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Evidence-Based Training and Adaptive Control: Exploring the 
Cognitive and Neural Processes and the Interface between the 

Pilot and Flight Control Systems (Work-in-Progress)  
 

ABSTRACT 
The safety of an airplane depends highly on the pilot’s skills, experience, workload, and 

mental states. For student pilots, evidence-based training strategies are ideal. The present study 
recorded Electroencephalography (EEG) of five pilots at various levels of certification as they 
completed a flight session containing one takeoff, missed approach and landing and two circuits 
each with an enroute, arrival, and instrument approach segment. Each pilot completed five 
sessions in an Advanced Aviation Training Device (AATD). Three segments were chosen from 
each circuit for initial analysis: takeoff, enroute 1, and approach 1. EEG brainwaves observed 
across multiple frequency bands were found to have changed over the segments. In particular, we 
found that the theta band, often an indicator of drowsiness, decreased for the majority of 
participants. We also computed the engagement index, which was generated as a composite of 
three EEG channels: alpha, delta, and theta. The engagement index is a measure of workload and 
mental activity, and it seemed to correlate with the participant’s training and flight experience.  

 
INTRODUCTION 

Aviation is a high-consequence industry where safety is paramount and error is costly, 
both in human and economic terms. Additionally, it is a dynamic industry where cockpits and 
flight control systems are developing rapidly in the digital age. Such factors serve to create a 
learning environment with increased mental pressure and workload on pilots as they develop 
their skill and adapt to new technologies and systems. According to Yongchao, Tao, et al., the 
workload and stress on aspiring pilots may impact learning and lead to other undesirable 
consequences like pilot errors that could lead to flight accidents [1]. Pilot error contributes to a 
higher number of crashes than other factors like weather and mechanical failure.  

 
The purpose of this study is to understand the cognitive and neural mechanism of pilots 

as they complete routine flight activities. It is a preliminary study that is part of a broader 
collaborative research effort that seeks to enhance the integration of pilots and flight control 
systems, improve flight education strategies, and facilitate designs of adaptive control for 
humans and machines. The present study has three objectives: First, to identify the mental and 
cognitive processes of pilots in each of the segments performed in a flight scenario. Second, to 
correlate EEG, demographic, and performance data. Finally, to identify any anomalies and look 
for correspondence across the data. 

 
Pilots were asked to complete five sessions to capture potential variations in performance 

and attributes from the perspective of their mental mechanisms. Each session contained seven 
segments including one takeoff, missed approach and landing and two circuits, each containing 
enroute, arrival and instrument approach segments. The instrument approach was the same for 
all circuits and sessions. During this initial analysis, we focused on three segments: takeoff, 
enroute 1 and approach 1.  

 



Electroencephalography (EEG) is a long-
developed tool used to understand human brain 
activity. Previous pilot-related studies mostly used 
four major brainwaves, namely delta, theta, alpha, 
and beta [2-4]. The alpha wave appears mostly 
when the person is relaxed. Regarding the beta 
wave, it has been long known that the low beta 
(13−20 Hz) appears together with alpha, whereas 
the high beta (20−50 Hz) appears when the person 
is undergoing intensive activation of the central 
nervous system or under tension [5]. Psychological 
parameters being studied include mental fatigue, 
mental workload, cognitive workload, vigilance, 
situation awareness, anxiety, stress, and emotion in real aircraft and flight simulators [1, 3, 6-16]. 
A few studies have used pilot performances to correlate and understand the psychological 
aspects of pilots [7, 10, 17, 18]. The present project seeks to extend this research by using high 
fidelity experiments to explore neural functions carried out in a realistic training environment 
and focusing on the physiological evolution related to student pilots’ training and education 
process. 
 
METHODOLOGY 
Participants and Procedures 

A total of five participants were recruited from a four-year undergraduate professional 
pilot degree program. Each participant completed five sessions. The EEG of Participant D failed 
to be recorded in one session. Therefore, a total of 24 sessions were analyzed. Participants A and 
B each held a commercial certificate with a multi-engine rating. Participants C and D were 
private pilots while participant E was a student pilot (Figure 1). All the participants except 
Participant E held an instrument rating. All participants had at least 25 hours experience with an 
Advanced Aviation Training Device (AATD). Participant E was the only participant with zero 
actual instrument conditions and less than 25 hours of simulated instrument conditions.  

 
Informed consent was obtained from each pilot before beginning the research while 

explaining the research objectives and procedures, in accordance with applicable Institutional 
Review Board (IRB) requirements. All data was maintained on encrypted devices and de-
identified with a discreet participant code to maintain confidentiality. 

