
Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Session 3661

Experiences Using Student Project to Create University Business

Applications

Harry Koehnemann and Barbara D. Gannod

Arizona State University East

Abstract

Engineers (both hardware and software) are continually developing and testing processes

to create systems “better, faster, and cheaper.” A variety of software processes have been

developed by the software enginnering community toward this end. Among these

processes are eXtreme Programming (XP), Crystal, Feature Driven Development, and the

Rational Unified Process (RUP).
1
 To be attractive to potential employers, students in

computing fields that intend to become software developers should be exposed to and,

ideally, have practical experience with modern software processes. This paper describes

experiences in a software capstone course which teaches students the activities associated

with two popular industry processes: XP and RUP. In particular, the course uses student

projects to create applications used within the university. The unique aspect of the course

that differentiates it from other software engineering capstone experiences is the

emphasis on agile processes (primarily XP) and the use of software development tools

(e.g. configuration management, automated testing, modeling) commonly used in

industry.

Four university projects have been created to date. The first is a web application that

supports an NSF funded curriculum development project. The second is a channel

supported by the uPortal portal system that automates the department’s graduate

admissions process and is deployed on the university’s IT portal system. The third is an

application that integrates a Course Management System, Blackboard, with an outcomes

based assessment tool, True Outcomes, to automate the importing of student information to

better measure outcomes for ABET accreditation. The fourth project is a linguistics

analysis tool that finds word usage patterns in media articles.

1 Introduction

One of the program characteristics that ABET expects in engineering and technology

programs that it accredits is the inclusion of some type of experience that allows students

to integrate diverse elements of their education.
2
 Most programs implement this

integrating experience as a capstone course (or course sequence). A capstone experience

is typically a culminating experience in the specific major that allows students to

creatively apply principles and methods acquired throughout their education to a

significant project having a professional focus. Ideally, the capstone experience should

P
age 9.597.1

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

be as close an approximation to the “real world” as is possible in an academic

environment.

This paper describes experiences in a “Software Factory” class that is the culminating

experience for majors in Computing Studies at Arizona State University (ASU) East. In

order to provide experiences that prepare students for careers as software engineers, we

believe the following aspects of the course are vital:

‚ Students should work on real projects with real customers.

‚ Students should follow real processes to develop and/or maintain software

artifacts.

Traditional academic software projects, even team projects, often do not provide a

realistic software development experience. Typically, their results are not exercised by

real customers, and the resulting code is never enhanced or augmented to meet new and

changing requirements. Students therefore do not experience common development

issues such as the consequences of poor design decisions, poor quality procedures, bad

requirements management, and mismanaged customer expectations.

Further complicating the problem is the fact that most computing curriculums have not

kept pace with software practices. Most Software Engineering curriculums teach high-

level concepts around a traditional waterfall lifecycle approach to development. New

methods and techniques emerging in industry, such as eXtreme Programming (XP) and

Rational Unified Process (RUP) and their guiding philosophies have not yet made the

transition into most curriculums.

To provide a more realistic experience, the “Software Factory” course (CET415), a

capstone course on applied software process, focuses on the use of projects with real

customers and the adherence to real software processes during the development of the

project. Customers have been taken from the university and local community, and the

course allows student to apply XP and RUP to develop and deploy their software

solutions. The innovative and unique aspect of the course is the use of agile software

processes rather than traditional software engineering methodologies.

The remainder of this paper is organized as follows. Section 2 gives a brief survey of

approaches to capstone courses and also provides background on the software processes

used by the “Software Factory” course described in this paper. Section 3 discusses the

objectives and course organization for the software capstone course. Section 4 describes

the projects and experiences of the capstone course, and Section 5 provides a discussion

of experiences and lessons learned through the offerings of the course. Section 6

concludes the paper.

2 Background

2.1 Capstone Experiences

Some flavor of capstone experience is found in most computing curriculums. Naturally,

the nature of the experiences varies widely. A comprehensive survey of capstone courses

P
age 9.597.2

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

is beyond the scope of this paper; however, a representative set of capstone course

descriptions is provided in this section.

In general, capstone projects may be “canned” projects invented by a course instructor or

they may be “real” projects with customers taken from the university or local community.

Additionally, projects may be carried out by a single student or by a team of students. In

a brief survey of capstone courses at many universities, we have found that using real

projects is commonplace. In general, courses emphasize (among other things)

requirements analysis and customer interaction, making real customers an important

component of the experience. The size of the development team has greater variance.

