
AC 2011-1231: EXPLORING THE USE OF VIRTUAL MACHINES AND
VIRTUAL CLUSTERS FOR HIGH PERFORMANCE COMPUTING EDU-
CATION.

Thomas J. Hacker, Purdue University, West Lafayette

c©American Society for Engineering Education, 2011

P
age 22.690.1

Exploring the Use of Virtual Machines and Virtual Clusters for
High Performance Computing Education.

Abstract

High performance computing systems have been based on commodity computing hardware since
the introduction of Beowulf systems in the mid-1990’s. The emergence of virtualization and
cloud computing technologies now make it possible to build high performance computing cluster
systems across a collection of virtual machines. This paper will explore the pedagogical and
technological issues involved in the use of virtualization and cloud computing technologies for
HPC education, focusing on: mixed use of physical and virtual computing environments; high
performance networking fabrics; pedagogical limitations of virtual and cloud computing; the
development of an effective teaching laboratory for virtual clustering; and the performance and
reliability constraints of a mixed virtual cluster environment. The paper will describe the use of
virtualization software, specifically Xen, OpenVZ, and VMware, and an assessment of the
viability of the Eucalyptus, NIMBUS, and OpenNebula cloud computing systems for use for
virtual clusters for HPC education.

1. Introduction

The emergence of virtualization technology over the past five years is sparking a new revolution
in computing. This revolution has led to greater efficiencies in the use of computer servers and
is one of the driving technologies behind the development of cloud computing. A similar trend a
decade ago exploited the availability of low cost and high performance commodity computer
hardware and open source software to power the development of commodity component based
high performance computing systems. Today, these systems dominate the list of the 500 most
powerful supercomputers in the world 1.

The recent availability of virtualization technologies motivates the exploration of several
questions about the applicability of these technologies to high performance computing. First,
how can high performance computing systems make the best use of virtualization and cloud
computing technologies? Second, what new capabilities, services, and pedagogical approaches
do these new technologies now make possible in the area of high performance computing
education?

This paper explores these questions, and discusses the issues involved in the adoption of
virtualization and cloud computing technologies for HPC education, and describes experiences
and lessons learned from the use of four virtualization and cloud computing systems: Eucalyptus,
OpenNebula, NIMBUS, and VMware.

2. Virtualization and Cloud Computing for HPC

P
age 22.690.2

High performance computing systems in use today are predominately based on the Linux
operating system and commodity hardware components. Virtual machines provide the same
types of components used in high performance computing systems and support many types of
operating systems. In this section, we provide an overview of virtualization and cloud
computing technologies. The section following this section explores the technological and
pedagogical issues involved in the use of virtualization and cloud computing for high
performance computing.

2.1 Virtualization Technologies

There are two basic types of virtualization technologies in use today that are available as
commercial and open source packages. The first type, hypervisor based virtualization systems,
operates on the “bare metal” computer hardware, and is designed to provide a operating system
environment that can host one or more guest operating systems within virtual machines. A Type
1 hypervisor is an operating system image designed to only run guest VMs. A Type 2 hypervisor
is a software layer that runs within the operating system image to allow users to both use the base
operating system as well as run virtual machines 2. The second type of virtualization is
paravirtualization, in which the guest operating system has been explicitly modified to run as an
application within the host operating system, rather than running on a virtual machine monitor
without awareness of the underlying virtualization system.

The three most popular hypervisors in use today are VMware, Xen, and KVM. VMWare is a
commercial virtualization system 3 that consists of a hypervisor (named ESX) that runs on
physical nodes, a management system (named vSphere), and a suite of products for VM and
virtual network configuration and management. Xen 4 is an open source hypervisor system that
has been in use for nearly a decade. Xen can operate as a hypervisor on Intel or AMD
processors, and provides a simple command line interface to create, stop, restart, suspend, and
migrate virtual machines on a physical host. Another more recent open source hypervisor
system is the Kernel-based Virtual Machine (KVM) 5. KVM is supplanting Xen as a frequently
used virtualization system, due in part to its inclusion in the Red Hat 6 distribution. Similar to
Xen, KVM provides functionalities to create, stop, restart, suspend, and migrate virtual
machines. A major difference between KVM and Xen is that KVM relies on a graphical GUI,
the virt-manager, for managing virtual machines. Another difference is that KVM is integrated
with an open source processor emulator, QEMU, 6 to provide support for a broad range of
processors, and relies on libvirt to provide a comprehensive command line interface (CLI) 7.
Libvirt is a veneer layer virtualization application programming interface (API) and CLI that
provides a common control library and management system that can interoperate with several
virtualization systems. Libvert currently supports Xen, QEMU, VMware, Virtual Box, and
several other virtualization systems. To provide virtual networking support, Xen and KVM rely
on a virtual ethernet bridge running on the Linux system that is managed using brctl 8. P

