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Experimental Centric Pedagogy as Scaffolding for a Better Understanding of 

Calculus in the Mathematics Discipline

Abstract 

The field of calculus is critical to the success and advancement of many engineering and statistical 

systems. Calculus provides ways of analyzing transient quantities, including data collected from 

sensors, determining the area under a curve, fitting a line for predictive analytics, and price changes 

in the stock market. It is also core to the understanding of numerous probability distributions in 

statistics, hence, fundamental knowledge of this concept is crucial for a successful career in 

science, technology, engineering, and math (STEM). The proposed experiment will ease the 

complexities involved in the learning of calculus students by using experimental centric pedagogy 

(ECP), which entails providing simple yet relevant experiments that would boost the students’ 

interest in this field. The concepts of differentiation and integration would be practically 

demonstrated to students using Hooke’s law, velocity, acceleration with respect to time, and ruler 

experiment. The project would employ readily available utilities to demonstrate integration and 

differentiation to the students. These experiments will also enable the students to appreciate the 

relevance of these concepts in STEM fields. 

 

 

Introduction 

 

To prevent students from being required to review the same knowledge content on numerous 

topics, interdisciplinary education seeks to find knowledge content that has commonalities with 

two or more subjects. To avoid having to teach the other subjects again, it is possible to teach in 

that subject's program interdisciplinary knowledge with the dominant subject. For students, 

integrated instruction has several benefits. The lesson becomes more engaging, appealing to them, 

and not boring. It also inspires learners to think and produce in accordance with their preferred 

thinking processes. It dramatically reduces rote learning because students can rapidly use 

knowledge to solve an issue at hand while internalizing the minimal amount of essential and 

relevant information. Because they do not have to repeat the same material in several areas, 

integrated content also frees up students' time to study new information. This improves thinking 

speed and turns the brain into a programming machine rather than making learning dull. Apart 

from obtaining engagement for learners’ interdisciplinary integration has some advantages for 

instructors as well. Teachers are familiar with interdisciplinary information in their subject areas, 

making it simple to synthesize and condense knowledge into primary ideas that are distinct from 

one another and are easy to visualize. Additionally, using this method, teachers self-organize, 



examine, assess, and orient learning for students both within and beyond the classroom. This goes 

beyond merely transmitting knowledge to students. 

 

Calculus has many useful applications. This topic reveals itself in its numerous and significant 

applications in practice and in many branches of science, particularly physics, which has 

historically been most closely associated with analysis. According to Kleiner [1] for three centuries 

(18th, 19th, 20th), the primary quantitative instruments for analyzing scientific issues have been 

calculus, modern physics, and engineering. Calculus cannot, then, solely concentrate on solving 

problems of pure mathematics while ignoring the chance to show students the crucial role that 

calculus plays in other subjects. 

 

Numerous studies have demonstrated that students have trouble using the calculus skills they 

gained in math classes to tackle physics problems. According to Edward et al. [2], while 

performing mathematical operations successfully in the context of a math problem, students could 

be unable to comprehend the same processes when they appear in physics problems. Jone’s [3] 

results supported the notion that arithmetic skills had not been effectively engaged in science 

lectures. Lack of knowledge was not the issue. For instance, as in Bajracharya et al. [4] and Chau 

et al. [5], students have essential backgrounds in both mathematics and physics, and they still 

struggle to make connections; they interpret physics issues using a calculus tool. Many students 

did not understand how, when, or why the analytical skills they gained in physics were applied in 

those cases. Jone’s [3] attributed this phenomenon to the fact that calculus classes effectively give 

students the information and skills they need to complete math class assignments. 