For example, Beasley suggests that a single student should carry out a capstone project.
3

However, it appears that a small development team is more common. Many courses

emphasize project management and teamwork, making teams a vital component of the

course. For example, a representative capstone course at Michigan State University

utilizes teams to develop software for customers from the local industry such as Motorola

and the Ford Motor Company.
4

Regardless of whether capstone projects were carried out by single students or teams, or

whether or not they are developed for real customers, a common thread is the predictive

nature of the development process for the projects. For example, various artifact such as

a software requirements specification document, a design document, a test plan, a

software release, and a user’s manual are given specific due dates. For an example, see

the capstone course offered at Southwestern University.
5
 This common organization

follows a very traditional (“waterfall”-like) approach to software development. In terms

of software processes, described in the next section, a one or two semester approximation

of a heavyweight process is used almost exclusively in software engineering capstone

courses.

2.2 Software Processes

Engineering disciplines recognize that in order to build quality products, quality

processes must be followed. This was the motivation for the Capability Maturity Model

(CMM) defined by the Software Engineering Institute (SEI).
6
 In general, a software

process includes both the methodologies for developing software and the plan for

software development. Software processes can be categorized as heavyweight or

lightweight processes.

Heavyweight processes and RUP

A heavy (or heavyweight) process is typically used to suggest a software process in which

a relatively large number of software artifacts are produced as a result of following a

rigid, elaborate, detailed planning process.
7
 Heavyweight processes also suggest a large

development team and a plan that attempts to predict the activities of the team over a

relatively long time span. These processes have historically used a “waterfall”, or

sequential, lifecycle.

P
age 9.597.3

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

The Rational Unified Process (RUP) is a well-known process among the formal,

traditional software community.
8
 It defines a large set of roles, activities, and artifacts to

be produced during the software development process. In practice, no group would

implement all of RUP’s activities and artifacts but would instead tailor RUP for their

particular needs by selecting appropriate roles, activities, and artifacts. RUP has some

guiding philosophies best described by its six Best Practices,
9
 several of which are

emphasized by the course described in this paper:

Develop Iteratively

Rational advocates that software should be developed iteratively instead of using a

traditional waterfall lifecycle. Developing iteratively reveals issues earlier, thus

reducing a project’s risk profile. This consequently increases confidence and

expectations in both the developers and customers.

Manage Requirements

Software projects commonly demand requirements to be gathered from several

analysts as well as from several sources including customers, end users, and domain

experts. Collecting, organizing, and prioritizing these requirements is a large task that

can determine the success of a software project.

Use Component-Based Architectures

 Software projects should be built using several new or existing well-defined modules,

called components. Well-designed component-based architectures are easy to

understand, they promote reuse, and can adapt to change.

Model Visually

RUP uses the Unified Modeling Language (UML)
10

 extensively to document require-

ments, analysis, architecture, design, and deployment decisions.

Verify Quality

 Testing for software quality is built into the process at each stage rather than being

viewed as an afterthought. Quality testing is performed by developers rather than by a

separate group after completion of the project.

Control Change

Software projects contain name artifacts, requirements documents, design document,

code, test plans, test cases, etc., all of which will evolve over the lifetime of the

project. Configuration management systems are used throughout the industry to

manage these changes and provide shared access to artifacts.

Lightweight (or agile) processes and XP

A lightweight (or agile) process is typically thought of as a compromise between two

extremes: no process at all, and a cumbersome, bureaucratic, heavy process.
11

 The

problems with following no process at all should be self-evident. Two of the significant

problems seen with following the heavy processes are: they resist change and they are

process oriented. The heavyweight processes produce a large number of documents and

make long-term predictions and plans. When things change, many documents and many

long-term plans must also change. Because this is difficult, the heavyweight processes

P
age 9.597.4

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

tend to resist change. In addition, the heavyweight processes focus on designing a

general process that will work well regardless of who uses the process. However, the

background and skills of each development team vary, making it difficult to define a

single, all-purpose process. The lightweight processes have attempted to meet both these

shortcomings. In particular, lightweight processes embrace the change that is inevitable

in software development and they are people-centered (rather than process-centered).

