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Abstract

Intraoral scans are widely used in digital dentistry for tasks such as dental restoration, treatment
planning, and orthodontic procedures. These scans contain detailed topological information, but
manual annotation of these scans remains a time-consuming task. Deep learning-based methods
have been developed to automate tasks such as tooth segmentation. A typical intraoral scan
contains over 200,000 mesh cells, making direct processing computationally expensive. Models
are often trained on downsampled versions, typically with 10,000 or 16,000 cells. Previous
studies suggest that downsampling may degrade segmentation accuracy, but the extent of this
degradation remains unclear. Understanding the extent of degradation is crucial for deploying ML
models on edge devices. This study evaluates the extent of performance degradation with
decreasing resolution. We train a deep learning model (PointMLP) on intraoral scans decimated
to 16K, 10K, 8K, 6K, 4K, and 2K mesh cells. Models trained at lower resolutions are tested on
high-resolution scans to assess performance. Our goal is to identify a resolution that balances
computational efficiency and segmentation accuracy.

Introduction

Intraoral scanning is a digital technique that captures a 3D representation of an intraoral region.
These scans are widely used in digital dentistry for dental restoration, orthodontic treatment
planning, smile design, and surgery. However, many of these tasks still require manual
processing, such as annotation. Annotating a single scan can take 45 to 60 minutes. Hence,
automatic methods are necessary to reduce the manual efforts.

There are many deep learning-based methods that have been developed for the task of tooth
segmentation, dental crown generation, and dental alignment, often adapting techniques from



general point cloud processing. Intraoral scans can contain over 200,000 mesh triangles, making
direct processing computationally prohibitive. The existing works downsample the original scans
to a lower resolution such as 16K or 10K mesh cells as shown in Table. 1. Prior studies have
explored different topics such as the shortcoming of existing tooth segmentation methods [1] and
possibility of learning from a single dental scan [2]. Prior studies [3, 4] also suggest that
downsampling degrades the fine tooth features (for example, curvature information), but a
systematic evaluation of its impact on segmentation accuracy has not been done. Our study
attempts to fill in this gap by analyzing the effect of different resolution levels on model
performance.

Deep-learning models trained on downsampled meshes are more suitable for deployment on
devices that require methods with lower memory footprint. However, downsampling beyond a
certain threshold can reduce segmentation accuracy. In this study, we evaluate tooth segmentation
performance when downsampling intraoral scans across different resolutions. Using
PointMLP [5], a deep learning model for point cloud processing, we assess segmentation
accuracy on 10K and 16K scans. By evaluating segmentation performance across various
resolutions, this study provides insights into the feasibility of using downsampled intraoral scans
for deep learning-based segmentation.

Author/Paper Faces/Points
Xu et al. [6] 40,000 points
Sun et al. [7] 10,000 points

Zhang et al. [8] 16,000 points
Cui et al. [9] 10,000 cells

Zhang et al. [10] 16,000 cells
Tian et al. [11] 16,000 cells

Zanjani et al. [12] 16,000 points
Wu et al. [13] 10,000 cells
Lian et al. [14] 10,000 points

Zhang et al. [15] 10,240 points
Benhamadou et al. [16] 10,000 points

Jana et al. [17] 16,000 points

Table 1: Intraoral scan resolutions used in various studies

Current deep learning-based approaches have shifted toward data-driven feature extraction. Xu et
al. [18] introduced a multi-stage framework using CNNs for mesh cell labeling. Tian et al. [19]
employed octree partitioning followed by a 3D CNN for hierarchical tooth segmentation. Jana et
al. [20] developed a dual-branch segmentation method, leveraging sparse surface representation
and curvature learning. 3D tooth segmentation methods primarily rely on fully supervised
learning, though some, such as DArch [21] and TSegNet [22], use weak or semi-supervised
learning. As such, these approaches typically operate on 16K or 10K mesh cells per scan. To our
knowledge, no study systematically evaluates the impact of downsampling on tooth segmentation
performance.



1. Methods

1.1. PointMLP

In this work, we have used a point cloud segmentation method named PointMLP [5]. The
PointMLP method uses a geometric affine module, which has demonstrated exceptional
capability of capturing local geometry, even from sparse representation. Due to these
characteristics, the PointMLP method seems to be a reasonably good choice. Given an input point
cloud, PointMLP extracts local features step by step using residual point MLP blocks. First, a
geometric affine module transforms the local points. Features are then extracted both before and
after the aggregation process. By repeating these stages, PointMLP expands the receptive field
and captures the full geometric structure of the point cloud. Figure 1 shows a visualization of the
PointMLP method.

