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Evidence for the Effectiveness of a Grand Challenge-based  
Framework for Contextual Learning  

 
 

Student motivation – and associated educational outcomes – can be influenced by the degree to 
which course material connects to recognizable societal problems. The National Academy for 
Engineering has established the “Engineering Grand Challenges”, a set of 14 fundamental 
problems whose solutions will require integrated contributions from engineers, scientists, and 
policy-makers. The current work grafts the Engineering Grand Challenges (EGC) onto a 
pedagogical framework integrated into courses in several engineering disciplines, assessing 
whether this framework increased student motivation and, if so, what facets of learning benefit 
from this approach. 
 
The EGC framework, as implemented here, follows a series of six stages that progress from 
statement of the problem, through exercises that teach a foundational concept using an EGC 
example, to reflection on the role of engineering in addressing the problem. The framework was 
implemented in three diverse courses: a computational methods course taken by all first-year 
engineering students, an upper-level signal-processing elective in electrical engineering, and a 
design course for upper-level students in environmental engineering. Instructors for each of these 
courses implemented the EGC framework in a manner appropriate for their course. For example, 
students in the signal processing course investigated the EGC of “Reverse-Engineering the 
Brain”, which included a lecture/discussion led by a neuroscientist who uses signal processing, 
followed by a project assignment that applied spectral analysis and filter design to publicly 
available data from a brain-computer interface contest. For all courses, baseline data were 
collected from the same classes taught by the same instructors in the previous year. 
 
Results from the first year of implementation indicated significant benefits for the EGC 
framework, as well as differences in effectiveness across settings. Each student provided data 
that included self-reported ratings of ABET criteria and standard psychological measures of 
motivation, and those measures were included in structural equation models that predicted inter-
student differences in grades. The EGC framework was associated with significantly higher self-
reported class effectiveness, as indexed by ABET criteria. Furthermore, in advanced classes the 
EGC framework enhanced a key measure of student motivation (i.e., situational interest), which 
in turn was a positive predictor of ABET criteria. This effect was not present in the introductory 
class examined. No differences between EGC and baseline groups were found in other measures 
of self-reported motivation (e.g., perceived competence). Collectively, these results provide 
strong initial evidence that framing course activities around large-scale, societally relevant 
challenges can have salutary effects upon students’ motivation and skill development according 
to the ABET criteria. Ongoing work examines these effects across multiple semesters of the 
same courses, as well as across additional courses from throughout engineering curricula. 
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1. Introduction 
 
The National Academy of Engineering (NAE) Grand Challenges (GC) call engineers to work 
within interdisciplinary research teams to solve problems of central societal importance. Key 
topics include reverse-engineering the brain, making solar energy economical, providing access 
to clean water, and enhancing virtual reality.1 These challenges are complex, multiply 
determined, and fraught with social and personal complications. As such, solving them will 
require engineers who combine both technical training and other skills (e.g., ability to work in 
groups, communication, etc.).2 Such complementary skills are often difficult to develop in the 
course of traditional engineering education, which often presents technical problems in abstract 
and stylized form without connection to real-world applications. Such education works for many 
engineers, but it risks missing those students who could be engaged by the opportunity to address 
problems of fundamental import.  
 
Here, we describe a framework for integrating the NAE GC program into engineering education. 
We build upon prior examples of integration of real-world problems into engineering curricula: 
service learning (e.g., the EPICS program3), industry and non-profit internships, capstone design 
experiences, and cooperative learning internships. While such examples have been successful in 
many contexts, they are often seen as additions to curricula; that is, they are superimposed on a 
more traditional curriculum and courses. Our framework seeks to integrate theory and 
application so that real-world problem solving is embedded within courses to guide the learning 
of fundamental concepts and to increase student motivation. This framework holds promise for 
overcoming some recognized challenges of incorporating applications into engineering courses 
through psychological principles drawn from contextual learning theory. Its six stages 
progressively guide students from exploration of larger societal and technical contexts, through 
consideration of specific applications in engineering and related technical content, and back to 
the grand challenge and the potential role for engineering in improving our world. We describe 
how this framework was incorporated into several engineering courses taken by students in 
different majors and at different undergraduate levels, and we present assessment data from the 
first rounds of such courses that indicate the potential effectiveness of this framework for 
improving engineering education.  