The eXtreme Programming (XP) process has emerged as the dominant name in the agile

process movement.
12

 XP (and agile processes in general) are unique in that, unlike other

software processes that emphasize non-coding activities, XP’s focus is the coding

activity. All other activities are structured to make that activity produce higher quality

and more productive results. Several of the XP best practices emphasized in the

“Software Factory” class are described below:

Continuous Integration

XP advocates integrating and building the system several times a day. As a result,

integration problems are caught early on, making the problems easier to locate and

resolve.

Planning Game

The planning game is XP’s project management activity. Developers meet with

customers to prioritize requirements, estimate resources, and produce an iteration

plan.

Simple Design

The system design should be as simple as possible so that it is easy to understand,

implement, and change.

Testing

Programmers as well as customers write test units. Software is tested incrementally

and frequently, and tests must be passed before development can continue.

Collective Code Ownership

Anyone on the development team can modify any part of the system at any time.

Thus, there are no delays in making changes while waiting for others to submit

important modifications.

Refactoring

Refactoring is rewriting code to remove duplication and to simplify the code. As

code is added incrementally, redundancies and complexities can result. When

changes occur and a broader understanding of the system is reached, code often needs

to be rewritten to simplify the implementation and improve the architecture.

XP is particularly well-suited for high-risk projects and relatively small development

teams (2-10 people). Since capstone projects typically involve small teams, XP is a

logical software process. In addition, XP advocates short iterations – two weeks. This

allows students to experience several iterations even in a single semester.

P
age 9.597.5

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

It should be noted that RUP can be thought of as a lightweight process. RUP is a tailor-

able software process, and Rational has predefined several road maps for development

domains like component development and e-business. In fact, one could tailor RUP to

the point that it describes one of the agile processes. However, doing so would remove

some foundational RUP philosophies where RUP and XP disagree. For example RUP is

not comfortable with the practices of Collective Ownership, Continuous Integration, and

most importantly producing software architecture through constant Refactoring.

3 CET 415 Course

The Division of Computing Studies (CST) at Arizona State University created the applied

software process course titled “Software Factory” (CET415) in the Fall of 2001. The

initial purpose was to provide a more practical perspective on software development than

the lifecycle approach taken in many traditional software engineering courses, including

the Software Engineering course within CST that is prerequisite to the “Software

Factory” course. The “Software Factory” course has students work in teams to solve

computing-related problems for real customers using tools and techniques advocated by

two software process used in industry, RUP and XP. That goal has also led to

applications being used to run business within the organization itself, both inside and

outside the department. This section discusses the motivation behind this course, the

structure and content of the courses, and results from teaching it for three semesters.

3.1 CET 415 Objectives

This section discusses CET 415’s objectives regarding the student’s experience with

managing requirements, communicating with developers and customers, releasing

versions of software, and performing project planning and management.

CET 415 uses projects from real customers. While using real customers is not in itself

innovative, it is a vital, mandatory component for an applied software process class.

Software development requires communication among many different stakeholders,

among them developers, customers, end users, project managers, and removing one of

those roles limits the experience. Customers for the class were taken both from inside

and outside the university. Some projects have carried over across semesters and one, the

Microelectronics Teaching Factory, has continued for three semesters.

CET 415 also uses tools found in industry. Software developed for use in any

organization must be treated like an asset to the organization. Software resulting from

student projects must therefore be developed to the degree possible as an asset developed

professionally. Configuration management and unit testing frameworks are widely used

across industry but are not used in most, if any, other academic projects. CET 415

students are required to maintain their system in a CVS repository and to create

automated tests using JUnit or similar framework (e.g. NUnit for the .Net languages).

Students also use Rational Rose to create diagrams and models of their systems and

manage those documents in CVS as well.

In contrast, projects that leave students to their own devices regarding tools provide an

extremely poor model for software practices. Quality software processes enforce

P
age 9.597.6

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

configuration, build, and release management. In other group projects the authors have

seen, students at best use a Yahoo Groups account to share source code and other artifacts

or, more commonly, simply email their code to each another. Without providing students

with techniques and infrastructural tools, we are breeding poor software practitioners.

Finally, CET 415 also requires artifacts and activities from both formal (RUP) and agile

(XP) industry processes to help students be as productive as possible in their 16-week

effort. While it is not possible to simulate a real RUP or even XP project in a semester

course, each team is required to produce essential artifacts and follow essential practices

from the respective processes. Both processes advocate iterative development so each

team must release software in three one-month increments. The teams must also perform

XP’s User Stories, Planning Game, and measure their team’s Velocity. Several teams

also perform and document Spike Solutions by storing the prototype code in CVS.

