
 1

ERROR TOLERANCE TECHNIQUES FOR BINDING CRYPTOGRAPHIC

KEY WITH BIOMETRICS

Qinghai Gao
GaoQJ@farmingdale.edu

Department of Security Systems, Farmingdale State College, SUNY

2350 Broadhollow Road, Farmingdale, NY 11735

Abstract: Modern cryptography has one issue to be solved: key management. One proposed
solution to the issue is to binding biometrics with cryptographic key. However, the non-
reproducible measurements of biometrics make it difficult to bind a key with biometrics due to the
exactitude requirement of cryptographic key. To bind a cryptographic key with a biometric, error
tolerance technique has to be applied to process the biometric information. In this paper, we
briefly survey the error tolerance techniques that have been proposed to minimize the fuzziness of
biometric measurements. Since it is typical that different biometrics have to be measured with
different instruments, different methods may have to be chosen for best measurement results.
Advances in the topic are reported with a few representative biometrics, including keystroke,
voice, signature, face, iris, and fingerprint. Since for all biometric applications the central issue to
be solved is the fuzzy matching problem. We reported our preliminary testing results in this
aspect.

Keywords: Error, Tolerance, Key, Biometrics, Minutiae, Template

1. Introduction
Biometrics is defined as the identification of an individual based on physiological and behavioral
characteristics. The common physiological features include face, fingerprint, hand geometry,
palm print, hand IR thermogram, iris and retina, ear, skin, odor, denture, and DNA. The common
behavioral features include speech, gait, keystroke and signature.
In cryptography, key generation and management is a very important issue [1]. According to
Schneier, "Key management is the hardest part of cryptography and often the Achilles' heel of an
otherwise secure system." The typical practice is that a key would be generated mathematically
and then assigned arbitrarily to a user. This approach has two problems. First is the repudiation
problem due to the lack of direct physical connection between the key and its owner. Second is
that the key has to be saved somewhere because it is too long to be memorized. Easy-to-
remembered and easy-to-hacked passcode is then utilized to access the saved key. These
problems potentially can be solved by binding a cryptographic key with biometrics, either by
generating cryptographic key directly from live biometric measurements or by controlling the
access of cryptographic key with biometrics.
A number of biometrics, such as keystroke patterns, voice, handwritten signatures, fingerprints,
Iris, DNA and face images, have been studied for cryptographic key binding.
The major problem for binding cryptographic key with biometrics is that biometric
measurements are non-exactly reproducible: typically two measurements of a same biometrics
will give two similar but different results, which violate the exactitude requirement of
cryptographic key. To solve the problem, error tolerance techniques have to be applied. In this
paper we survey these techniques proposed in literatures for different biometrics. The rest of the
paper is organized as follows. Section 2 briefly summarizes these methods; Section 3 gives

 2

detailed description on how these methods are utilized based on particular biometrics; Section 4
contains our experimental results on matching modified fingerprint minutiae templates; Section 5
concludes and proposes future research.

2. Overview of the error tolerance methods
Biometric system works with two steps: registration and verification. For registration a person
provide a live biometric for measurements and the results will be stored. For verification, the
person must provide the same biometric for new measurements. The output of the new
measurements will be compared to the previously stored results.
Biometric measurements generate noisy data and it is a challenging problem to achieve security
with noisy data [2]. Among other things non-reproducibility is the most difficult problem to be
solved for biometric application, including cryptographic key binding. In this section the
common methods we found in literature are briefly described as follows.
●Averaging/Training
For averaging method a number of biometric samples with some variations were obtained,
transformed, and then averaged to get a generic representation of the biometric. The mean and
standard deviation of the samples are often needed.
For training method the biometric samples collected during registration will be applied to train a
mathematical model, such as Hidden Markov Model (HMM). The parameters obtained at the end
of the training will be used for verification.
●Quantization (aka, Tessellation/Discretization)
Individual biometric image will be quantized into a number of small units. The biometric
information inside each unit will be assumed to locate at the center of the unit.
●Majority voting
For a number of measurements of a biometric, each will be quantized and binarized into a fixed-
length string. For every bit position of the binary strings, majority voting will then be used to
determine the value, 0 or 1.
●Error correction Coding and helper data
Error correction coding is often used for noisy data. Two common choices are Reed-Solomon
(RS) coding and Hadamard coding, especially for iris encoding. During registration, some
redundant information (also called helper data) about the biometric will also be collected and
stored to correct the error bits at verification.
●Subsetting
Assume a biometric can be represented as a set of points N. Instead of using N registered points
for verification, we only use a subset M of N points in the hope that at least M points of a
biometric can be regenerated from new measurements.

To successfully bind a cryptographic key with a biometric, one or a combination of the
aforementioned five methods will be applied for error tolerance purpose.