 
Experimental Design and Materials 

Data collection methods included EEG signals, AATD flight data, observations, video 
recordings, surveys, and unstructured interviews. A pre-survey was given to the participants 
prior to the flight-simulation sessions. The pre-survey included 21 questions related to flight and 
training hours, certifications, AATD experience, learning beliefs, etc. Participants were asked to 
perform the designated circuit twice in each session, with the first terminating with a missed 
approach (Figure 2). The flight plan developed and used in this effort included: takeoff, enroute, 

 
Partcipant Pilot Certification Intrument 

Rating 

A Commercial 
Multi-Engine 

Yes 

B Commercial 
Mutli-Engine 

Yes 

C Private Yes 
D Private Yes 
E Student No 

 
 

Figure 1 



arrival, approach, missed approach, enroute-2, 
arrival-2, approach-2, and landing. The participants 
were also provided with charts for the instrument 
approach.  
 

EEG data was collected using a 14-channel 
headset (Emotiv Inc.). Figure 3 shows the electrode 
positions [19]. The electrodes had sensor pads pre-
soaked in saline. The sampling rate of the EEG 
signals was 128 Hz. The EEG signal was pre-filtered 
between 0.16−43 Hz. Analysis began with the 
synchronization of the flight data with the EEG data. 
The segments corresponding to takeoff, enroute 1, 
and approach 1 were used to develop the brain 
heatmaps in MATLAB. The topography heatmaps 
are a representation of the powers of the EEG signal 
in each of the four frequency bands: delta (0.25−4 
Hz), theta (4−8 Hz), alpha (8−13 Hz), and beta II 
(20−50 Hz). Note that we did not use beta I (13−20 
Hz) because it is believed to generally agree with the 
alpha band [5]. In each frequency band, the power 
was normalized by the entire-frequency power in 
0.1−50 Hz, according to a previous study [20]. 
Engagement index, EI, was computed as the beta-II power divided by the sum of alpha and theta 
powers. 

 
Flight data was obtained from the X-Plane flight simulator software on the AATD. The 

AATD had three high-definition televisions that provided approximately a 120º external 
environment view. A Diamond DA-20 aircraft model was used for all sessions. The flight 
parameters collected included: altitude, pitch rate, roll rate, yaw rate, the angle of attack, 
airspeed, vertical velocity, gravity load, density ratio, elevation, lift to drag ratio, latitude, and 
longitude. The visibility was set to three miles, winds 
calm, and a ceiling of 1000ft. MSL. Video recordings 
were made with a camera attached to the AATD to 
observe the behavioral elements of pilots, as well as their 
verbal communication. Participants were randomly asked 
about their experiences at the end of the sessions. 

 
This article is limited to the initial analysis of 

takeoff, enroute 1, and approach 1. In the flight data, 
takeoff was identified by the airplane position in terms of 
longitude. The second segment, enroute, started when the 
aircraft reached an altitude of 2500 MSL and an 
appropriate latitude. The approach segment was 
identified when the aircraft reached the Initial Approach 

 
Figure 3. Positions of 14 channels of EEG 
probes. 

Figure 2. Flight circuit used in each session 



Fix (IAF). The flight and EEG data were synchronized by correlating starting times of the 
respective data sets and the time stamps of the individual segments. 

 
RESULTS AND DISCUSSION  
EEG activity 

Figure 4 shows the relative power of all the electrodes in each frequency band obtained in 
the last (5th) flight session for individual participants. Warm colors represent high powers, and 
cold colors represent low powers. The first row shows the powers for takeoff; the second and 
third rows show powers for enroute and approach, respectively. 
 

In general, the delta band did not show consistent or meaningful changes (Fig. 4A) with 
the flight operation. This is not surprising because delta waves mostly appear during deep sleep. 
Similarly, a previous driving-simulation study also showed minimal changes with the delta [20]. 