Regarding RUP, students are required to produce an Architecture Document, a Use Case

Diagram for their project, and a Use Case Realization for one scenario of their system.

Details and rationale behind these artifacts and activities are discussed below.

3.2 CET 415 Structure

The students in the class are partitioned into teams of three to five students. Teams must

be small enough so that each individual has sufficient responsibilities but large enough to

experience communication and coordination issues. Teams are required to produce three

iterations and deliver iteration status reports in class. Their first presentation occurs two

to three weeks into class to present the project’s goals and objectives and the team’s

iteration plan for the semester. This is followed by 3 more presentations roughly three to

four weeks apart for the iteration status updates.

One challenge is to get students information early so they can become productive enough

to produce something that executes by their first iteration, as advocated by incremental

methods like RUP and XP. The class begins the first week with a CVS assignment so all

teams have created a repository and all team members have checkout, modified, and

committed changes to it. The class then focuses on XP requirements and planning

practices – User Stories and Planning Game. The XP community has several workshop

exercises that are good in-class activities.
13,14

 This understanding is vital before releasing

them to talk to customers to gain and manage requirements. Other XP practices are

discussed in the class and used throughout the semester – Small Releases, Collective

Code Ownership, Unit tests, Continuous Integration, Refactoring, while others – Pair

Programming, Stand Up Meeting, On Site Customer – are problematic since students do

not work on these projects all the time and have schedule conflicts. Although, one team

did write all their code in pairs and were very positive about the practice.

RUP is introduced mid semester, around the time of the second iteration. RUP artifacts

students are required to produce and manage in CVS are a Use Case diagram (no Use

Case Specifications) and an Architecture Document containing a Deployment Diagram,

Component Instance Diagram for the executable components in the system, and

Realizations (one Class Diagrams plus interesting Sequence/Collaboration Diagrams) P
age 9.597.7

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

showing the objects they use to solve at least two design mechanisms within the system.

As an example, the most common mechanisms are the design solutions for distribution.

4 CET 415 Projects

This section discusses the projects created by students in CET 415 used within ASU.

Those discussed in this paper are listed in the table and detailed in the section below.

Project Date

Started

Customer Status

Microelectronics Teaching

Factory

8/02 College of Technology Deployed and in use

Graduate Admissions

System

8/03 Computer Electronics

Department

Completed, will

begin use in 1/04

True Outcomes/Blackboard

Integration

8/03 Computer Electronics

Department

In progress

Word Analysis in Print

Media

8/03 College of Business Deployed and in use

‚ Microelectronics Teaching Factory (MTF)

The MTF is an NSF-sponsored curriculum development effort in conjunction with

community college faculty. ASU is working with the local community college system to

provide access to a clean room. This grant is funding curriculum development for lab

exercises within the clean room to augment existing community college courses. Those

curriculum developers must collaborate on sharing documents and put those documents

through a workflow that follows a develop, review, put-into-production process. The

web-based system must archive each version of the curriculum document and make it

available via the web. The MTF group looked at existing document management systems

and, due to their cost, elected to try a CET 415 project to see if students could produce a

suitable system.

The project has continued for two separate semesters and one summer with an

independent study student. The first effort was only mildly successful, but the customer

became more involved in the second and the results were much better. The NSF grant

purchased a server that must be administered. New requirements are being added for

Spring 04 and will be supported by an independent study student.

‚ Graduate Admissions System

Our department’s current graduate admissions process is executed with paper forms

routed between committee members, chairs, and administrative assistants. The

recommendation process requires access to various web sites to view applicant

information, which are scanned electronically. To improve both the productivity and

visibility of bottlenecks in the process, this project created a uPortal
15

 channel to be

installed into the university-wide uPortal instance run by the IT organization. Channels

(i.e., portlet) are small portal applications that run inside the uPortal container. The

application manages student information (name, ID, program applying to, etc.),

committee recommendations and comments and routes the virtual document to the next

P
age 9.597.8

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

person in the workflow chain. It also provides links with automatic logins to the

appropriate applications for viewing applicant information.

