Session Number: 1122

Ethics, Technology and the Future:
An Inter-Generational Experience in Engineering Education

Rosalyn W. Berne

Technology, Culture and Communication
University of Virginia, School of Engineering and Applied Sciences

Abstract

Which pedagogical approaches to engineering ethics can adequately and richly introduce to young engineers the perplex issues associated with the development of new, futuristic technologies? Nanotechnology, cryonics, cloning, quantum computing, cyber-intelligence and genetic engineering each hold the potential of radically altering the fundamental nature of human life. Therefore, their consideration is warranted in an engineering ethics curriculum. An extraordinary teaching experience with undergraduate students at the University of Virginia School of Engineering and Applied Science (SEAS), suggests that intergenerational dialogue is one pedagogy that can enliven and enhance the undergraduate engineer’s ability to engage moral deliberation about technology and the future. This paper recounts one such intergenerational experience, highlighting excerpts from dialogues which occurred, and from student essays which reflect upon them, as documentation of the exceptional effectiveness of this profound teaching technique.

Engineering Ethics and The Technological Future
Nanotechnology, cryonics, cloning, quantum computing, cyber-intelligence and genetic engineering are examples of newly developing technologies that hold the potential to
radically alter the fundamental nature of human biological life. The quest for enhanced brains, eradication of disease, and even the indefinite extension of human life, are actually imaginable today within the realm of technological ingenuity.

To some, the uses of technology to transcend physical and mental limitations of the human body are far-fetched dreams. To others, such aims represent the inevitability of technology’s evolution. Even if only in the realm of the imagination, recent technological developments represent very exciting possibilities for yet uncharted human experience. What would it mean if, and when, humans no longer are threatened by loss of bodily life and function due to disease and deterioration of living tissue? Clearly, it could represent the ultimate of freedom and possibility. Of course, such uses of technology would also inevitably mean formidable ethical problems to be resolved.

The Unusual Value of Intergenerational Learning

This paper describes a teaching journey of discovery that began last winter with a lecture I delivered to the retired faculty association of the University of Virginia. The lecture was given on the subject of engineering ethics, reflecting on the writings of Hans Moravec, Ray Kurzweil and the journalists Peter Menzel and Faith D’Aluisio. These authors convey a vision of our technological future, which completely alters human life, as we know it. The reaction of this audience of distinguished retired faculty and their spouses was startling. One man actually yelled out, “I’m glad I’ll be dead before all of this nonsense becomes real!” I then came to realize that more than to be passive audience members of an occasional lecture; senior citizens must be included as students in the teaching and research on technology and the future. Even though such newly developing technological capacities as nanotechnology and cryonics are unlikely to ever affect their lives, senior citizens are often seasoned thinkers, bringing to the discussion the wisdom of life experience, combined with the refined desire and capacity to reflect with both intelligence and concern.

There are countless examples of intergenerational exchange, regularly modeled and practiced in multiple arenas of learning throughout the United States, and internationally. From religious education in churches, synagogues and mosques, to skill development in mathematics and reading tutorial programs in elementary schools, to enrichment activities in community centers, senior citizens and young people are widely cultivated as volunteers for the support of one another. Higher education institutions are also working with intergenerational learning. One such example is the Intergenerational Service Learning Project at the Southeastern Oklahoma State University, which received a mini-grant to convert an existing Psychology of Aging course into an intergenerational service-learning course. Ten senior citizens receive scholarships and enroll in the course with the primary stated objective being “that by interacting and working together for an entire semester, both younger and older students will develop a more realistic view of each other and create a more positive intergenerational environment in our community.”

Another example of intergenerational learning in higher education is the Institute of

1 http://babbage.sosu.edu/~geron/
Public Law at the University of New Mexico. They believe that “the dynamic created when different age groups come together has been a powerful tool in attaining various goals.”\(^2\) In particular, they are interested in policy issues such as allocation of health care, social security, family, and the government’s overall responsibility to the elderly. Both of these examples point to the growing trend in education to bring aged learners into a classroom environment with traditional “younger” students. And both programs focus their curriculum on issues pertaining to aging.