 

From the study above, two important problems should be remembered. First and foremost, a 

teaching strategy that can completely enable students to comprehend the conceptual nature and 

skills to analyze methodologies is needed. Second, it is important to have students use their 

analytical skills in physics or comprehend the different calculus applications they encounter in the 

high school physics curriculum. What approach helps to accomplish these two objectives? To 

develop more effective teaching strategies, several educational scholars have examined the 

historical development and spread of calculus. The teaching strategy used is experimental centric 

pedagogy (ECP), which will be used to help students understand calculus using experiments for a 

better understanding of mathematics concepts such as Hooke’s law, distance, etc. Calculus helps 

physics to solve many of its problems. Calculus and the dynamics of practice and the sciences have 

a close link, according to historical study. Particularly throughout history, there has been a strong 

connection between analysis and physics. The inception and development of analytical ideas have 

been largely influenced by the challenges that physics has raised. On the other hand, calculus tools 

enable physics to address many of its issues. In the history of human civilization, these two 

sciences' mutual support has led to important advancements. It was recommended by researchers 

that analytical knowledge be taught in classrooms today. 

 



To take advantage of the relationship between mathematics and physics in the teaching process for 

two disciplines, the researchers discovered a way to go beyond the two above challenges in 

learning and applying calculus principles. The pedagogical trend that results from this line of study 

is the interdisciplinary integration of math and science. Berlin and White [6] claim that this line of 

inquiry has been discussed since the early 20th century and has gained increased traction in recent 

years. Many models examining the relationship between mathematics and science topics have been 

constructed by researchers, as seen in the trend above. It frequently highlighted the two primary 

multidisciplinary linkages listed below:  

i.) Mathematics - Science Context - Science offers contexts, concepts, and material 

that provide meaning to and explain the basis for the notion of mathematics. 

ii.)  Science - Apply Mathematics (Science - Apply Math) focuses on the use of 

mathematics as a tool to assist in the solution of scientific issues. 

Numerous studies have revealed that students struggle to use derivatives in physics issues ( [7], 

[8], [3]). Jones [3] cites the analytical training program's emphasis on the derivative's geometric 

interpretation as the primary factor (slope). Physics application settings mostly employ the rate of 

change understanding. The unequal connection caused a disconnect between knowledge of the 

derivative and knowledge of its practical uses in physics. Students were familiar with using 

derivatives in these physical situations. Therefore, the concept of  the rate of change needs to be 

understood to understand derivatives. Many physical variables, such as velocity and acceleration, 

were directly tied to the interpretation of the fundamental calculus concepts, such as derivatives. 

As a result, prior exposure to and familiarity with these variables via real-world experiences or 

physics coursework may aid students in better understanding calculus's abstract ideas.  

 

For most STEM subjects, a solid grasp of the subject matter and ideas depends on the usage and 

application of mathematics. Particularly in physics, a large portion of problem-solving is turning 

the issue into a mathematical model, sometimes with many representations, and then giving the 

acquired mathematical answer physical significance, such as Hooke’s law experiment. 

Mathematics and physics course performance is a key determinant of students' success in STEM 

careers [9]. A lack of conceptual calculus comprehension can have a negative impact on students' 

subsequent learning in STEM courses and eventually cause them to reevaluate a STEM major. 

Only a tiny portion of college students in the US who enroll in basic calculus and/or physics 

courses plan to continue their studies in math or physics beyond those courses. Most of these 

students only sign up for beginning calculus and/or physics classes to satisfy general education 

requirements or to finish the prerequisites for further study [9].  

 

We argue that students' struggles with learning and comprehending numerous subjects and 

concepts in these courses may be one factor in their lack of interest in these courses. The major 

goal of this study is to find a calculus-based solution so that students may comprehend the idea 

and use of calculus in a circumstance or problem from real life. More precisely, we wanted to 



determine how students comprehend and use concepts such as problem-solving (e.g., Hooke's law, 

reaction time etc).  

 

Literature Review 

 

There are different approaches to motivate students in physics, electrical engineering, industrial 

engineering, and civil engineering, which have been developed by researchers who employ ECP 

(experimental-centric pedagogy) to help students understand how calculus is used in physics and 

other scientific courses. In this paper, the Hooke's law and the ruler experiment will be used to 

assist students in comprehending how calculus is applied in physics, industrial engineering, and 

civil engineering. 

