
AC 2008-2938: EXPERIENCE OF TEACHING EMBEDDED SYSTEM DESIGN

Han-Way Huang, Minnesota State University-Mankato

© American Society for Engineering Education, 2008

P
age 13.588.1

 1

Experience of Teaching Embedded System Design

P
age 13.588.2

 2

Abstract

This paper reports our experience of teaching embedded system design. Embedded

system design is the second microcontroller course in our microcontroller course

sequence. In the first microcontroller course, we taught assembly language programming

and basic microcontroller interface concepts. In the embedded system design course, the

focus was on effective system design and development.

The course started with the definition and features of embedded systems and then moved

on to system development methodology. C language was chosen as the language for

programming embedded applications. Top-down design and hierarchical refinement were

taught as the system development methodology. Students learned to think in blocks rather

than in a single C language statement.

Systematic software and hardware debugging were taught. With a well-understood

algorithm, students would know what the program execution result should be at certain

point of their programs. This helped students to pinpoint the software bugs. For the

hardware bugs, the students were taught to first make sure the circuit connection and the

expected signal waveform during the program execution process. From there, students

learn to locate the source of errors.

Programming style is another area that deserves a lot of attention. By following certain

guidelines, many syntax errors can be avoided while at the same time programs become

more readable and extensible. Students were taught to write reusable code. They were

taught to convert common operations into functions and group them into files so that they

could be included in other projects and be reused.

The choice of microcontroller to teach in an embedded system course is also important.

There are several microcontroller families with good development tools and demo boards

support. We have taught the Freescale HCS12, Microchip PIC18, and Silicon Laboratory

C8051 in the embedded system class in the last few years. We felt that they are all very

suitable for such an endeavor. All of these three families of microcontrollers have

inexpensive software development tools and feature-rich demo boards for lab use. We

have taught most of the peripheral functions available in the microcontroller including

I/O ports, timers, compare/capture/PWM, UART, SPI, I
2
C, A/D, D/A, CAN, and on-chip

flash memory programming. Interrupts have been used extensively to allow multiple

operations to be overlapped.

Introduction

In our first microcontroller course, we taught students assembly language programming

and basic microcontroller interfacing concepts. Learning assembly language

programming gave students an intimate feeling about how microcontroller hardware

functions. On the other hand, they discovered that assembly language was not a

productive language. In the embedded system design course, C language is chosen as the

programming language. C language enables us to cover topics in a pace much faster than

the assembly language. Our goal is to teach students to become an effective embedded

system developer. The following topics became the focus of this course:

P
age 13.588.3

 3

� Programming style

� System development methodology

� Debugging skills

� Software reuse

Programming Style

Programming style refers to a set of rules or guidelines used when writing the source

code for a computer program. Many people believe that following a particular

programming style will help programmers quickly read and understand source code and

avoid introducing faults. However, students coming to the embedded system class seem

to be ignorant of this issue. Therefore, we put out a set of guidelines for students to

follow:

� Program header: Add a block of comments before the program. This block of

comments indicates the author, the date of creation, and the purpose of the

program.

� Function comment: Add a block of comments before the function declaration

including the operations performed by the function, parameters, the caller of the

function, and side effect.

� Naming of variables, constants, and functions: A name should spell out the

purpose or function of the variable, constant, and function. We also recommended

students to capitalize the first letter of the word when a name consists of several

words. For example, the function name GetsUart indicates that the purpose of this

function is to read a string from the UART port.

� Code appearance: Students were told to pay attention to program indentation,

vertical alignment, and spacing. Proper indentation makes the logical relationship

between statements stand out. This is especially important when there are several

layers of if-else-if. Align similar elements vertically in a table allows the user to

quickly discover whether there is any missing element. Proper spacing makes the

program easier to read.

� Use program loop whenever the same operation need to be performed more than

once. Using program loops may shorten the program and also makes the program

modification easier.

� Enter matching parentheses before entering statements to avoid syntax errors.

Mismatching of parenthesis could also totally change the program logic.