3. Biometrics-exemplified error tolerance techniques
A few biometrics, including keystroke dynamics, voice, handwritten signatures, face, iris, and
fingerprint, have been proposed for cryptographic key binding. For different biometrics, different
techniques have to be chosen to solve the fuzzy measurement problems.

3.1 Time averaging for keystroke dynamics measurements

 3

Computer user’s typing patterns consist of durations for each letter typed and latencies between
keytrokes. Monrose, Reiter, Li and Wetzel [3] proposed to harden a user’s password with
keystroke dynamics.
Let φ1, φ2, …, φm denote the number of features that are measured during logins. For each feature
φi, let Ti∈ℜ be a fixed parameter of the system. Let µi and σi be the mean and standard deviation
of the measurements φi(j1),…, φi(jH) where j1,…, jH are the last H successful logins and H∈Ν is a
fixed parameter of the system.
φi is a distinguishing feature for the last H successful logins if |µi – Ti | >K•σi, where K∈ℜ is
another system parameter.
Let b(φi) be the bit representation of feature φi. Then
b(φi)=0, if Ti >µi + K•σi means the user consistently measures below Ti on feature φi (fast);
b(φi)=1, if Ti <µi - K•σi means the user consistently measures above Ti on feature φi (slow)
b(φi)=∅, Otherwise

An m-bit string is derived and then combined with password to form a hardened password. The
system parameter K plays an important role for the error tolerance. A large K means high error
tolerance and high false acceptance.

3.2 Sequence segmentation for voice
Monrose, Reiter and Wetzel [4] [5] proposed another system based on voice biometrics.
A user’s utterance is represented as a sequence of 30ms frames. A feature descriptor is
constructed by segmenting the sequence of frames into contiguous subsequences, starting from a
segmentation of the frame sequence into m, roughly equal-length segments. The segmentation is
an iterative process, converging to a near-optimal segmentation of the user’s utterance. One
feature descriptor bit will then be generated from each subsequence. The relative position of the
point obtained by averaging the frames in a subsequence to the closest matching centroid
determines whether the bit is 1 or 0.
A larger number of centroids and shorter subsequences will increase the differentiating ability of
the system (high false rejection rates) but tolerate fewer errors for a particular user.

3.3 Feature quantization for handwritten signatures
Hao and Chan [6] made use of handwritten signatures to generate private key. They defined
forty-three signature features extracted from dynamic information like pen-down time, velocities
for different directions, pressure, height-to-width ratio, etc. The measurements for each feature
will be quantized into a number of segments, each of which will be assigned to a different
decimal number D. During enrollment, ten samples will be collected from each user and the
mean and standard deviation are used to calculate the user boundary:

User boundary = (µ - b•σ, µ + b•σ)

The “b” is a system parameter to be adjusted. A bigger “b” value corresponds to more error
tolerance and easier forgeries.
The bit information for each feature can be obtained as log2

D. Bit representations for all the
features of a user are concatenated to form a binary string S.

 4

3.4 Basis projection for face images
Goh and Ngo [7] outline cryptographic key-computation from two-dimensional frontal speaking
face bit-map images. Each image was then represented as a vector and Principle component
analysis (PCA) was utilized to reduce the dimensions (less than 100 eigenbasis).
A face is represented with an image vector IV = (s1, s2, … , si, …, sn), where si is the value for a
pixel.
Binarize each point as the following (mean µ and standard deviation σ obtained at registration):

b(si) = 0 if si < µ-σ
 =1 if si > µ+σ
 =∅ if si ∈[µ−σ µ+σ]

In their experiments, 20 to 80 bits were extracted from each image. The results showed that 40 to
60 eigenfaces gives best results: FAR=0% and FRR<3%. 20 bits is insufficient and 80 bits is
sensitive to noise.

3.5 Hadamard and Reed-Solomon coding for Iris
Daugman [8] proposed a practical and secure way to integrate iris biometrics into cryptographic
applications. A random binary string, i.e. the key for encryption, is XORed and therefore locked
with genuine iris codes from enrollment templates. To extract the key, the live iris has to be
measured again to get the iris code and then XORed with the result obtained from the previous
step. To deal with the 10 to 20% of error bits within an iris code and derive an error-free key,
they carefully studied the error patterns within iris codes, and devised a two-layer error
correction technique that combines Hadamard and Reed-Solomon codes.