 

Chau et al. [5] fully explain derivatives to students while also demonstrating to them how crucially 

important derivatives are in many physics’ issues, demonstrating to them the strong relationship 

between physics and mathematics. Only 30 Vietnamese students in grade 11 were included in the 

sample because this was a case study in Ho Chi Minh City. The test contained physics issues 

intended to demonstrate to pupils the derivative growth connected to various physics 

circumstances. Reliable data were gathered, including worksheets from students and instructor 

interactions, and they were qualitatively assessed to shed light on how well students understood 

derivative ideas and how to solve problems. The experimentally involved students reportedly 

understood the general importance of the derivative in estimating the instantaneous quantity 

change rate after the two-increase ratio border determined the derivative. The use of derivatives in 

several areas of research and practice, notably in mathematics and physics, was further encouraged 

by this multidisciplinary approach. 

 

According to Jones [3], it is difficult for physics and engineering students to incorporate 

mathematics into their coursework. While various curriculum initiatives aim to improve students' 

calculus education, it is important to identify any gaps by examining the data and comprehending 

the information that students’ access or do not access while adhering to directions.  

 

López-Gay et al [10] explained how to mathematically represent physical phenomena using 

differential calculus, which necessitates comprehension of differentials in the context of physics. 

The value of four distinct concepts of the physics differential for the mathematization process is 

found and evaluated in their paper. They also offer empirical research to examine students' notions 

of the differential in physics as well as their judgments of how they should apply differential 

calculus. Their findings were consistent with the hypothesis that students have a nearly exclusive 

conception of the differential as an infinitesimal increment and that they believe their teachers only 

expect them to use differential calculus algorithmically, without a clear understanding of why they 

are doing it. These findings are connected to how little emphasis is placed on the mathematization 

process in traditional physics instruction. 



 

Bingolbali et al. [8] examine how mechanical engineering students see mathematics, as well as 

how they understand the derivative and prefer to understand it. Pre, post, and delayed posttests, a 

preference test, student interviews, and a review of calculus courses are all sources of data. 

Students studying mechanical engineering are compared using data from mathematics students. 

Thier findings demonstrate that while mathematical students' conceptions and preferences for the 

derivative develop in the direction of tangent aspects, those of mechanical engineering students 

develop in the direction of the rate of change aspects. Mechanical engineering students also view 

mathematics as a tool and desire the application aspects in their course. Regarding instruction and 

departmental affiliation, students' evolving ideas, interests, and perspectives are considered, and 

educational consequences are proposed for the mathematical education of engineering students. 

 

Methodology 

 

The goal of this study is to provide light on students' understanding of the integral and how it is 

used in physics and engineering fields. The Hookes law will mainly be implemented in 

mathematics, physics, and engineering classes where students will be motivated to see the 

application to calculus in real-life problems. Two major experiments are developed in mathematics 

so that students can understand the concepts of differentiation and integration. The two 

experiments are the ruler experiment that demonstrates the concept of calculus in traffic 

engineering and the Hooke’s law experiment. Twenty students from the departments of physics 

and civil engineering participated in this experiment, and the Motivated Strategies for learning 

Questionnaire (MLSQ) and Curiosity questionnaire were adopted for the purpose of collecting 

learners’ perceptions of the use of this pedagogy in the pre and post experimental design. 

 

Equation of Motion 

A moving vehicle was used to create the equation of motion model. A traffic stream's performance 

can be greatly impacted by the movement of a single vehicle. Understanding each vehicle type's 

features, capabilities, and movements enables us to simulate groupings of cars and assess the 

effectiveness of the traffic stream. The individual trajectories of individual vehicles in a time-space 

diagram show traffic flow. Parallel trajectories will exist between vehicles traveling in the same 

travel lane, and when one vehicle passes another, the trajectories will come together. Time-space 

diagrams are practical tools for assessing and showing the traffic flow characteristics of a particular 

route section over time (e.g., analyzing traffic flow congestion). However, the ruler experiment 

will be the one we pay the most attention to using the distance formula. 

Now, using fundamental calculus knowledge, we can mathematically deduce the equation of 

motion. Acceleration, distance, and velocity are all related to time, as previously mentioned. 

