used fteaching vector analysis. Vectors are presefrtmd a simple algelaic and
geometric point of view and complexity is added as needed. Fromexperiences, a stessful
introduction of differentialforms toelectrical engineeringndergradates begins with a simple presentation
of forms as gemetrical objects in a manner similar to th@peoach taken to introducestors. This paper
outlines how we inbduce differetial forms to our undergradiie students. We show that even when the
simplest prolems in electromagnetics are explained udimgns they yeld valuable insights that are

difficult to derive from the vector representation alone.

A CONSTANT ELECTRIC FIELD

X

VECTOR

E=Ea;,

FORM

E=E dz

Figure 1. The vector and form representations of a constant electric field.

A New Approach for Presenting Differential Forms
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In our approach we show the diffetih form geametrically and algebraically wibut attempting to
define all of its geometric and algebrgycopeties. Fgure 1 shows an example of this more direct
approach. It shows thesgtor and differentialorm representing theame constant E-field. The differential
form assciated with this constant electric field is represented as a series of pidaees of constant
voltage perpendicular to the z-axis. The planes coincide with the equipoterfiales. For constant field
the surfaces are spaced equidisttloin one another. Here theelid vector is ®&pressed as faz
Volts/meter. The arresponding algehic representation in terms &rms is Edz Volts. The form

associated with electric field is called a doem because it has only one differential multiplier. Notice

that the dimensional units of tiferm represetation are volts because it implies the multiplication of
distance times the field.

Figure 2 shows thelectric field vector antbrm represetations of an E-field that increases in intensity
away from the vdrcal axis. The spacing of thergaces decreases with increasing field strength. In this

case the electric field may be written #azand the form asZiz. It is interesting to note that although we

are used to representing increasing field strength with a higher density of field lines, it is not in keepinc

with the definition of vectors. The length, not the spacing, d@dor determines its relative magnitude in
the fundamental definition of vectors.

* INCREASING E FIELD

VECTOR

y

Figure 2. Forms and vectors for an increasing E-field.

We introduce theslectric flux density as an iportant example of a two form. It is convenient to
illustrate electric flux using the parallel plate capacitor.
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T z
vectors represent both E;sD

Figure 3. Electric field and flux density vectors for a parallel plate capacitar

Upon aptication of a voltage difference between the two plates an electric field is created in the region
between the two plates. The vector &omns for this feld are shown in gures 3 and 4, regptively. The

flux density is found from the Eedld by applying the constitutive relationship between the electric field
and its associated flux density. For vectors (in homogeneouspenimedia) this is written aB=¢E,
whereg is a scalar quantity. From thgdire we see that besides tloalgng there is no apparent difference
between flux and field in the vector description.

The constitutive relation iforms is witten as Ds*E where, *, is the hodge star operator. In a three
dimensional Cartesian space it tr@nss the one form dx to the two form dydz, dy to dzdx, and dz to dxdy.
In the case shown, the operatigt zdz, produces a flux D€Ezdxdy. The dnensional units of the flux

form are Coulombs. Figure 4 shows that ceates a series of planes perpendicular to the x-axis and dy is a
series of planes perpendicular to the y-axis.

/ planes of E

tubes of D
Figure 4. Forms show clearly the difference between flux and field quantities.

The combination generategeoup of tubes opening in the z-elition. There is &lear distinction between

the electric field and electricuk. The feld form is a series of planes perpendicular to tla¢es and the

flux form is an array of tubes joining the toge charge on the bottom plate with the negative charge on
the top plate. The spatial density of the tubes indicates the magnitude aixhmdire tubes indate a
higher flux density. In our experiencetgaching electromagnetics the usdarfns in this simple problem
clearly illuminates the difference between fields and fluxes. In vector notation the field and flux are both
vectors. In forms the field is a one form and the flux is a two form.