Software Development Methodology
In order to be productive, students need to learn a good system development

methodology. We taught students to use the “top down design with hierarchical

refinement” approach to deal with difficult problems. This approach was considered to be

a very efficient, if not the best, system development methodology. Several examples were

used to demonstrate this methodology. One of the examples that we used is “generation

of a three-tone siren with frequencies equal 250 Hz, 500 Hz, and 1 kHz, and each tone

lasts for half of a second”.

P
age 13.588.4

 4

The top-down design with hierarchical refinement approach will go through this problem

several iterations:

The first iteration may go like this:

Repeat

1. Generate the 250-Hz tone for half a second.

2. Generate the 500-Hz tone for half a second.

3. Generate the 1-kHz tone for half a second.

Forever

The second iteration deals with the generation of each tone. For example, the 250-Hz

tone can be generated by:

Repeat

1. Pull the selected output pin to high.

2. Wait for 2 ms.

3. Pull the same pin to low.

4. Wait for 2 ms.

for 125 times

In the third iteration, the only issue that needs to be dealt with is how to generate 2-ms, 1-

ms, and 500-µs time delays. A straightforward solution is to use one of the timer

functions to create a time delay that is a multiple of 500 µs. By setting the required

multiples, the desired delays are created.

After iteration 3, all the program details have been worked out and hence the algorithm

can be converted into C program.

Throughout the whole course, students were reminded to practice this methodology in lab

assignments.

Debugging Skills

Almost all the program assignments in this course involved both hardware and software.

When an algorithm is first converted into a program, syntax errors may occur. Many

syntax errors are not difficult to fix. However, there are some syntax errors that are not

obvious for inexperienced students to figure out. A short list is as follows:

� Calling a predefined function but misspelling the case of one or a few letters of

the function name.

� Calling functions that are in a different file but the file was not included in the

same project

� Calling functions that are in a different file but the header file that contains the

function prototypes is not included in the same program

� Mixing variable declarations with the executable statements

After all syntax errors have been removed, the project can be built successfully and

downloaded into the target hardware or demo board for execution.

P
age 13.588.5

 5

If the program did not work, the first thing to do is locating the source of the problem:

hardware or software or both.

In our lab environment, students used integrated development environment (IDE) to enter

and debug their programs and used debug adapter to download program onto the demo

boards for execution. The IDE contains a text editor, assembler, linker, compiler,

simulator, device drivers, and project manager in one package and allows the user to stay

in the same environment when performing different tasks. The IDE interacts with the

debug adapter to perform real-time debug activities such as monitoring the contents of

memory locations and registers, stepping the program, setting breakpoints, displaying the

contents of memory locations and registers at the breakpoint. In most of the assignments,

students were required to wire peripheral chips and/or other I/O devices such as motors,

seven-segment displays, keypad, and so on. The most common hardware errors that

students made include missing power, missing ground, loose wires, and wrong signal

connection. Occasionally, problems were caused by bad demo boards, bad I/O devices,

and so on. Students were told to check power and ground connection before checking

other wiring errors. If signals were wired correctly and the program still didn’t work as

expected, then check the program.

There could be any kind of software errors. We suggested students to read their program

first to find out obvious errors such as wrong expression, incorrect configuration in

peripheral modules, and so on.

We have taught students how to identify the following software errors:

• Mismatch of data types. Data type mismatch has often been ignored by students.

For example, assigning an expression that contains character typed source

variables to a destination variable of integer type may generate correct result at

sometime but incorrect result at other time. This type of error can be fixed by

type-casting the source variables to the same type of the destination variable.

• Getting stuck at some point of the program. Embedded software often contains

statements that wait for a flag to be set (or cleared). If the flag never gets set (or

cleared), then the program gets stuck. This type of errors can be discovered by

setting a breakpoint after the statement that waits for the flag to be set (or cleared).

• A finite program loop became an infinite loop. There could be many reasons for

this to happen. This type of errors can be identified by using breakpoints. Once

this error is identified, the exact cause is not hard to discover.

• Negligence to the precedence of operators. If the programmer did not pay

attention to the precedence of operators, the computation result could be very

wrong. We taught students to use parenthesis whenever they are not sure about

the precedence of operators.