 

The velocity is the displacement that an object or particle experiences with respect to time. In the 

International System of Units (SI), the unit of velocity is meters per second (m/s) 



 

 
Figure 1 (Graph of an equation of motion where x is the distance and t is time) 

Wikipedia 

Velocity is written mathematically as: 

                             𝑣 =
𝑑𝑥

𝑑𝑡
                             (𝑖) 

where x is the displacement/distance and t is time. 

The term acceleration is the rate at which an object's velocity changes with respect to time. The 

expression of acceleration is given as 

                                                     𝑎 =
𝑑𝑣

𝑑𝑡
                                                             (𝑖𝑖) 

Note that acceleration is the second derivative of velocity and is written as:  

 

(𝑎 =
𝑑2𝑥

𝑑𝑡2
 =  

𝑑𝑣

𝑑𝑡
) 

The first equation of motion is modeled as 

From Eq. (ii) 

 

                                                          𝑎𝑑𝑡 = dv                                            (iii) 

Integrating both sides in (iii) 

∫ 𝑎 𝑑𝑡

𝑡

𝑡0

= ∫ 𝑑 𝑣

𝑡

𝑡0

(𝑡) 

∫ 𝑎 𝑑𝑡

𝑡

𝑡0

= 𝑣(𝑡) − 𝑣(𝑡0) 

                                         𝑣(𝑡) = ∫ 𝑎 𝑑𝑡

𝑡

𝑡0

 + 𝑣(𝑡0)                            (𝑖𝑣) 

 

From Eq (i), we have 



                                           𝑣𝑑𝑡 = dx                                            (𝑣) 

 

Integrating both sides in Eq. (v) 

∫ 𝑣 𝑑𝑡

𝑡

𝑡0

= ∫ 𝑑𝑥

𝑡

𝑡0

 

∫ 𝑣 𝑑𝑡

𝑡

𝑡0

= 𝑥(𝑡) − 𝑥(𝑡0) 

                                   𝑥(𝑡0) = ∫ 𝑣 𝑑𝑡

𝑡

𝑡0

− 𝑥(𝑡)                        (𝑣𝑖) 

To derive the second equation of motion, substitute Eq. (iv) into Eq. (vi) 

𝑥(𝑡0) = ∫[𝑎(𝑡 −  𝑡0)  +  𝑣(𝑡0)]

𝑡

𝑡0

𝑑𝑡 − 𝑥(𝑡) 

𝑥(𝑡0) = ∫[𝑎𝑡 𝑑𝑡 −  𝑎𝑡0 𝑑𝑡 +  𝑣(𝑡0)𝑑𝑡]

𝑡

𝑡0

− 𝑥(𝑡) 

𝑥(𝑡0) =
1

2
[𝑎𝑡2 − 𝑎𝑡0𝑡 + 𝑡𝑣(𝑡0)] − 𝑥(𝑡)  

Substituting in the intervals [t, 𝑡0]; 

𝑥(𝑡) =
1

2
[𝑎(𝑡 −  𝑡0)2 − 𝑎𝑡0(𝑡 −  𝑡0) + 𝑣(𝑡0)(𝑡 −  𝑡0)] − 𝑥(𝑡0)       (𝑣𝑖𝑖) 

 

Assume a constant acceleration, which makes 𝑎(𝑡)  =  𝑎, 𝑥(0)  =  0, 𝑣(0) =  0,  𝑡0 =  0. From 

Eq. (vii), we have 

                                           𝑥(𝑡) =
1

2
 𝑎𝑡2                                              (𝑣𝑖𝑖𝑖) 

 

Having derived the distance equation, we can use it to carry out the ruler experiment by measuring 

the distance of the ruler measured in centimeters. 

 

Ruler Experiment Procedure. 

The main apparatus needed is a ruler (Figure 2). 

1. Have your subject rest their hand on the table.  

2. Hold a ruler at the top edge.  



 

Figure 2 (Apparatus) Science world image 

3. Have the subject put their thumb on one side of the bottom of the ruler and their fingers 

on the other side. They should not grasp the ruler, however. It must be able to freely fall 

between his fingers.  