What benefit might there be to an intergenerational pedagogy that focuses not on aging, but on questions of newly developing technologies, ethics and our future? This is a subject that in many ways has no direct relevance to the lives of today’s senior citizens, and yet is one in which they may have a sincere interest. A teaching experience with undergraduate students at the University of Virginia School of Engineering and Applied Science (SEAS) suggests that an intergenerational dialogue on exactly that subject can enliven and enhance the undergraduate engineer’s ability to engage moral deliberation about the future.

The Jefferson Institute for Life Long Learning (J.I.L.L.)\(^3\)

As a result of the interest stimulated by the retired faculty association lecture, I was invited to be an instructor for the Jefferson Institute for Lifelong Learning (J.I.L.L.). As such, I offered a course entitled, “Ethics, Technology and the Future”. It included some of the same readings I use to teach a similar course at the SEAS. In both classes we read Kurzweil’s, *The Age of Spiritual Machines*, Halperin’s, *The First Immortal*, and Bill Joy’s article “The Future Doesn’t Need Us”. The students also viewed the films *AI* (Artificial Intelligence), *Bicentennial Man*, and *Vanilla Sky* (for their intriguing visual and dramatic portrayal of a future with technology at the center of human life).

Three weeks into the J.I.L.L. semester one of the senior citizens asked how my undergraduate engineering students reacted to Kurzweil’s description of the future. In particular, he wanted to know if young engineers are optimistic and excited, or if they have concerns about a potential future where humans and machines have merged with technology, and where human life is extended through life supporting/extending technologies. I relayed as best as I could remember what the engineering students were saying about the readings.

The next day, I mentioned to the undergraduate engineering students in my classes that one of the senior citizens had taken an interest in them. A young woman suggested that we take a field trip to the J.I.L.L. class. In response, I invited all sixty of the engineering students enrolled in my two sections of our required course, “Western Technology and Culture”, to participate in the class with the senior citizens. Thirty-five SEAS students

\(^2\) http://ipl.unm.edu/iag/

\(^3\) A voluntarily staffed, continuing education program for Charlottesville, Virginia area
attended the J.I.L.L. class on the following Wednesday, and then nine returned along with
seven new students for a second class the following week.

An Intergenerational Dialogue on our Technological Future
Thirty J.I.L.L. students sat in chairs forming a large circle in the library of a local
retirement community. Some were residents of the senior home where the class was held.
Others drove in their cars from independent homes in the community at large. The visit of
the engineers was a surprise to the senior citizens, as there had not been an opportunity to
warn them of the visit. With all the chairs occupied by senior citizens, the undergraduate
engineers walked into the room and sat themselves on the floor, inside of the circle. The
senior citizens seemed so excited, and expressed gratitude and enthusiasm for having the
engineers with them in the classroom. One man, a retired department chair in the medical
school, was most amazed by the diversity represented in the young students. This was a
class with equal numbers of men and women, many international students, and domestic
students of varied races.

The topic of the first hour was Kurzweil’s, *The Spiritual Machine*, in which he argues
that evolution suggests that our technological inventions will become smarter than we,
and will dominate existence on earth. Kurzweil further predicts that we will become the
machines we create, merging with technology for life-enhancing experiences, to
overcome the limitations of the mortal, physical body. We began class with the
engineering students asking questions of the J.I.L.L. students, followed by J.I.L.L.
students questioning the engineers. An excerpt of that exchange follows:

Engineer:
Do you believe that technology will ever take human life?

Senior citizens:
*Technology already has moved much faster than we ever imagined. So much has changed
so fast. On the other hand, I remember the World’s Fair of 1939 in New York City. Some
of the predicted developments came to pass, but many were overblown. The notions of
all the U.S. cities being connected with elevated superhighways never happened. But, I
was taken with Kurzweil’s predictions. I can see them coming true.*

*Years ago, I met Bernard Hillman of NASA. He said, “I believe good will come from
trying to go to the moon. Even if we don’t make it.” He was a man of faith, a believer. I
like to think that we will be one step ahead of what we create.*

But, when have we ever turned away from technology?

Engineer:
*We pulled away from the nuclear technology when it was too threatening. Same with the
atomic weapons we developed. Ethics is inherent in our system as a checking device.
We will know when it is time to stop.*

Senior:
*But don’t you think that the ceiling of where we say, “stop” keeps going up? We keep
thinking, “I’ve got to get this, this new thing is better than the old.” New intelligent
technologies like what Kurzweil describes are different from the bomb. New technologies make things easier and faster.