 
2. Framework Description  

 
Our framework developed out of the recognition that integrating real-world problems into a 
curriculum can be extraordinarily difficult. To do so effectively introduces a tension between 
depth and breadth. Traditional approaches involve relatively narrow, discipline-specific 
problems, for example using auditory processing to motivate filter design (e.g., removing noise 
from a recording to improve the intelligibility of speech or the clarity of a musical recording). 
Such problems allow instructors to go into considerable depth within a single topic, but the broad 
implications of the approach may remain unappreciated by students. Conversely, using very 
broad, high-level problems to illustrate a concept can increase real-world relevance and spark 
students’ recognition of how that concept can be applied in other contexts. Yet, instructors may 
find it very daunting even to teach diverse and interdisciplinary material, much less to 
incorporate such material into a hands-on project for their students.  
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Our Engineering Grand Challenge-based framework (or, EGC framework) incorporates broad, 
multi-disciplinary problems from NAE GC into diverse courses within undergraduate 
engineering curricula. It seeks to develop a generalized method that is appropriate for 
engineering students at different educational levels and in different majors. It comprises six 
stages completed in a particular order. In its first stages, students move from a broad 
consideration of the overarching problem to a discipline-specific perspective (Stages 1-3). 
Students then learn specific technical skills or content and apply what they learn to a real-world 
problem inspired by one of the GCs (Stages 4-5). Upon completing their technical work, they 
reflect on the skills they have gained and how those skills could be relevant for other aspects of 
the GC (Stage 6). We describe each stage in more detail in the following paragraphs. 
 
Stage 1: Multi-Disciplinary Overview. Each GC project begins with an overview of one of the 
GC themes. Depending on the class needs and the availability of other resources, this overview 
could take different forms, such as a presentation from a technical expert in the field; a panel 
discussion among scientists, engineers, and policy-makers; general-interest reading assignments; 
an interactive on-line activity; or in-class discussions or debates about the topic. Regardless of 
the format, the key goals of this stage are to provide a general context in which the later 
discipline-specific skills can be grounded, to engage the students in thinking about the GC from 
perspectives both within engineering and across other disciplines, and to motivate the students’ 
curiosity through examples drawn from real-world practice.  
 
Stage 2: Definition/Problem Restatement. Students next independently evaluate the GC by 
reflecting on the multi-disciplinary overview and by re-defining the GC in their own words. This 
step encourages the students to think of themselves as active problem-solvers; i.e., they are not 
simply passive recipients of knowledge, but have the responsibility for seeking out skills that 
could help them solve this problem. They also consider the complexity of the GC to better 
understand what makes it a difficult but not intractable problem. This stage links the overarching 
GC to the discipline-specific projects they will complete thereafter (Stage 5: Application). While 
the exact instantiation of this stage varies across courses, it presents a good opportunity for 
students to develop communication skills (e.g., by writing a reflection paper) that are not 
typically expressed within engineering courses. Material generated in such assignments can 
establish a baseline for subsequent assessment activities (e.g., comparing descriptions of the GC 
from this stage to those generated at the end of the project).  
 
Stage 3: Relation of the Grand Challenge to Engineering. In the next stage, students evaluate 
the question: What makes this a challenge for engineering? This requires them to reflect on the 
core features of engineering problems (e.g., optimization) and how engineers approach complex 
problems. By considering the specifically engineering aspects of this problem, the students make 
a very complex problem seem more manageable. This stage can be completed via in-class 
discussions or active-learning exercises, a writing assignment (potentially combined with Stage 
2), or some other exercises as appropriate for the specific course.  
 