4. Without warning the subject, let go of the ruler.  

5. When the subject notices that the ruler is falling, they should try to grasp it by closing his 

thumb and fingers around it. They should not move their hand (Figure 3). 

 

Figure 3 (Apparatus) Science world image 



6. Look at the ruler and see where the subject grasped it. Find the location in centimeters on 

the ruler where the hand is grasping the ruler. This should tell you how far the ruler fell 

before the subject reacted and grasped the ruler.  

7. Record the location of the grasp on your sheet.  

8. Repeat the whole procedure (steps 1 through 7) 

9. Record your value in Table 1 calculating the time using Eq. (viii); 

Table 1: Data Recoding Guide for Learners 

Distance (cm) Time (sec) 

  

 

Hooke’s Law Derivation. 

A force acts to draw a spring back to its equilibrium length when it is stretched. The restoring 

force, which is directly proportional to the displacement from equilibrium, pulls the spring back 

toward equilibrium. The restoring force increases when the spring is stretched further. Hooke's law 

of elasticity is the equation for a restoring force and is as follows: 

 

𝐹 = − 𝑘𝑥 

 

Using integral calculus, we can derive Hooke’s law from work done. Let us consider a spring that 

is at initial rest, with no force applied on it. We assume that we apply a force F to the spring, which 

causes it to stretch by a distance x. 

 

The work done by a force stretches the spring by a distance x, which can be calculated using an 

integral. 

𝑊 = 𝐹𝑥 

    

𝑊 = ∫ 𝐹 𝑑𝑥             (𝑖𝑥) 

where the integral is taken over the distance x. The work done by the force is equal to the potential 

energy stored in the spring. 

From the definition of Hooke’s law, we can deduct from (ix) that, 

𝑊 = ∫ −𝑘𝑥 𝑑𝑥                (𝑖𝑥) 



Integrating we have 

𝑊 = −
1

2
𝑘𝑥2 + 𝑐                (𝑥) 

where c is a constant. We can equate the constant c to zero since the spring is at rest in its 

equilibrium position. Then, 

𝑊 = −
1

2
𝑘𝑥2                  (𝑥𝑖) 

Equation (x) gives the work done on the spring as a function of its displacement. We can use 

equation (x) to find the potential energy stored in the spring, which is the negative of work done: 

−𝑊 =
1

2
𝑘𝑥2 

𝑈(𝑥) =  −𝑊 =
1

2
𝑘𝑥2                (𝑥𝑖𝑖) 

 

Equation (xi) shows that the potential energy increases quadratically with the displacement. We 

can also use the equation to find the force exerted by the spring as a function of its displacement, 

by taking the derivative of the potential energy in equation (xi) with respect to displacement x. 

 

𝐹(𝑥) =
𝑑𝑈(𝑥)

𝑑𝑥
= −𝑘𝑥                (𝑥𝑖𝑖𝑖) 

 

The expression shows the definition of Hooke’s law, showing that the force exerted by the spring 

is proportional to its displacement. 

 

Experimental Procedures: Hooke’s law 

Some apparatuses are weight sets, rulers, springs, masses, strings, ratus stands, etc. 

1. Gather the supplies necessary to perform the experiment, including the hanging masses, 

the spring, the ruler, and others. 

2. Set up the apparatus as described in the kit manual (Figure 4). 

3. The 0 cm mark of the ruler was aligned with the bottom of the coiled part of the spring 

and was mounted to the rod as shown below. 



 

Figure 4 (Apparatus) 

Experimental setup with measuring tape aligned with spring. The red arrow indicates the bottom 

of the spring coil (Figure 5). 

 

Figure 5 (Spring with Mass) 



4. Attach the hanging mass to the bottom loop of the spring and record the new position of 

the bottom of the coiled part of the spring to distance as the displacement in Data Table 

2. 

A wooden ruler was used as the straight edge. The bottom coil of the spring is marked with a red 

arrow and is located at 9.4 cm in this image. 