We have seen that the electric field and magnetic field @ameeniently expressed as one forms and
that electric and magnetic fluxes are tiwams. Combining a one form and a two form gives a three form
as shown in Figure 5. The cométion of the electric field and flux to arrive at the myyedensity in ector
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notation is a doproduct, w<E. In forms we use the hook or exterior product, WED The hook
product shows the relsing energy density is a three form. The gedric representation of the thrimem is
the cube formed by the combination of the three planes associated with the one forms dx, dy, and dz.

tubes planes cubes
D, dxdy E dz wdxdydz

Figure 5. The exterior product of a two form and a one form yields a three form.

We also use forms to makeckear distinction between magnetic flux and fieltie air gap represented
in the magnet shown in Figure 6 demoatss this difference. The magnetic field, H, is depicted as a series

of planes and the magnetic flux is shown using the tubes. Here the relationship between the two quantiti
is B=u*H.

planes of N

tubes of B

-\

Figure 6. The magnetic field and flux forms in the air gap between two poles of a magnet.

One commonly expressed defian of forms is that they are the things under integral sighe
integration of forms is very naturakbause the differential element of integration is carried irfdhma.
The integral for a one form is a line integral. Trasng ease of integration extends to faons and three
forms. Two forms are integrated over surfaces and three forms are amenable to volume integrals.

Although the examples we have shown to this point have been in Cartesian atesdiifferential
forms are also useful in other ciimear awordinate systems. §ure 7 shows a crossdion of the field
and flux associated with a point charge. It shows that the vector field and flux both are represented wit
vectors pointing away from the origin. Using forms ¢hectric field is a series of concentric circles and the
flux tubes are shown opening away from the charge. Again, the difference between flux and field is clear.

EE» 1996 ASEE Annual Conference Proceedings

G'/6T'T abed



VECTORS FORMS
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Figure 7. Cross section of the E-field and D-field associated with a point charge

Maxwell’'s equations are more simply@essed in terms of differgal forms than in ectors. In forms we
write:

dD = p
dB = 0
iB
dE =~ %0
aD
dH = —+ J
at

In these expressions there is an liegb exterior product between the form and the d operator. The d
operator is similar to thel operator in vectors. In Cartesian coordinates it is expressed as:

7} 7} 17}
= (—dx+—dy+—
d=( dxdx dydy dzdz)
The exterior product of the one form diffetih operator on another orlerm creates a twdorm, but it
generates a thrderm when it is wedge nitiplied by a twoform. In the egation representing gauss’s law

we can see that the one form differential operator converts the two form flux into a three form cube.

|

Figure 8. Geometric description of gauss’s law using differential forms

From the differentiaforms represaation of Maxwell’s equations we see a clear algebraic similarity
between gauss’s law and ampere’s law. The one form differeperator applied to the orierm E-field
produces a two form flux aglectric awrrent density. This is also manifest in the metry of the forms.
Gauss’s law is shown in Figure 8 where tubes of #ioranatdrom cubes of charge. irBilarly amperes law
is manifest in Figure 9 where E-form planes are gaedrby tubes ofwrent ortime changing electric
flux.
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Figure 9. Geometric description of ampere’s law using differential forms.

Conclusion

We have seen that students enjoy learning about diffaleforms and applying them to
electromagneticprodems. More significantly they gain a morhotough understanding of the basic
principles of electromagnetic fields when they are introduced to the concepts of differential forms
early in their study oélectromagnetics. In add, if the ame model holds tru®r electrical engineering
as for physics, the appation of differentialforms to cetain classes girodems may allow us to solve new
problems that are all but impossible using vectors.

Using differentialforms as a suppment to vectordroadens the vocabulary anmdages available to
the teacher in presenting electromagnetics. Frorpribfessors' point of view, we have found that once we
have used differentidbrms toteach &outelectromagnetics if we attempt to restretrselves tdeaching
with the use of vectors only, it is very frusing, as if our hands weteed behindour backs. We hope
many of you will incorporate forms into your teaching and find the same success and enjoyment we have.
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