Stage 4: Content, Tools, and Techniques. Next, instructors present course-specific content; that 
is, the technical material that would be part of the engineering course, regardless of the EGC 
framework. The method of instruction is left to the instructor’s discretion – from a traditional 
lecture to in-class active learning. And, the instructor does not need to spend substantial time and 
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energy (in this stage) relating the material to the GC. In practice, our instructors have taught the 
technical content using their standard approaches, simply pointing out a few conceptual 
connections to the GC during the class session.  
 
Stage 5: Application of Course Content to the Challenge. Students then integrate the non-
technical framework from Stages 1-3 and the technical material from Stage 4 within a problem-
solving exercise. The exercises necessarily vary across courses, but they share common 
elements: hands-on involvement of the student (e.g., through a laboratory or in-class exercise), 
analysis of real-world data or simulation (e.g., electroencephalograms during a brain-computer 
interface), and reflection on ethical or practical issues raised by the data (e.g., whether the data 
indicate an acceptable level of performance, given cost constraints). Instructors are urged to 
connect their activities to local resources whenever possible (e.g., research laboratories or design 
firms). Successful applications will not only make the GC seem more tractable, but also reduce 
its scale to something that students can appreciate within a single exercise. 
 
Stage 6: Analysis and Reflection. The final stage requires students to revisit the GC in light of 
their new skills and exploration of data, simulations, or other activities. Students should reflect – 
either through in-class discussions or individual assignments – on how the skills they developed 
could potentially address the GC and on what other skills/tools they (or other engineers) would 
need to make substantive progress. They should also repeat the “define the challenge” exercise 
from Stage 2 to provide an assessment of how their thinking has changed over the course of the 
exercise. This reflection also provides an opportunity to consider how engineers could contribute 
to teams to address the challenge, potentially expanding their perspective beyond their own 
discipline/major.  

 
3. Framework Implementation  

 
The EGC framework has been piloted in three courses – some taught several times – in the 2012-
2013 and 2013-2014 academic years. These courses were at different levels (introductory 
required vs. advanced elective), were taught to students from different majors, and covered very 
different content. To give a sense of the breadth of coverage, we provide a brief overview of the 
implementation in the introductory course and then go into more depth about the details of 
implementation in an advanced elective course. 

 
3.1 Computational Methods in Engineering 

 
Computational Methods in Engineering (EGR 103L) is taken by all first-semester engineering 
students. It considers algorithms for the analysis of engineering problems and teaches 
computational methods (e.g., MATLAB) for implementing those algorithms. Thus, many of the 
GCs could be appropriate for this course. The GC theme Make Solar Energy Economical was 
chosen because numerous datasets exist that could be explored at an introductory level. Students 
initially summarized several non-engineering articles describing the challenge of solar energy, 
then spent one laboratory session in a non-technical discussion of how course content might be 
relevant for the GC. Note that other, earlier laboratory assignments taught data-management and 
analysis skills that were also indirectly relevant for the EGC project. That discussion fed into 
laboratory assignments in which they analyzed solar energy data from a collection site in North 
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Carolina . With that, they determined the necessary size of a modern solar panel to power a 
typical house’s energy needs and evaluated whether such a panel would be cost-effective. 
Because the students were just beginning their engineering curricula, such exercises were 
necessarily more simplistic than those in other courses. However, introducing students to the 
GCs in their first semester does provide a potential benefit of setting the stage for other courses 
using the EGC framework.  
  
3.2  Fundamentals of Digital Signal Processing 

 
Fundamentals of Digital Signal Processing (ECE 381) is an advanced (junior/senior-level) 
elective for students majoring in electrical and/or biomedical engineering. It is typically taught as 
a small lecture course (e.g., 20-30 students). It introduces the theory and applications of digital 
signal processing, including topics such as sampling and reconstruction, discrete-time transforms 
(z-transform, discrete-time Fourier transform, and discrete Fourier transform), and the analysis 
and design of FIR and IIR filters. An accompanying laboratory engages students in software- and 
hardware-based exercises that illustrate many of the signal processing concepts discussed in the 
lectures (e.g., designing a system for classifying speech on the basis of vowel sounds). Because 
this course already has a structure in place for connecting lecture and laboratory material – and 
provides some flexibility in the examples that can be used – it was natural to incorporate the 
EGC framework.  
 