Engineer:
All of our research and development is innocent now. The advantages are still outweighing the disadvantages. When it’s no longer clearly that way, we will stop what we are doing.

Senior:
But when is Jack no longer human?

By this statement The J.I.L.L. student was referring to the passage in Kurzweil’s book where he uses “Jack” as an illustration to question at what point, if ever, does technology’s increasing use in the human body compromise the person’s identity? Jack begins with a cochlear neural implant for auditory enhancement, he then adds memory implants, and eventually has his entire brain and neural system replaced with electronic units of greater capacity, speed and reliability. The question posed is whether Jack is lost somewhere in the process of bringing technological enhancement into his human body.

It was acknowledged that different senior citizens in the room had various implants of one sort or another; hearing aids, new hips, heart valves and pumps, knees, etc. The question on the floor was whether at some point the technological replacement of body parts and enhancement of bodily functions would compromise their personhood? Responses from both undergraduates and senior citizens indicated that such a slippery slope result would not be a threat as long as there remained self-consciousness.

Engineer:
With these technologies, it is not at all clear where to stop because their use is so gradual, and so beneficial.

Senior:
What if today, you had the choice to have the entire contents of your brain, and thus “you”, downloaded into a more permanent form? Would you do it?

Engineer:
If, as Kurzweil suggests, we are really just software and can be downloaded, what happens to the meaning of life? I think we are getting in over our heads. But what is the difference between downloading and genetic engineering, or cloning? There is a huge difference. Enhanced bodies still have a sense of urgency, of life and death. Software does not.

No matter what, life will find a way to end itself. And, what about faith? Isn’t there something greater? Kurzweil doesn’t bring up faith at all. What about God? What about afterlife? Does downloading yourself for everlasting life take away the element of afterlife in the hereafter?

Senior:
Are some of you students wanting to stop the development of such technologies or are you anxious to go forward?

Engineer:
Kurzweil frightens me.
I am excited. I have less of a connection to my body, not so much of a need for it. To me, it is not so weird that our minds will go into a computer. It is kind of cool, exciting.

Senior:
Would you download your subconscious, too?

Engineer:
I don’t believe there really is a subconscious.

After a break, and an opportunity for the senior citizens to socialize informally with the undergraduate students, we returned to discuss The First Immortal. This is a science fictional treatment of the pursuit of extended life through cryonics and nanotechnology. The novel recounts the choice of a physician and his extended family to deep freeze their bodies until such time as technology could cure them of their life-threatening illnesses. The book spans two hundred years from the first freezing, to the revival of those once frozen, to their new lives inside of a vastly changed world.

The class discussion opened again with the question, “If you could be frozen today, knowing that one day you would be revived to continue living in this body, would you choose do so?” First, the senior citizens were polled. Twenty out of twenty eight said, “Yes!” Then the young engineering students were polled. Seven said, “Yes!” Twenty-eight said “No!”

Written Reflections
The engineers who attended the classes were required to write a one-page reflection on their visit to the J.I.L.L. class. Many of them chose to write about this disparity in the poll results. They wondered why relatively few engineers would be interested, in contrast to so many of the senior citizens, in using technology to prolong the inevitability of bodily death. One engineering student wrote,

“Many of the general ideals that both groups expressed surprised me in that the older generation seemed more willing to experiment with new technologies.”

Another wondered about religious belief and what role that might play in the differences. “What disturbs me is the low number of undergraduate students who expressed an interest in cryonics. Why do the senior citizens’ concerns only show in faint glimmers in the younger generation? It may be our inability to imagine ourselves on our deathbeds at the final moment where the choice between extinction and a glimpse into the future is plausible. It could have something to do with religious beliefs telling us that there is something better waiting for us. That argument would imply that the younger students have stronger beliefs than the older group, which would be a surprising conclusion, considering the common belief that organized religion is weakening with each passing generation.”