age 22.690.3

The differences among these virtualization systems can be compared in several areas: stability
and ease of use; level of technical support; integration with the Linux kernel and system; and
programmability within Linux. VMware is the most mature and stable, and is easy to use
through a system and laboratory level graphical user interface based management system. The
ESX hypervisor is stable and is based on a Linux kernel. However, controlling a VMware
hypervisor through the command line interface is complex, and the ESX hypervisor
programming environment is limited, which makes it difficult to develop a rich and
comprehensive set of customizations for the VMware environment. In contrast, the Xen
hypervisor operates within the familiar Linux environment, since Xen is layered on the kernel as
an addition to Linux. The hypervisor environment, which runs in Xen Domain-0, can be easily
customized, and access to Xen virtualization functionalities is straightforward. The downside to
Xen is that it can be unstable, especially when performing complex operations such as live
migration among physical hosts. KVM, the newest of the three, has greater stability and is more
up-to-date than Xen, due to the integration of KVM into Red Hat Linux Version 6. KVM lacks a
native management interface, but can be controlled through the libvirt virsh command line
interface. Adopting a virsh based management approach may be the wisest choice in the long
run, because libvrirt seeks to develop and support a common veneer interface over many
different virtualization systems.

As an alternative to hypervisors, there are several popular paravirtualization systems available
today. OpenVZ 9 is a lightweight virtualization system that allows an operating system image to
run several guest operating system instances (named containers) that share the operating system
kernel with the host operating system. Rather than storing the guest VM image as a large virtual
disk file, the file system within an OpenVZ container is a subtree within the host operating
system file system. This greatly simplifies the process of customizing and managing OpenVZ
images on a system. OpenVZ provides a set of management commands though a command line
interface, and supports the creation, stopping, starting, checkpointing, and live migration of
OpenVZ containers. The live migration functionality of OpenVZ is much faster than the live
migration operation for hypervisor based systems, since only a fraction of the file system and
memory must be transferred between physical hosts, rather than the entire virtual disk image as
is the case for hypervisor based systems. OpenVZ is used to provide software-as-a-service
(SaaS) for the popular HubZero 10 science gateway and is used in the NEEShub for the National
Science Foundation NEES project.

Another popular virtualization package is VirtualBox11, which is a paravirtualization system that
runs on a wide variety of platforms, and provides a simple GUI based management interface.
Virtual Box is especially useful for creating base virtual machine images for import into Xen or
KVM. The ability of VirtualBox to quickly create and export a VM image is especially useful
for creating VM images for use in Xen or KVM. This is due in part to the cumbersome process
necessary in Xen and KVM to create an initial VM image, which requires placing the DVD
image on a network attached NFS server or web server.

P
age 22.690.4

One major difference between VirtualBox and OpenVZ is that live migration in OpenVZ is
much simpler than VirtualBox, due to the need to provision a target VM container for
VirtualBox prior to live migration. Also, VirtualBox provides an administration GUI, where
OpenVZ for Linux only provides a command line management interface.

2.2 Cloud computing technologies

Cloud computing is emerging as the latest generation of distributed computing technology for
this decade, and is an extension of the utility computing concept first developed in the 1960’s 12
to a broader class of applications beyond scientific computing. Cloud computing is a broad term
that encompasses several technologies: Infrastructure-as-a-Service (Iaas), which involves the use
of virtualization to create and manage computing infrastructure; Platform-as-a-Service (PaaS),
which builds on a virtualization platform to provide a software stack (e.g. web server,
middleware, and authentication) in addition to a virtualization service; and Software-as-a-Service
(SaaS), which allows users to run software on a remote server through a graphical interface
without the need to download and install the software on their local computer. The high
performance computing community uses one or more of these types of cloud computing today in
various forms. For example, the NEEShub, a science gateway for the NSF NEES earthquake
engineering community, uses SaaS to allow users to run tools within the hub environment, with
interaction controller through an embedded VNC window. The NEES project also uses IaaS in
the form of VMware virtual machines that provide a secure development sandbox for NEES
software engineering and users.