 
Figure 4B shows the power of theta wave. Theta is the frequency range most closely 

associated with drowsiness (i.e., a sign of sleep onset) in adults [20]. The energy in theta 
decreased over the flight session, indicating that the participant became less drowsy as the flight 
continued. Such a state of decreased drowsiness is consistent with our expectation, given the 
nature of the flight segments, where the pilot tends to be less engaged during the enroute phase 
but highly engaged during the approach. Most participants had decreased signal power in the 
approach segment. Participants A, C, and D show continuously decreased theta activity over 
time. Participant B shows a relatively stable and elevated theta over time which may indicate a 
higher degree of 
skill or experience, 
even than 
participant A. 
Participant E 
showed very high 
theta power in 
enroute indicating a 
relatively high 
degree of 
drowsiness. It might 
be that, because 
Participant E did not 
hold an instrument 
rating, they were 
somewhat 
overwhelmed by the 
circuit and were 
more relaxed during 
the more familiar 
enroute phase. 
Conversely, during 
the approach phase, 

Figure 4. Normalized powers  in all EEG frequency bands obtained from one flight session for 
each participant.  



a very low theta power was observed, indicating relatively greater alertness than the other 
participants. These outcomes merit further investigation. 

 
Regarding the alpha wave, it has been hypothesized that decreased activity indicates 

more cortical neurons participating in transient task performance [21]. Here, the participants 
generally showed decreased alpha activity, especially during approach (Fig. 4C). Meanwhile, 
beta II is associated with increased alertness and arousal. Figure 4D shows the change of beta II 
for each participant in one representative flight session. Certain patterns are similar to the alpha 
wave, but there are also differences. For example, Participant A showed the highest alpha 
activity during takeoff but highest beta activity during the approach.  

 
For participants A, C, and D, the frontal lobe electrodes (AF3, AF4, F3, and F4), showed 

the highest activity at the beginning of the flight session (takeoff and enroute ). The frontal lobe 
has been shown to have connections with many important cognitive skills, including motor 
skills, problem-solving, and memory [22]. The symmetrical activation indicates equal use of the 
hemispheres. Decreased theta power in the frontal lobe indicates elevated alertness in the 
approach. However, we need to caution that the electrode position does not strictly correspond to 
brain areas. 
 
Pilot profiles and correlations to EEG 

More relevant to the tasks than the individual frequency power may be the engagement 
index, which has been highlighted in previous studies [23]. The engagement index is computed 
as 𝐸𝐼 = 𝑏𝑒𝑡𝑎	𝑝𝑜𝑤𝑒𝑟/(𝑎𝑙𝑝ℎ𝑎	𝑝𝑜𝑤𝑒𝑟	 + 	𝑡ℎ𝑒𝑡𝑎	𝑝𝑜𝑤𝑒𝑟), which is positively proportional to the 
beta and negatively proportional to the alpha and theta power. Figure 5 shows the EI’s for all 
participants and sessions 
over the three segments. 
Here the EI shown in the 
bar plot is the maximum 
across all electrodes for 
each scale topography. 
Although some 
participants and sessions 
showed unusually high 
EI’s during approach and 
enroute, in general, EIs 
appeared to be more 
strongly correlated with 
participants’ experience 
and skill rather than with 
particular flight 
segments.  

 
The bar plots 

show that participant D 
had the largest EI values, 
which were significantly Figure 5. Engagement Index (EI) for all the participants and sessions. 



higher than the EI values of all other participants (t-test, p < 0.01). In addition, the EI values 
varied greatly in some sessions for D, indicating that the participant was struggling at particular 
moments. For example, the enroute of the 5th session was unusually large. This finding agrees 
with participant D being the least experienced pilot with an instrument rating but does not 
account for the similarities between participants D and E. A more detailed analysis will be 
performed to examine the video recording, in search for corresponding flight behavior. 
Participant E, the student pilot, had EI values significantly higher than B and C; the values were 
not significantly different from A.  

 
Flight behaviors 

In general, participants with a Commercial Multi-Engine rating (A and B) appeared to 
behave differently in comparison to participants with less advanced ratings. From observational 
data, pilots A and B exhibited greater discipline and were more systematic in their activities 
compared to the other pilots. In contrast, participants C, D, and E appeared to become frustrated 
and confused as the sessions progressed. While it is not possible to draw firm conclusions 
without additional analysis, the observations suggest correlations between observed behavior and 
the high engagement index of participant A, the stable theta value of participant B, decrease theta 
values of participants A, C, and D.   
 
CONCLUSION 

The three objectives of the study were to identify the mental and cognitive processes of 
pilots in each of the segments performed in a given training situation, to correlate the EEG data 
with pilot's demographic and performance data, and to identify any anomalies and look for 
correspondence across the data.  

 
The objectives were partially achieved, and analysis will be continued to understand the 

cognitive and neural aspects of pilots in detail and to support the observations attained across the 
multiple frequency bands. Given that only three segments were analyzed, further implications are 
expected to be drawn by examining the remaining segments.   
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