In several semesters, a major component of the course has been a module based on the Reverse-
engineer the brain GC. We chose this theme for two primary reasons. First, many of our students 
have interest in medical applications, generally, and in neuroscience, specifically. Second, there 
are many local experts within our academic community who conduct research at the intersection 
of engineering and neuroscience or who use signal-processing algorithms in the course of their 
research. We chose as our specific example that of “brain-computer interfaces” (BCIs), which 
often seek to use data collected from the human brain in the real-time control of some device or 
interface – of which perhaps the most visible and difficult challenge is to extract brain signals 
that allow paralyzed individuals to communicate verbally. We implemented the stages of the 
EGC framework as follows: 
 
Stage 1 (Overview). Students were initially assigned three sorts of background material: (1) web 
and print material to familiarize them with the NAE Grand Challenges, generally1, and the 
Reverse-engineer the brain challenge, specifically4, (2) background readings and videos on 
brain-computer interfaces5,6, and (3) the website of the guest expert for the module (Dr. Greg 
Appelbaum, a neuroscientist from the Duke Institute for Brain Sciences). We provided a set of 
relatively short and accessible articles/videos, recognizing that many of our students do not have 
substantial experience with material outside of their major. Students prepared three questions for 
Dr. Appelbaum, who gave a guest lecture on “Reverse Engineering the Brain: Primer for EEG 
and BCI approaches.” This lecture provided an introduction to electroencephalography (EEG), 
including the hardware used for data collection, the algorithms used for data analysis, the uses of 
EEG data in neuroscience, and the applications of EEG for BCI. Because students were prepared 
for the lecture with three questions, they were able to readily and confidently contribute to a 
question and answer session.  
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Stage 2 (Restatement) and Stage 3 (Relation to Engineering). For the next stage, students read 
two articles on BCI from an engineering perspective.7,8 Then, students restated the Grand 
Challenge of Reverse-engineer the brain in their own words. To add interest to this exercise, we 
framed this exercise as a memo to the Board of Directors of a company interested in BCI 
applications; the students described, from a signal processing perspective, one possible 
application of BCI and the opportunities and challenges therein. This framing approach was 
well-received by the students, in part because it forced them to step away from a purely 
academic approach to BCI and to consider real-world applications. 
 
Stage 4 (Content, Tools, and Techniques). Supporting technical content was integrated 
throughout the semester. Most of the skills students needed to understand the signal processing 
within BCI applications were presented in lectures, homework, and laboratory assignments. To 
foreshadow the application (Stage 5) module – and to motivate students with an opportunity to 
apply what they were learning – some of the examples chosen throughout the semester were 
directly linked to EEG (e.g., a notch filter could be used to remove 60 Hz power-line noise from 
an EEG signal).  
 
Stage 5 (Application). We provided students with publicly available EEG data collected at the 
Wadsworth Center at the New York State Department of Health as part of a BCI Competition.9 
The data were collected from a “virtual cursor” application, in which healthy participants 
unconsciously modulated naturally occurring brain waves to move a cursor to a target location 
on the screen; though simplified for this competition, this corresponds to one of the major 
approaches for BCI in paralyzed individuals. Students received a set of EEG training data (i.e., 
with known target locations) that they could use in developing their own algorithms. To do so 
effectively, they had to identify features of the data (e.g., energy in a frequency band associated 
with meaningful brain responses) that could discriminate target locations and then apply 
concepts learned in class (e.g., the Fourier Transform) to extract those features. They iteratively 
refined their algorithms on that training data and then generated predictions for a separate set of 
testing data (i.e., with unknown target locations) as part of a class contest. 
 