Figure 1: PointMLP method comprises of residual blocks (ϕpre and ϕpost ). α and β are the
learnable parameters. σ denotes the feature deviation across all groups. The PointMLP method
transforms the points via a normalization operation while maintaining original geometric proper-
ties. (Zoom in for better visibility)

1.2. Experimental Set-up

The original intraoral scans (∼200K cells) were downsampled to the resolutions of 2K, 4K, 6K,
8K, 10K and 16K and a separate model was trained for each resolution. The results of the
prediction were upsampled via KNN method to the 10K and 16K resolution to understand the
effectiveness of the models trained at lower resolutions (2K, 4K, 6K and 8K). Examples of the
differences in resolutions are shown in Figure 2.



Figure 2: A labeled tooth mesh (left) and different resolutions of the same region in the intraoral
scan.(Zoom in for better visibility)

1.3. Dataset & Evaluation Metrics

We use the public dataset 3D Teeth Seg Challenge 2022 [23]. The intraoral scans provided the
ground truth annotations of different teeth and gum regions, including central incisors (T7),
lateral incisors (T6), canine/cuspids (T5), 1st premolars (T4), 2nd premolars (T3), 1st molars
(T2), 2nd molars (T1), and background/gingiva (BG)(Figure 2). Tooth segmentation is the task of
separating 3D dental models into these unique semantic parts. We use Dice Score (DSC), Overall
Accuracy (OA), Sensitivity (SEN) and Positive Predictive Value (PPV) to evaluate the
performance of our model.

1.4. Data Pre-Processing

In our experiments, we used a subset of the public dataset consisting of 571 subjects from the
training set of the dataset. The lower jaw scans of the subjects with a maximum of 14 teeth were
selected. Each of these resolutions have been created from the original mesh by the process of
mesh quadric decimation. Each mesh cell can be described with four points - three vertices of the
mesh triangle and the barycenter of the mesh triangle along with the normals at each of these four
points. With these four points, a 24 dimensional vector is constructed comprising 12 coordinate
vectors and 12 normal vectors at the four points, respectively. The intraoral scans have a base
which is not part of the gum. In our current work, we crop a portion of the dental mesh from the
scan. Afterward, we manually verified the meshes to ensure that we have teeth and gingiva for all
the models. To efficiently process and visualize 3D intraoral scans, we integrate the Vedo and
VTK libraries into our workflow. Vedo is utilized for interactive rendering, surface manipulation,
and mesh analysis, facilitating an intuitive exploration of the segmentation outputs. Meanwhile,
VTK is employed for advanced 3D processing, geometric transformations, and volumetric



rendering of dental structures.

1.5. Data Augmentation

For better generalizability of the model, we augment the training and validations sets by
combining 1) random rotation, 2) random translation, and 3) random rescaling of each 3D dental
surface in reasonable ranges. Specifically, along each of the three axes in the 3D space, a
training/validation surface has 50% probability of translation with a displacement and zoom with
a ratio uniformly sampled between [−10, 10] and [0.8, 1.2], respectively. Each training/validation
surface has 50% probability to be rotated along the x, y, and z−axes with angles uniformly
sampled between [−π, π]. The combination of these random operations simulated 4 “new” cases
from each original surface. We split the data at an 80:20 ratio for training and testing. Next, we
allocate 20% of the training data for the purpose of validation. To ensure consistency across
augmented samples, we apply the same transformation parameters to the corresponding labels
and annotations. Data augmentation is performed statically during the data preprocessing stage to
reduce training time.

1.6. Training and Evaluation

We train the segmentation model using PointMLP with multi-resolution intraoral scans. Training
is conducted for 200 epochs using the Adam optimizer with an initial learning rate of 0.001. The
batch size is set to 16 and each epoch took approximately 5 minutes to complete. Training is
conducted on RTX 6000 GPUs. The entire pipeline, including preprocessing, training, and
evaluation, is implemented in PyTorch.

2. Results and Analysis

2.1. Segmentation Performance

We evaluate the segmentation performance of PointMLP across different resolutions and report
the results in Table 2. The distribution of the segmentation labels is shown in Figure 5 The model
trained at each resolution is tested against the standard 10K and 16K resolution scans to analyze
performance degradation. The overall results from these experiments are listed in Table 3. We
analyze segmentation performance for background (BG) and each tooth class (T1–T7) and report
the Dice scores in Table 3. We measure per-class segmentation accuracy and report the results in
Table 2. The qualitative results of our experiments is shown in Figure 3 and Figure 4. We also
assess segmentation consistency across different test cases. Our findings highlight the trade-offs
between resolution and segmentation accuracy, providing insights into model robustness and
practical deployment considerations.



Figure 3: Qualitative results of predictions from the original models and their upsampled versions.
(Zoom in for better visibility)



Figure 4: Qualitative results of predictions from the original models and their upsampled versions
(continued). (Zoom in for better visibility)



Table 2: Per-class DSC score across different resolutions and their upsampled versions.