3.6 Image averaging, shifting and majority coding for fingerprint
Soutar et al. [9-11]proposed a method to link and retrieve a digital key by using fingerprint.
At registration, a series of Fourier-Transformed fingerprint images are averaged and then
multiplied with a random phase-only array. The phase-phase product of the result, termed Stored
Filter Function Hstored(u), is saved as the First part of the BioscryptTM.. The inverse FT of the
result, a combined image, will be used to link with an N-bit Random Number k0. The linking
algorithm will generate a Look-up Table, which is the Second part of the BioscryptTM. The first S
bits of Hstored(u), will be encrypted with key k0; the encryption result will then be hashed to create
an identification code id0, which is the Third part of the BioscryptTM

.
At verification, A series of fingerprint images are captured, Fourier-Transformed and then
combined to generate the magnitude information, which is combined with the saved Hstored(u)
and then inversely Fourier-Transformed to generate a new image, which will be used with the
stored Look-up table to retrieve the key k1.
A few procedures were proposed for error tolerance:
●Pre-align finger for image capturing;
●Use more than one images. As the number of fingerprint images increases, the average of the
FT’s of the images converges;
●Only the central portion of the images is used for key linking and retrieval;
●During the process of key retrieval, the selected portion will be shifted horizontally, vertically
and diagonally by a number of pixels (1 to 16);
●Majority coding.

 5

To check the validity of the newly generated key k1, using it as an encryption key, encrypt the
same S bits of the stored filter function Hstored(u), then hash the encrypted text to produce id1. If
id1= id0 , then k1=k0; if id1 != id0 , then k1!=k0, the retrieval algorithm continues with the next
pixel offset.

In Table 1, we listed some implementations of biometric key binding. However, even for a same
biometric it is difficult to compare the results from one report with the results from another since
they often use different methods and different databases. Standardization can help to solve the
problem.

Table 1 Some Representative Implementations of Biometric Key Binding

In Table 1 the Bit Lengths vary from 12 to 224 and the FRRs are high.
Since the widely used symmetric-key encryption method AES uses 128 bits and public-key
encryption method RSA uses ~1024 bits, current research on binding cryptographic key with
biometrics has yet to reliably generate bit strings that can be used practically.

3.8 Fuzzy vault scheme
Juels and Sudan [12] proposed a fuzzy vault scheme. First, Alice selects a polynomial p to
encode k with the coefficients of p. She constructs a vault set R containing the polynomial
projections with her own set A and some chaff points. Bob can reconstruct k using his own set B
if A ∩ B is greater than the threshold determined by p. The problem with the scheme proposed in
[12] is that even small variations for fingerprint minutia, which are common for biometric
measurements, will render the failure of reconstructing k.
Uludag [13] et al. improved the scheme by introducing Cyclic Redundancy Check (CRC) bits in
the polynomial and using square tessellation of 2D image. The example given in [13] for
encoding and decoding a 128-bit cryptographic key follows.
Encoding
●Apply the 16-bit primitive polynomial a16 + a15 +a2 + 1 to a 128-bit key to get 16-bit CRC and
construct a 144-bit secret SC that would be divided into 9 non-overlapping 16-bit segments and
each segment is declared as a specific coefficient ci, i=0, 1, 2, ..., 8.
●Concatenate 8-bit x and 8-bit y coordinates of minutiae: u=x|y. Hence, N minutia set A={u1,
u2,..., uN}and polynomial p(u)=c8u8 + c7u7 + ... +c1u + c0 are used to calculate genuine set G={(µ1,
p(µ1)), (µ2, p(µ2)),..., (µN, p(µN))} which is then combined with chaff set C={(c1, d1), (c2, d2), ...,
(cM, dM)}, where dj ≠ p(cj), j=1, 2, ..., M, to get the Vault Set V=GUC.
Decoding
●Given N query minutiae, u1

*, u2
*, ..., uN

*. The points to be used in polynomial reconstruction
are found by comparing ui

* , i=1,2,..., N, with the x values of points in vault V. If there is a
match, the corresponding vault point is added to a candidate list.
●Assume that the list has K points, K≤N. To decode a D-degree polynomial, (D+1) unique
points are needed. So we end up with C(K, D+1) combinations. For each of these combinations,
we construct the Lagrange interpolating polynomial. The coefficients are mapped back to the
secret SC*, which will be divided by the primitive polynomial to test the validity of the
combination: it is valid if the remainder is zero.

 6

4. Experimental results on matching modified fingerprint minutiae templates
To test the capacity of error tolerance of biometric matching, we choose to use the fingerprints
from DB1 (Optical Sensor, 640x480, 500 dpi) of the FVC2004 [14] and the NIST fingerprint
software [15] since both of them are freely available and well-known.
The main procedures are followed:
●Extract fingerprint minutiae templates from fingerprint image. Each minutia is a 4D vector.
●Randomly modify the coordinates of the minutiae in a template
●Randomly delete certain numbers of minutiae from a template
●Match the original template against the modified template

Our testing results are given in Figure 1.

Figure 1 Matching modified fingerprint minutiae templates

The template modification details are given in Table 2.