The project was successfully completed in Fall 03 and will be used in Spring 04. To

support an enhancement and perform bug fixes during the Spring rollout, a student (the

same performing MTF enhancements above) will provide support. The IT organization

has also become less interested in hosting student projects on the university portal

instance, so we may need to modify the entire application to a servlet-based web

application to deploy on the department’s web server.

‚ True Outcomes/Blackboard Integration

Our College has adopted a product True Outcomes (TO) for helping with outcomes-based

assessment, while the IT department uses Blackboard (Bb) for course management.

Instructors, like the instructor for CET 415, use Bb for assignment posting, submissions,

and grades. However, this information must be reentered into TO to manage the

assessment process. This project takes a Bb course export, parses it, and then imports

assignments, grading criteria, and scored submission into TO for later retrieval with

outcomes-based assessment.

The project required True Outcomes to add an XML-based import utility and for their

team and ours to agree on a common XML format. This project was initiated in Fall 03

and is not yet complete, which is not surprising due to its scope. The exporting and

packaging of the Bb data is completed (hopefully) and the import into TO needs to be

implemented. The solution also has expectations on the Bb instructor to name

assignments consistently and place assignments and grading criteria in a specific Bb

location so the data can be automatically parsed.

‚ Linguistic Analysis Tool

This application supports a faculty member performing research in linguistic analysis by

observing words patters in media articles. The algorithm gathers words in thousands of

articles and watches for the trends of related words and measures influential words in

areas of interest. This application was the first and only CET 415 project used outside

the College and therefore the authors have little knowledge of its use. More information

can be obtained at the projects web site.
16

 The project completed successfully and is

deployed and in use.

All the projects above from a professional perspective would have been mildly

successful. They were completed, but with less functionality than anticipated. The

resulting architectures range from acceptable to poor complicating future enhancements.

The enhancement problems can be seen in the MTF project, as it was the only one to span

multiple semesters. Students in the second semester wanted to throw out the initial effort

and start from scratch. There is a large “not invented here” attitude among students

where they are less interested in modifying and enhancing someone else’s code.

P
age 9.597.9

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

5 Project Success and Issues

There are several ways to view success for these projects. From an academic perspective

the projects have been extremely successful as teaching tools for students. The course is

highly rated by students who like the use of practical techniques and tools and creating

programs used by real people. To measure the success of the projects themselves one

must consider the customer’s satisfaction and the resulting technical quality of the

software.

Customer satisfaction has been good at best. The projects have met the minimum

customer expectations. However, the students are not trained at managing customer

relationships nor are they experts at gathering requirements and understanding customer

needs. So, much of this problem is beyond the scope of the class. Another issue for

customers is there is not a continual development team working on their project as there

is 100% turnover ever 3 months on the teams and then downtime between semesters and

during the summer.

The technical quality of the software varies, but in general it is terrible. Students do not

make the connection between software as an asset from software thrown away after the

TA executes it once. Production software that will have a long life must be developed in

a quality manner. Viewing the code, it is obvious students take needless shortcuts to

simply save themselves time. The authors feel poor quality code is an epidemic problem

with the educational computing community and hurts the entire profession. Below is a list

of specific problems discovered in three semesters teaching CET 415:

‚ Limited customer relations skills

Engineering and Technology students are not trained nor conditioned to interact with

customers. In practice, a customer’s interface is a sales person or account manager, not a

programmer. So, it is not surprising customers will be less satisfied as the problems and

issues are not being “spun” appropriately for their digestion.

‚ Team turnover and work environment

Project success requires them to not loose key people and provide the team with a

productive work environment. Class projects turn their entire staff over every semester.

This problem is almost insurmountable to ensure any type of quality product. The

problems and issues of getting an entire new set of developers up to speed on a system,

teach them the necessary skills and tools, and then have them make any significant

enhancements in a 4 month time frame is the largest problem faced with the effort.

With respect to the work environment, there is none. Students work at independent times

and locations complicating communication. Work environment is an important factor in

productivity and the environment given students is near the bottom of the productivity

scale. One solution would be to reserve some lab for 4 hours and require students to

attend the “lab” and use that time to develop software in a more realistic environment.

‚ Project management

P
age 9.597.10

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

As with most projects, success is commonly dictated by how well the project is managed.

Ideally the course instructor would act as the project manager and be intimately involved

with each project. In practice, though, the instructor will not have time and therefore

serve more as an advisor or consultant. Students must therefore manage their own

projects. Using XP’s User Stories and Planning Game have been effective tools, but

weak project management is a reason for limited project success.