In the context of developing virtual clusters, Infrastructure-as-a-Service is the most relevant type
of cloud computing. Generally, IaaS systems provide a higher level of management above the
individual system level for collections of physical systems and virtual machines running in a
finite set of physical computer nodes. There are several types of IaaS cloud computing packages
available today that can be used to develop a virtual high performance computing cluster. As is
the case in virtualization technology, there are commercial and open source cloud computing
packages available to develop IaaS: Eucalyptus, Nimbus and OpenNebula.

In the commercial realm, Eucalyptus has been available for several years 13 in both a
commercial version and as an open source package. Eucalyptus is an IaaS system that allows
users to create and manage virtual machine instances among a group of physical computing
systems. Eucalyptus can manage virtual machine images across Xen and KVM hypervisor based
virtualized systems. Eucalyptus components include a node controller, to manage VM
instances; a cloud controller, which manages sets of nodes and clusters; and a cluster controller,
which manages the hypervisor and virtual networking among the physical nodes. Another
commercial IaaS is Amazon EC2 14, which is a completely commercial service for which users
can purchase metered IaaS and PaaS services. The major difference between these two
commercial approaches is that when using Eucalyptus, the user provides the computing hardware P

age 22.690.5

and purchases the cloud computing software; and when using Amazon EC2 services users pay
for both computing infrastructure and software.

As an alternative to potentially expensive commercial cloud computing services, there are
several open source cloud computing packages that can be used with a site’s existing physical
computing, storage, and networking infrastructure. The first package, described above, is
Eucalyptus. In contrast to the commercial version, the open source version of Eucalyptus is not
as well supported and does not support VMware, Windows, and several other features needed to
run Eucalyptus within an enterprise. The second open source package is Nimbus 15, developed
by Argonne National Laboratory in 2008. Nimbus is an IaaS package that is an open source
toolkit that manages the allocation and deployment of VM images across a set of computational
nodes. Nimbus is designed to interoperate with Globus based grid computing systems 16, and is
focused on aiding science communities in the deployment of customized VM images to support
scientific applications 17. Nimbus supports Xen and KVM, but does not support VMware or
OpenVZ. The third package is OpenNebula 18, developed at the Universidad Complutense de
Madrid in Spain. OpenNebula is an open source set of tools for managing a set of hypervisors,
virtual machine images, and networks to create an IaaS service. In contrast to Eucalyptus and
Nimbus, OpenNebula is based on common Linux services and utilities such as NFS, scp, and
rsync; and supports the Xen, KVM, and VMware virtualization systems by using the libvirt
libraries and utilities.

In practice, the differences between Eucalyptus, Nimbus, and OpenNebula are in: ease of
installation, troubleshooting, and use; degree to which users and administrators can control and
customize the environment; and stability. Of the three, Nimbus is most difficult to install and
configure, due to its integration with grid computing technologies. The process of installing and
configuring OpenNebula is the simplest of the three, since it can leverage existing familiarity
with Linux services and troubleshooting practices common to Linux. In terms of configurability,
OpenNebula is easily customized – users and administrators can easily modify OpenNebula
scripts and tools. Finally, in the area of stability, our personal experience with testing all three
systems is that OpenNebula proved to be remarkably resilient and persistent despite frequent
system outages and network configuration changes. We found Nimbus to be the most brittle
and intolerant of variations in virtual machine images, and although Eucalyptus worked well
with certified VM images, it was difficult to configure and keep Eucalyptus running as we
changed VM images and the network configuration.

3. Technological and pedagogical issues involved in the use of virtualization and cloud
computing technologies focusing on HPC education

The availability of virtualization and cloud computing technologies and the adoption of these
technologies for general practice motivate the investigation of their use for high performance
computing. To effectively use these technologies, several fundamental issues must be addressed.
First, what are the effects of the mixed use of physical and virtual computing environments on

P
age 22.690.6

the development and use of virtual clusters based on this technology? Second, what changes in
approach are needed to introduce virtualization and cloud computing technology into HPC
education? Third, what are the pedagogical limitations of virtualization and cloud computing
that must be taken into account in these changes? Finally, how can we best evolve a physical
computing laboratory to include these technologies without negatively impacting the learning
experience?