Most notable was the essay that questioned the implicit insatiability of the human heart. The writer remembered the words of the senior citizens who desired to be frozen and revived just to see what will come of the world, and of their grandchildren:
“… One senior motivation for freezing oneself was to preserve the ill until an ailment was found for their sickness. Another motivation that seemed oddly basic was the curiosity of what lies ahead. I think this portrays the endless pit within man’s heart, a never ending chasm that absorbs all that is around it, and still seeks to absorb more until inevitably is sucks itself inside out! A curiosity that leads us to abandoning our loved ones and responsibilities, is a perverted obsession that could only be fed to a certain extent before it dies and leaves its followers in utter disdain.”

While some of the senior citizens were outspoken about their fear of extinction, and their desire to fulfill their curiosity of the future, others held back. They hesitated to say yes to cryonics, for fear of having to come back alone, to lives without their loved ones. One man joked about having to stick with the same spouse throughout eternity. Another spoke about the hardship in having to adjust to the extreme changes the future will bring. Only one of the senior citizens spoke in religious terms saying that Heaven, where God dwells, is the source of all reality. He asked, ‘what more could we want?’ A normally reserved young engineer then felt free to agree, out loud.

Both times that the engineering students visited the J.I.L.L. class, we discussed the question of what it is that makes up the human being. Kurzweil’s writing is insistent on defining the human simply in terms of the acquisition and processing of information. In that way, the human being is likened to a piece of software, wherein one’s life experiences can be stored, retrieved and enhanced, simply through neurological processes. If this is so, then theoretically the person, as information, could live in any suitable container, as long as it is designed to hold the “data” that makes one a person. Many of the undergraduate essays pondered the implications of this view. Are we just information? Can we simply be uploaded and continue to live as ourselves? Is Kurzweil’s prediction plausible? The following passages are representative:

“I sensed a distinction between the J.I.L.L. discussion and discussion within my own generation (especially discussion among budding engineers), which often is over flowing with unoriginal, skeptical, over-thought and under-felt opinions, fabricated through the relentless pressures of this technological era. For example, when prompted to express their feelings about the quotation ‘Who are you? Your essence is information about the unique experiences, emotions and thoughts of your life; perhaps nothing more, and unquestionably nothing less,’ more members of the J.I.L.L. group adamantly refuted the idea than would be the case in our classroom at the University. Whereas we students are swept away in the mentality of and obsession with technological overthrow, the J.I.L.L. students are obviously and completely committed to the belief that heart and soul are the absolute foundation of our being.”

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education
“When we first discussed going to visit the senior citizens class, I thought for sure that the senior citizens would defer to the undergraduate engineers for all the technical issues. I was very surprised when they pushed us and tried to disprove our examples and brought up new technology ideas on their own. Throughout our discussions of Kurzweil, I have often found myself thinking that, for a group of engineers, many of my classmates seem surprisingly anti-technology. Many of them are very reluctant to acknowledge that Kurzweil might be correct in his predictions, and deny that society will ever allow the creation of intelligent machines. So I was quite surprised when the senior citizens said that they think the possibility is more real than we might wish to believe.”

“The concept of humans beings as just information in a container was the first topic of the discussion. However, for me it was the discussion that would stay in my mind for the rest of the day. Answers filled with confusion and intrigue led me to believe that no one generation can give clear cut answers to how we should handle the future of technology. We expect the older generation to have the answers to the future of technology and vice versa. The answers will have to come from more interaction with different generations and a consensus on humanity’s future role. The younger generation cannot alone determine what to do for the future.”

Questionable Values

In our mono-aged Engineering school classroom, student discussions on newly developing technologies have focused primarily on what the future may bring for the individual. Students debated one another on whether it is actually possible to merge human minds with technological creations, on what comprises the essential human being, on whether we have the choice to discontinue our push towards these developing technologies, and the like. When the undergraduates joined the senior citizens, the focus of the discussion about future technologies took on an additional concern. One senior shifted the entire conversation when she said, “’We’, the affluent of the highly technological Western world, are a miniature of this world. What is important for rest of the world? We talk about these life-enhancing technologies and living longer or forever while most of the world still strives for the fulfillment of basic human needs. There are two classes of people: those who have, and those who don’t. We have the technology to provide for all the needs of the planet. Why are we putting so many resources into technologies for the comfort of the elite?’”