5. Repeat step 4 for the remaining masses listed in Data Table 2. 

Table 2: Data Recoding Guide for Learners Measuring the Spring Constant of a Spring 

Mass(kg) Distance(cm) Weight(N) K = Slope 

0.1 

0.15 

0.5 

0.55 

0.66 

0.6 

   

 

Data Collection 

The experiments described above were carried out in the two courses in Physics and Civil 

engineering during Spring 2021. The experimental design was described in the authors’ 

preliminary findings in [11] and was carried out in a pre- and posttest method. Data collection was 

performed via an electronic survey using standard tools. The Motivated Strategies for Learning 

Questionnaire (MSLQ) and Curiosity questionnaire were adopted for the purpose of collecting 

learners’ perception of the use of this pedagogy in the pre- and post-experimental design. The 

MSLQ has a 7-point Likert scale ranging from 1 (Not true of me) to 7 (Very true of me) and covers 

the three theoretical components of motivation, namely, value beliefs, expectancy, and affect [11], 

which were built into 8 subscales, namely, intrinsic goal orientation, extrinsic goal orientation, 

task value, expectancy component, test anxiety, metacognition, critical thinking, and peer learning 

collaboration. The curiosity questionnaire adopted in the present study had two 5-item subscales, 

namely, interest-type epistemic curiosity and deprivation-type epistemic curiosity. The assessment 

tool utilizes a 4-point Likert-type scale. These scales have undergone validation and exhibit 

acceptable internal reliability coefficients. 



Interest-type epistemic curiosity is defined by an innate fascination or interest in a certain subject. 

It is frequently motivated by a sincere desire to learn more about a topic that is intellectually or 

personally interesting to the learner. This kind of curiosity is self-driven and frequently followed 

by the acquisition of new skills and knowledge. However, deprivation-type epistemic curiosity is 

motivated by a sense of ignorance or deprivation. It appears when there is a discrepancy between 

one's knowledge and what one desires to know. This kind of interest is frequently brought on by a 

sense of intellectual inadequacy or a perceived knowledge gap. It can be a strong learning 

motivator since it fosters a sense of urgency and a drive to fill in knowledge gaps. 

The participants' total scores were classified into three levels of motivation: low, moderate, and 

high. A total obtainable score of 208 was possible, and using the categorization technique, learners 

with less than 50% were categorized as ‘low’, 51-70 % as ‘moderate,’ and above 70% as  Scores 

less than or equal to 39 (below 50%) were considered low motivation, scores between 40% and 

69% (40-69) were considered moderate motivation, scores between 70% and 88% (71-88) were 

considered high motivation, and scores between 89% and 98% (89-98) were considered very high 

motivation. The study conducted both descriptive (frequency, percentages, mean, and standard 

deviation) and inferential statistics (t test) to analyze the data. The parametric method was used 

because the data were normally distributed, and a 95% confidence level was set for the study. All 

data cleaning and data analysis activities were carried out using Statistical Package for the Social 

Sciences (SPSS IBM 25.0). 

 

Findings and Discussion 

The categorization of the subscale results of the students is presented in Figures 4a-j. In Figure 4a, 

there was an improvement in the percentage of learners who had moderate intrinsic goal orientation 

from 33.3% to 58.3%, and those with high scores remained unchanged. There was also an increase 

in learners with a high level of extrinsic motivation from 8.30% to 33.30% (Figure 4b). The results 

further revealed an improvement in the percentage of students with high-level scores in task value 

(TV), expectancy component, critical thinking (CT), and metacognition (MC) (Figure 4c, 4d, 4f, 

and 4g, respectively) and an increase in the percentage of learners with moderate scores under peer 

learning and collaboration (PLC), interest-type epistemic curiosity and deprivation-type epistemic 

curiosity (Figure 4h, 4i, and 4j, respectively). The number of students who scored low on test 

anxiety increased as expected because of the questions were in reverse sequence (as seen in Figure 

4e), i.e., the proportion of students with low test anxiety scores increased. The posttest saw a slight 

increase in low levels of test anxiety, which brought attention to the benefits of experiential 

learning for students. The result in Figure 4i and 4j reveal an increase in the percentage of learners 

with a moderate level of curiosity. Yui et al. [12] findings support this study's conclusion that 

hands-on learning is linked to both types of curiosity. 