• Incorrect program algorithm. After making sure the previous errors did not exist

but the program still did not run correctly, then the most likely cause would be the

algorithm. Students were told to reevaluate their algorithm to fix errors.

P
age 13.588.6

 6

Sometimes the circuit wiring appeared to be correct and program also looked correct but

the result was wrong. In this situation, we suggested students to change demo boards.

Sometimes this approach did solve the problem. This approach made sense because after

a period of use, the I/O pin may be damaged due to inappropriate handling of the demo

board. The cultivation of debug skills takes time, experience, and patience. We have

encountered a case in which students were assigned to control the DC motor speed using

one of the timer functions. One student could not get the motor to rotate no matter what

he tried. It turned out that the power supply in the demo board did not drive the DC motor

adequately. After a separate power supply was added, the motor started to run correctly.

Software Reuse

After programming the microcontroller for sometime, the programmer may discover that

there are common operations associated with each peripheral module. These common

operations can be converted into functions and may be called by many applications that

involved in the associated peripheral modules. The following operations are the most

common ones:

• Output a single character via the peripheral function

• Output a string via the peripheral function

• Read a single character from the peripheral function

• Read a string from the peripheral function

Some of the functions can be parameterized and become more useful. For example, the

user may write a function to create a constant time delay. The created function would be

more useful if it is modified to generate a time delay that is a multiple of certain base

length such as 1 ms, 10 ms, etc. The caller of the time delay function can generate a wide

variety of time delays by passing a different multiple to the function.

As applications become more and more complicated, more and more common operations

can be identified. By making these operations into functions, they can be reused in many

other applications. To promote the idea of software reuse, conscious effort is needed right

from the beginning of the course. Students need to be reminded from time to time until

the idea gets into their instincts. Students were also encouraged to use the library

functions provided by the C compiler.

Conclusion

We are teaching embedded system as a second microcontroller course in both

engineering and technology programs. The main focus is on effective system

development. We thought students can write readable, maintainable programs and avoid

many syntax errors by following a good programming style. We taught students to follow

the “top down design with hierarchical refinement” approach to make complicate

problems more manageable. We also reminded students to write reusable code by

extracting common operations into functions so that they could be reused in other

applications. Hardware and software debugging is an important part of the system

development cycle. Students learned debugging skills by working on a wide range of lab

assignments. The key in debugging is to identify the cause of the error. Some errors are P
age 13.588.7

 7

easy to identify whereas others are not. It takes patience and experience to build up the

debugging skill.

To teach embedded system design, we need to choose a microcontroller as a target. The

main consideration is whether the chosen microcontroller has appropriate software tools,

debug adaptors, and demo boards. We have tried the Freescale HCS12, the Microchip

PIC18, and the Silabs C8051F040 microcontrollers in this course over the years. These

three companies provide free integrated development environment (IDE) to be used by

their customers. Freeware software C compilers are also available for these three

microcontrollers. These three microcontrollers also have good demo boards to be used in

learning their products. The information of the PIC18 and C8051 demo boards that we

used can be found at www.evb.com.tw whereas the HCS12 demo board information can

be found in www.evbplus.com. Good textbooks will make the teaching of embedded

system design course a breeze. There are several good textbooks available for the HCS12

[2,4] and the PIC18 [1,3]. Currently there is no textbook for the SiLabs C8051F040, we

prepared a set of lecture notes for it [5].

References

1. “The PIC18 Microcontroller—An Introduction”, Han-Way Huang, Delmar

Cengage, Clifton Park, New York, 2004.

2. “The HCS12/9S12—An Introduction”, Han-Way Huang, Delmar Cengage,

Clifton Park, New York, 2005.

3. “Embedded Design with the PIC18F452 Microcontroller”, J. Peatman, Prentice

Hall, Upper Saddle River, New Jersey, 2003.

4. “Embedded Systems: Design and Applications with the 68HC12 and HCS12”,

Steven F Barrett, Daniel J Pack, Prentice Hall, Upper Saddle River, New Jersey,

2004.

5. “C8051 Lecture Notes”, prepared by the author.

P
age 13.588.8