Table 2 Fingerprint minutiae template modification steps

Since the threshold for matching decision is 40 [15], the modified fingerprint template with 36
minutiae, whose coordinates have been randomly altered by 10 can still match it original
template that has 106 minutiae.

5. Conclusion
Binding biometrics with cryptographic key could improve the security of modern cryptography.
Since biometric templates have unreliable bits, error tolerance techniques must be adopted to
meet the exactitude requirement of cryptographic keys. Different techniques should be
considered for different biometrics. Possible methods include Averaging/Training, Quantization,
Majority Voting, Error Correction Coding and Subsetting. Today it is difficult to compare the
results from different authors due to the lack of standard.
The central issue of biometric application is the fuzzy matching problem. Our testing results
show that NIST fingerprint software has good error tolerance capacity.
Research in binding cryptographic key with biometrics is still in its early stage. More advanced
error tolerance techniques may have to be developed to prove the usefulness of biometrics on
enhancing cryptographic key management.

References
[1] B. Schneier, Applied Cryptography, 2nd Edition, John-Wiley, New York, 1996.
[2] P. Tuyls, B. Skoric, and T. Kevenaar. Security with noisy data: On Private Biometrics, Secure Key Storage and
Anti-Counterfeiting, 1st Edition, Springer, 2007.
[3] F. Monrose, M. Reiter, and S. Wetzel, Password Hardening Based on Keystroke Dynamics. Proc. of the ACM
Conference on Computer and Communications Security, 1999, pp. 73-82.
[4] F. Monrose, M.K. Reiter, Q. Li and S. Wetzel. Cryptographic key generation from voice. Proc. of the 2001 IEEE
Symposium on Security and Privacy, May 2001.
[5] F. Monrose, M. K. Reiter, Q. Li, D. P. Lopresti, and C. Shih. Toward speech-generated cryptographic keys on
resource constrained devices. Pro.c of 11th USENIX Security Symposium, 2002, pp. 283-296.
[6] F. Hao and C. Chan. Private key generation from on-line handwritten signatures. Information Management &
Computer Security, 10(2), 2003, pp. 159-164.

 7

[7]A. Goh and D. Ngo. Computation of cryptographic keys from face biometrics. Lecture Notes in Computer
Science, 2828, 2003, pp. 1-13.
[8] F. Hao, R. Anderson, and J. Daugman, Combining cryptography with biometrics effectively. IEEE Transactions
on Computers, 55(9), 2006, pp. 1081-1088.
[9] R. Nichols, ICSA Guide to Cryptography, McGraw-Hill, 1998.
[10] C. Soutar, D. Roberge, A. Stoianov, A. Gilroy, and B. Kumar. Biometric Encryption™ - Enrollment and
Verification Procedures. Proc. of SPIE, 3386, 1998, pp. 24-35.
[11] C. Soutar, D. Roberge, A. Stoianov, A. Gilroy, and B. Kumar. Biometric Encryption™ using image processing.
Proc. of SPIE, 3314, 1998, pp.178-188.
[12] A. Juels and M. Sudan. A Fuzzy Vault Scheme. Designs, Codes and Cryptography, 38(2), 2006, pp. 237-257.
[13] U. Uludag, S. Pankanti, and A. Jain. Fuzzy Vault for Fingerprints. Proc. of Audio and Video-based Biometric
Person Authentication, 2005, pp. 310-319.
[14] Available online: http://bias.csr.unibo.it/fvc2004/.
[15] NIST Biometric Image Software (NBIS). Available online: http://fingerprint.nist.gov/

Table 1 Some Representative Implementations of Biometric Key Binding
Biometrics Feature Error

Correcting
FRR
%

FAR
%

Database Bit
Length

Author

Keystroke Duration,
latency

Discretization 48 NA* 20 users 12 [3]

Voice Cepstrum
coefficient

Discretization 20 NA 10 users 46 [4][5]

Signature Dynamic Averaging 28 1.2 25 users 40 [6]
Face Eigen-

projections
Discretization 0~5.0 0 153 users 20~80 [7]

Iris Gabor
wavelet

RS coding
Hadamard

0~12 0 70 users 42~224 [8]

Fingerprint Fourier
Transform

Majority
coding

NA NA NA NA [9-11]

 8

Figure 1 Matching modified fingerprint minutiae templates

Table 2 Fingerprint minutiae template modification steps
Symbol Modification

 ModA(Series 1): Randomly delete 10 minutiae at each step
 ModB(Series 2): Randomly change the 4 coordinates by 0~3, then ModA
 ModC(Series 3): Randomly change the 4 coordinates by 0~5, then ModA
 ModD(Series 4): Randomly change the 4 coordinates by 0~10, then ModA
 ModE(Series 5): Randomly change the 4 coordinates by 0~15, then ModA