 



 

 

Fig 4a: Intrinsic goal orientation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4c: Task value  

    

Fig 4b: Extrinsic goal orientation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4d: Expectancy component  
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Fig 4e: Test Anxiety  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4f: Critical Thinking  

     

 

 

 

 

 

 

 

 

 

 

 

Fig 4g: Metacognition  

    

 

 

 

 

 

 

 

 

 

 

 

Fig 4h: Peer Learning and Collaboration  
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Fig 4i: Interest-type Epistemic Curiosity  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4j: Deprivation-type Epistemic 

Curiosity  

 

 

The mean MSLQ score of learners in the present study is presented in Table 3 below. The results 

showed a positive mean difference for most of the subscales except for text anxiety, which was 

expected to be lowered (reverse questions). The p value of the t test revealed that there was no 

significant change in most subscales (p>0.050). Although the literature posited the significance 

of hands-on learning in STEM education, it can be observed here that the different subscales of 

the learners were not significantly improved. 
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Table 3: Mean comparison of MSLQ Subscale scores 

Subscales Pretest Posttest Mean difference t test p value 

Intrinsic goal 

orientation 

(IGO)1 

5.31±1.4 5.89±0.74 0.58 0.22 

Extrinsic goal 

orientation 

(EGO) 1 

3.53±2.14 3.69±2.54 0.16 0.80 

Task value 

(TV)1 

5.31±1.57 5.97±1.12 0.66 0.31 

Expectancy 

component 

(EC)1 

4.83±1.4 5.42±1.06 0.59 0.26 

Test anxiety 

(TA) 1 

3.88±1.8 3.63±1.43 -0.25 0.74 

Critical thinking 

(CT) 1 

4.5±1.58 4.97±1.36 0.47 0.44 

Metacognition 

(MC) 

4.92±1.46 5.38±0.91 0.46 0.43 

Peer learning 

and 

collaboration 

(PLC) 1 

4.14±1.62 4.83±1.21 0.69 0.20 

Interest-type 

epistemic 

curiosity (IEC) 2 

3.18±0.64 3.22±0.57 0.04 0.85 

Deprivation-type 

epistemic 

curiosity (DEC) 2 

2.6±0.56 2.63±0.68 0.03 0.90 

* Significant difference between pretest and posttest scores. 
1 1-7 Likert Scale 
2 1-4 Likert Scale 

 

Conclusion 

Two experiments were developed using the ECP: Hooke’s law, a ruler experiment, and deflection, 

which will be further developed. The ruler experiment was successfully customized and integrated 

using mathematics, and we also integrated calculus in Hooke’s law, where we have the initial and 

final length. These data are for Fall 2021 and Spring 2022, and details are presented. The Hooke’s 

law experiment was integrated in Spring 2021 and Fall 2022. The implementation of hands-on 



learning has a positive impact on reducing test anxiety among learners. This suggests that hands-

on learning could be a useful teaching strategy for educators to consider when designing 

instructional materials to help alleviate students' test anxiety. These study findings suggest that 

hands-on learning is linked to both types of curiosity - interest and deprivation. Thus, hands-on 

learning could potentially enhance students' curiosity in both areas and promote a deeper level of 

engagement and interest in the learning process. In conclusion, it is hoped that future experiments 

will be conducted in various STEM fields to expose learners to a more diverse range of 

mathematical concepts. This would enable students to develop a more comprehensive 

understanding of mathematics, which is a fundamental subject for many fields of study and careers. 

Students studying physics and engineering will want to learn more about how derivatives and 

integrals are used in their fields, as they already have a basic understanding of calculus. The student 

will be inspired and desire to study more about calculus, specifically the rate of change, if this is 

employed. Additionally, some students may find calculus difficult and difficult to understand, 

leading them to conduct additional research without prior knowledge. However, this research has 

made it possible for those without a background in calculus to understand calculus by performing 

hands-on experiments, as shown in the methodology, which will motivate them to learn more about 

and conduct additional research on calculus application due to their interest. 
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