From there the senior citizens and engineering students launched into an intense dialogue about who is responsible for whom, about the hatred much of the world feels towards “us” because of what we have, what we consume, and our exclusive, market driven, economic policies. Questions of moral responsibility were raised, but so were the complexities of introducing new technologies to existing, pre-technological cultures. One octogenarian, former Peace Corp. volunteer, shared his memories of the villagers who returned to retrieving water the old way, rather than to repair the pump they were provided by the project funds. With compassion in his voice, he expressed frustration...
over the difficulties of introducing new technologies to pre-technological cultures. The practical and moral dilemmas of doing so were apparent to both J.I.L.L. and SEAS students, who became sober in acknowledging the moral imperatives of if, when, and how to extend to others the technologies we enjoy. Questions of whether or not to use technology to upload and merge our minds into new, more lasting techno-bodies, took on a whole new perspective in light of more global issues of access and need. It was over this concern that the intergenerational encounter became so rich.

As the following excerpts from SEAS student essays reveal, profound learning had taken place in the intergenerational exchange; learning which may never have happened otherwise.

“Should we use our existing technology to address humanitarian issues before we try to improve it? Can technology help close the gap between the have and the have-nots? A large part of our class with the senior citizens was spent addressing these two questions. What made this particularly interesting to me was the fact that none of the questions have come up in our own class discussions. In class we spent time thinking about how technology may effect us as individuals, when with the senior citizens, technology’s effect on humanity was almost the primary topic.”

“I think that the senior citizens have much higher expectations for the human race than the younger generation does. They seemed to think that life would be there for them in 100 years when I am not sure that it would be. They seem to have an optimistic view of humanity. It surprises me because they have seen so much more hatred and bloodshed than we have. And they still have faith in humankind.”

“When technology is introduced to any environment/society, the environment/society must adapt. So we have to be careful about all our actions no matter how seemingly harmless they may be. It’s probably a stretch, but fixing a pipeline can lead to problems just as genetic engineering, nanotechnology, and robotics eventually will.”

Conclusion

Practically speaking, an ongoing intergenerational curriculum in an Engineering School is an unlikely goal. But as a field trip, the intergenerational experience provided a way to go deeper, and beyond what is normally possible in the Engineering Ethics classroom. Sitting together with intelligent, well-read senior citizens was an experience the undergraduate engineers continue to refer to again and again.

“Contrary to my stereotype of all elderly being traditional and stubborn minded, I was surprised to find that the senior citizens we were talking to were open-minded, welcomed new ideas, and possessed great interest in what would lie in front of mankind under the rapid growth of technology, even though they might not be able to see it happen.”

“I am still not certain whether I ought to be hesitant or thrilled to admit that I was more engaged by our discussion at the Jefferson Institute for Life Long Learning last Wednesday morning than I am by a typical class discussion here in the engineering school.”

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education
“My mind was certainly opened by the J.I.L.L students. They were as bright and insightful as we were even though it seemed that our generation had an advantage because of our personal experience with current technology. Age proved not to be a major factor when we tried to predict future outcomes of humans and technology. Neither the wisdom of our elders nor the new imaginings of the present generation could accurately predict how the imminent merge of life and technology will happen.”

And that, perhaps, was the point of the entire exercise. When engineering students joined retired senior citizens to discuss technology and the future, what was revealed was the nearly insurmountable perplexity we face in trying to imagine, and untangle, the life we are creating tomorrow, with the development of technology today. Where do we find the answers to questions of what is right, what should happen and should not, relative to the way we will use and adapt to, and perhaps depend upon technological developments to come? Alone, the young engineers can fantasize and debate over what might be real, but do not have the breadth of experience, the depth of wisdom, or the near-to-death perspective to truly understand. Alone, the senior citizens can reflect, discuss and lament over what their grandchildren’s lives may bring. But they have no sense of influence, creative ability or skills to help direct the path of technology. Perhaps most importantly for the senior citizens, their optimism and hope for the future was reinforced as a result of hearing and exchanging fears, ambitions and perplexities, with undergraduate engineers who will soon begin to build the future the senior citizens will never know. Only together could both groups fully explore the ethical implications of our technological destiny.

Sources Cited

ROSALYN W. BERNE, Ph.D. Religious Ethics. Assistant Professor of Technology, Culture and Communication in the University of Virginia’s School of Engineering and Applied Sciences. Her research interests include the use of technology for transhumanist aims, and the ethics of newly emerging technologies, especially nanotechnologies, and the applications of artificial intelligences in robotics.