Resolution BG T1 T2 T3 T4 T5 T6 T7
16K 0.9646 0.9566 0.9457 0.9443 0.9402 0.9265 0.9163 0.8606
10K 0.9701 0.9605 0.9504 0.9500 0.9442 0.9267 0.9171 0.8435
8K 0.9728 0.9642 0.9527 0.9527 0.9440 0.9252 0.9232 0.8441

8K (to 16K) 0.9468 0.9181 0.9164 0.9068 0.8964 0.8929 0.8927 0.8389
8K (to 10K) 0.9569 0.9283 0.9256 0.9121 0.9070 0.9048 0.9013 0.8422

6K 0.9752 0.9686 0.9573 0.9564 0.9488 0.9250 0.9177 0.8533
6K (to 16K) 0.9405 0.9112 0.9075 0.8999 0.8873 0.8784 0.8777 0.8344
6K (to 10K) 0.9502 0.9209 0.9155 0.9044 0.8965 0.8885 0.8849 0.8373

4K 0.9786 0.8793 0.9430 0.9437 0.9738 0.9673 0.9566 0.9680
4K (to 10K) 0.8319 0.7536 0.6679 0.6626 0.6498 0.6426 0.6145 0.5569
4K (to 16K) 0.8208 0.7510 0.6647 0.6585 0.6481 0.6397 0.6116 0.5558

2K 0.9738 0.8760 0.9410 0.9347 0.9636 0.9495 0.9371 0.9504
2K (to 10K) 0.8213 0.7578 0.6905 0.6838 0.6546 0.6408 0.6303 0.5651
2K (to 16K) 0.8320 0.5697 0.6923 0.6435 0.6876 0.6571 0.6317 0.7586

Figure 5: The distribution of the labels across different classes. (Zoom in for better visibility)



Table 3: Tooth segmentation results using PointMLP with different resolutions

Input Size (#mesh cells) OA DSC SEN PPV Inference Time (ms)
16K 0.9476 0.9318 0.9451 0.9353 158.93
10K 0.9515 0.9328 0.9467 0.9377 248.78
8K 0.9532 0.9348 0.9495 0.9396 207.89

8K (upsample to 10K) 0.2454 0.9097 0.9172 0.9210 258.26
8K (upsample to 16K) 0.2454 0.9011 0.9061 0.9150 209.05

6K 0.9549 0.9377 0.9490 0.9442 163.45
6K (upsample to 10K) 0.2372 0.8997 0.9015 0.9166 298.59
6K (upsample to 16K) 0.2372 0.8921 0.8916 0.9115 190.06

4K 0.9642 0.9513 0.9552 0.9591 279.69
4K (upsample to 10K) 0.2575 0.6724 0.6836 0.7340 302.09
4K (upsample to 16K) 0.2575 0.6687 0.6788 0.7317 192.33

2K 0.9577 0.9408 0.9465 0.9491 102.22
2K (upsample to 10K) 0.2956 0.6840 0.6942 0.7400 233.36
2K (upsample to 16K) 0.2956 0.6805 0.6904 0.7376 413.72

Figure 6: A graphical visualization of per-class DSC score across different resolutions compared
to their upsampled cohorts. Each resolution and corresponding upsampled version is represented
by one of the four graphs and DSC scores are compared.



3. Discussion

There is a clear visual difference between the labels of the decimated intraoral scans and the
predicted labels from the model trained on that resolution as can be seen from Figures 3, 4. The
predicted labels appear to correct for errors present in the original decimated mesh labels at all
resolutions. These corrections result in cleaner models with well-defined labels that are more
accurately positioned than their decimated counterparts. We also observe that the performance of
the lower resolution model when upsampled to 10K and 16K show only slight differences in DSC
scores as shown in Fig. 6 and Table 3. Our experiments showed that the lower resolutions, such as
6K, can be still considered for edge devices as the predictions retain performance ∼90 even when
upsampled to 10K or 16K models.

4. Conclusion and Limitations

This study analyzed how intraoral scan resolution affects the performance of deep learning-based
tooth segmentation. The results indicate that while models trained on lower resolutions retain
reasonable segmentation accuracy, performance degradation becomes significant at resolutions
below 6K. Background gingiva segmentation remain stable across resolutions, but fine-grained
tooth boundary recognition deteriorates at lower resolutions. Certain tooth classes, particularly
premolars and canines, exhibit higher misclassification rates when trained on lower resolution
meshes.

We acknowledge that the experiments were limited to a single segmentation architecture,
PointMLP. For better generalization, more experiments need to be conducted. Our study focuses
on only a particular aspect, which is the trade-off between resolution and segmentation accuracy.
Although, the validity of these findings needs to be investigated in clinical settings, we were able
to provide a preliminary quantitative assessment of segmentation performance across different
intraoral scan resolutions.
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