Stage 6 (Analysis and Reflection). After the completion of the exercise, students reflected on the 
EGC module in a class discussion. This provided an opportunity for students to discuss their 
individualized progress (e.g., the arguments they raised in their Stage 3 memo, the choices they 
made in developing their Stage 5 algorithm). This generated a wide-ranging discussion that 
connected in-class activities to larger issues. In addition, several students expressed interest in 
pursuing BCI-related research in some form, through connections with Dr. Appelbaum or other 
researchers working in the general area.  

 
4. Impact on Student Motivation and Learning 

 
We have evaluated the impact of the EGC framework in the courses taught during the 2012-2013 
academic year. Our overarching hypothesis is that exposure to real-world applications and 
exercises that encourage active problem solving will increase both student motivation and 
pedagogical effectiveness.10-13 This idea – that learning is most effective when students can carry 
out activities and solve problems in ways that reflect the real-world nature of such tasks14 – is P
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based on theory and research on contextual learning in cognitive psychology and neuroscience.14-

17  
 
4.1. Assessment Strategy 
 
We adopted the following assessment strategy:  
 
Student Motivation. To examine how the EGC framework influences student motivation and 
subsequent academic achievement, we assess students’ perceived competence in and 
interest/value for engineering. Perceived competence was measured using the 5-item self-
efficacy scale from the Patterns of Adaptive Learning Survey (PALS).18 A sample item includes 
‘I’m certain I can master the skills taught in my engineering courses.’ Personal interest was 
assessed using an 8-item scale developed by Linnenbrink-Garcia and colleagues.19 Sample items 
include ‘Engineering is exciting to me’ (enjoyment) and ‘Engineering is practical for me to 
know’ (value). Finally, situational interest was assessed with three subscales of four items each 
using a scale developed by Linnenbrink-Garcia and colleagues: catch (‘The professor does things 
that grab my attention’), hold-feeling (‘What we are learning in this class is fascinating to me’), 
and hold-value (‘What we are learning in this class can be applied to real life’).19 All scales were 
highly reliable, with cronbach’s alphas above 0.80.  
Student Learning. To investigate effects upon student understanding of course material, we 
plan to take advantage of a comprehensive assessment approach implemented throughout the 
engineering curricula at Duke University. In Fall 2007, learning objectives and measurable 
outcomes were defined for all engineering courses; these allow quantification of student 
performance in terms of their proficiency on all assignments, not just in terms of final course 
grades. Moreover, because performance has been calculated for a subset of all students in every 
course since 2007, we have a meaningful baseline for comparing results in the EGC courses. 
These data provide an opportunity for future analyses.  
Program Outcomes. We also predict that use of the EGC framework will have salutary 
consequences on non-technical areas of personal development that are now seen as important for 
training well-rounded engineers. For example, embedding technical material in the EGC 
framework may increase students’ awareness of the global and societal implications of 
engineering, understanding of contemporary issues, and the importance of life-long learning; 
these correspond to ABET criteria h, i, and j. In end-of-semester surveys, we ask students to rate 
the degree to which the course increased their ability to achieve the ABET a‐k objectives, and 
then multiple regression analysis evaluates whether there are improvements in selected criteria. 
We have used a similar approach in prior research evaluating the redesign of an introductory 
Electrical and Computer Engineering course.20 In future analyses, we will be able to compare 
student responses for the EGC courses to baseline data from more than 6 years of student 
surveys. 
 
Baseline data. In addition to the historical baseline data described above, we collected survey 
measures from 387 students enrolled in engineering courses (including two of our EGC courses) 
during the 2011-2012 academic year. We used hierarchical multiple regression analysis to 
examine motivational variables (perceived competence, personal interest, situational interest, and 
epistemic beliefs) as predictors of learning outcomes, after controlling for other factors suspected 
to influence learning outcomes (e.g., prior ability and gender). The results were consistent with 

P
age 24.552.8



other published studies: Perceived competence was positively associated with grades and 
achievement of course learning objectives; personal interest was positively associated with 
course learning objectives and ABET outcomes; situational interest (catch, hold-feeling, and 
hold-value) was positively related to grades, ABET outcomes, and learning objectives. Taken 
together, these findings highlight the importance of supporting motivational beliefs to support 
learning and engagement in engineering classes. 
 