Another problem with project management is having teams understand what features to

develop in what order. Project management chooses feature based on customer value,

cost to implement, risk to implement, etc. Several projects did not complete important

features because they waited too long to being them, mainly because of risk. In both

cases the feature required the students to engage another organization to either deploy the

resulting application or to interface to their product. Those conversations must start in

the beginning of the semester not the end.

Another problem with students managing their own projects is not understanding when to

elevate an issue. Students need to understand the instructor also plays the role of their

manager. There are issues that are beyond their control that require the instructor to get

involved. However, some student view that as a weakness on their part that they cannot

get the project completed without help. When in reality, they need to raise an issue to

their “manager”.

‚ Student skill sets

Skills of students and consequently teams vary widely. Our department is new and has

only been teaching a software-based curriculum for three years. So we expect the student

skills to rise significantly as the department becomes more mature. However, a few bad

students can add significant errors to a system. XP’s pair programming or, at a

minimum, requiring all software to be peer reviewed can help solve this problem.

6 Conclusions

Students can provide an inexpensive labor source to create application to help run

academic business units. We have discussed some projects developed in the “Software

Factory” course in Computing Studies at Arizona State University East. The course

provides an outstanding academic opportunity for the students. Students learn more

when developing real applications used by real people and enjoy the experience. The

quality of the resulting products can vary dramatically, however. We cited several issues

that can lead to reduced quality including the student’s technical skills, their skills at

project management, their skills at software development methodology and process, and

finally the turnover of students every semester for long running projects.

The value to the academic unit can be directly attributed to the project management effort

for the project, either internally by the team or by the instructor. On poor teams, many of

the above issues can be mitigated by direct involvement of a qualified instructor.

Instructors with software project experience can mentor students on not only technical

aspects, but more importantly procedural issues like interacting with customers and end

users, performing builds and deploying versions of software, scheduling and planning,

P
age 9.597.11

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

etc. Therefore, more critical applications will need more time and involvement from an

experienced instructor.

Bibliography

1. Granville Miller, “Sizing Up Today’s Lightweight Software Processes” June 2001.

http://www.computer.org/itpro/homepage/May_Jun01/miller/

2. http://www.abet.org/criteria.html

3. R. Beasley, “Conducting a Successful Senior Capstone Course in Computing,” Consortium for

Computing Sciences in Colleges, 2003.

4. http://www.cse.msu.edu/~cse498/

5. http://www.cs.southwestern.edu/~owensb/SE/

6. C. Larman, “Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design

and the Unified Process, 2nd ed.,” Prentice Hall, Inc., 2002.

7. P. Kruchten, “The Rational Unified Process – An Introduction.” 2nd edition, Addison-Wesley, 2000.

8. “Rational Unified Process: Best Practices for Software Development Teams,” Rational Software

White Paper TP026B, 2001.

9. M. Paulk, et. al., “Capability Maturity Model for Software,” Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, PA, 1993.

10. G. Booch, I. Jacobson, and J. Rumbaugh, “The Unified Modeling Language Users Guide”, Addison

Wesley Publishing Co., 1998.

11. Fowler, M. “Put Your Process on a Diet,” Software Development, CMP Media, December, 2000.

12. Beck, K. “Extreme Programming Explained – Embrace Change, “ Addison-Wesley, 2000.

13. http://www.xp.be/xpgame/

14. http://csis.pace.edu/~bergin/xp/planninggame.html

15. http://mis105.mis.udel.edu/ja-sig/uportal/

16. http://www.crawdadtech.com

HARRY KOEHNEMANN

Harry Koehnemann is an Associate Professor in the Division of Computing Studies at Arizona State

University East. He completed his Ph.D. from Arizona State in 1994. His research interests include

distributed web-based software systems, software process, and network-enabled embedded devices. Please

see his home page for more information and his vita at http://latitude.east.asu.edu.

BARBARA D. GANNOD

Dr. Gannod is an Assistant Professor in the Division of Computing Studies at Arizona State University East.

She completed B.S. degrees in Mathematics and Computer Science and a Secondary Education degree at

Calvin College in 1992. She received her Ph.D. in Computer Science from Michigan State University in

1997. Her research interests include engineering education and high-performance computing.

P
age 9.597.12