4.2. Results and Discussion 
 
We used structural equation modeling to understand how the EGC framework supported two 
factors (personal interest in the overall course material and situational interest in the specific 
EGC content) to predict ABET criteria and course grades. Note that because initial testing did 
not find differential effects on the different ABET criteria, we collapsed across them in our 
modeling. Essentially, this approach posits that a manipulation like the EGC framework would 
have indirect effects on desired outcome variables (ABET criteria and grades) through its effects 
on student motivation. As a treatment variable, we compared data from the EGC courses to data 
from the baseline period described in Section 4.1. And, we measured personal interest, both at 
the outset and end of the course, as a way of partially controlling for overall differences in 
student interest and thus modeling changes in personal interest during the course.  
 
Regarding student motivation, we found distinct results for students in introductory and 
advanced courses. For students in introductory courses, we found no significant effects of the 
EGC framework on psychological measures of motivation. Instead, the students’ relative 
personal interest in engineering at the beginning of the course as well as their situational interest 
(interest in material taught in the course) were both significant predictors of their personal 
interest later in the course, and that second measure of personal interest was itself a significant 
predictor of grades and ABET criteria. 
 
But, for students in advanced courses, our structural equation modeling revealed several striking 
effects. The EGC framework was associated with significant increases in situational interest (but 
had no significant direct effects on personal interest). The pathways linking situational interest 
to ABET scores and grades were not entirely stable, given our smaller sample of advanced 
students, but there was some evidence that higher situational interest was associated with small 
changes in personal interest over time and higher ABET scores.  
 
These results provide initial evidence that our EGC framework improves student-reports of 
ABET criteria through its effects on student motivation. A strength of our assessment approach 
is the inclusion of well-controlled baseline data about the effects of student motivation on those 
same outcomes; those baseline data were drawn from similar courses, instructors, and students, 
strengthening the conclusions we can draw from our analyses. Our conclusions must be 
tempered, however, by our failure to identify a significant overall increase in student motivation 
based on the EGC framework. As alluded to previously, the most parsimonious explanation for 
our results is that the EGC framework (as implemented here) increases the motivation for a 
subset of students, but has little effect on motivation for other students. Examination of data from 
the current year will increase our sample size, potentially revealing effects missed in the first 
year’s data. Our ongoing work investigates whether we can identify the specific types of students 
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(e.g., based on personality variables) who would most benefit from the EGC framework. Future 
work will extend these analyses to consider the effects of this intervention on student learning 
outcomes. 
 
Based on our first experiences with the EGC framework, we have made some structural changes 
to how we are implementing it in courses. Our analyses (and informal feedback from students) 
strongly suggest that starting EGC projects earlier in the semester would increase its impact for 
students; e.g., by encouraging them to think about real-world applications for other course 
material, or by providing them with a broader set of tools for analyzing data. Beginning in Fall 
2013, we revised our courses so that references to the GCs are embedded throughout the 
semester, along the lines of the example in Section 4.2.  
 
5. Conclusions  

 
We have now implemented the EGC framework in several engineering courses targeted at 
different student levels and majors. Data collected in advance of the EGC intervention provide a 
reliable baseline for comparison to subsequent results. We used structural equation modeling to 
evaluate whether the EGC framework influenced desired outcomes through effects on student 
motivation; we found such a result for upper-level courses, but not for lower-level courses. We 
interpret our results to indicate that the EGC framework increases motivation for a subset of 
engineering students, and we are now exploring ways of engaging a larger set of students and of 
identifying those students who would be most likely to benefit from this framework.  
 
Future plans include the implementation of the framework in two additional courses in the 
Spring 2014 semester (in Civil and Environmental Engineering), one a required upper-level 
course, the other an interdisciplinary senior design course. The framework will also continue to 
be implemented in Computational Methods in Engineering and Fundamentals of Digital Signal 
Processing again in the Fall 2014 semester, with additional themes and modifications in 
implementation based on our findings from earlier offerings.  
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