3.1 Mixed use of physical and virtual computing environments

The use of physical computer hardware, in the form of desktop computers or server class
systems, makes it straightforward to build on the students’ knowledge of computer architecture
and operating systems to introduce topics related to the design of commodity based high
performance computing clusters. For example, a lecture on deducing the I/O bottlenecks in a
motherboard design and its effects on data intensive applications can build on students’ personal
experiences with their own computers and video game systems. The use of virtual machines,
however, adds many new differences in the behavior and performance characteristics of
operating systems and applications running within a virtual machine environment.

Physical and virtual computing environments are fundamentally different in many ways. First,
there are obvious differences in the number of CPUs and amount of memory for physical
systems versus a virtual machine. There are also much more subtle differences. For example,
when deciding which physical RAM to use for an HPC cluster node, it is important to match the
memory striping factor and DIMM clock speed with the processor front side bus speed to ensure
that you don’t over invest in memory that is faster than the front side bus speed, but also not
under invest in high speed memory and consequently create a structural performance bottleneck
in the system. Virtualization systems provide no context for this information when creating a
new VM – all of the specific architectural details are abstracted away and hidden from the user.
There are also many subtle differences between the physical and virtual machine environment.
For example, modern AMD and Intel processors support a fault reporting feature called Machine
Check Exception (MCE) that provides an interrupt to the operating system when the processor
encounters a soft correctable error or a hard error. Virtualization systems tend to explicitly mask
this information from guest operating systems. In VMware, for example, the hypervisor will
confirm the existence of MCE banks to the guest VM when it boots and queries the processor
capabilities, but indicates that it supports no MCE banks when the kernel tries to access them.
Subtle differences such as this example can complicate the process of exploring and using
hardware features of the physical system.

Another fundamental difference between virtual and physical systems is in the approach to
systems management. For physical systems without virtualization, the mapping of host to
service and operating system is clear, and hardware features such as network attached Baseboard
Management Controllers (BMC) makes it simple to remotely perform administrative tasks. In
contrast, virtualization technologies make it possible to operate many VM images on a physical

P
age 22.690.7

system. In this environment, managing the mapping between service and hardware becomes
much more complex, and significantly more effort is needed to configure and maintain operating
system versions and systems security. Managing network connectivity and security is also
greatly complicated by virtualization. The ability to create virtual switches that can be linked
among systems using VPNs and VLANs, as well as the ability to create multiple virtual network
adapters within VMs that can attach to separate networks creates a tremendous opportunity for
novel approaches to connectivity among VMs, but also can quickly become a significant security
vulnerability.

These inherent differences between physical and virtual affect the basic approach in which an
HPC cluster is designed and loaded.

In terms of design, the cluster designer needs to ensure that the mapping of cluster node VMs to
the physical hardware does not overload the physical CPUs, and to avoid under utilizing the
physical resources – finding the appropriate balance among these depends on the characteristics
of the application. I/O intensive applications encounter frequent CPU stalls, so it will be
possible to put more virtual machines on a physical server than would be advisable when
supporting a CPU intensive parallel application. The memory footprint used by a VM is another
factor – the amount of memory needed by a parallel application depends on the individual
characteristics of the application and the problems size the user seeks to solve. Determining the
memory size needed for an application requires an assessment of application performance and
memory use as the size of memory in the VM is varied. Over-provisioning memory in a VM
could potentially waste memory, and under provisioning could cause page swapping that may
slow the entire system. Finally, network latency and bandwidth is another critical factor. The
performance of some types of applications, such as molecular dynamics (MD) and computational
fluid dynamics (CFD), strongly depend on network performance. The additional latencies added
among physical systems could seriously degrade performance. Conversely, significant gains in
performance possible when communicating among VMs running on a single physical system
through a virtual ethernet switch can provide an excellent testbed to assess and demonstrate the
effect of latency and bandwidth on the performance of different categories of parallel
applications.

The price/performance considerations traditionally used for designing cluster from physical
computer nodes also fundamentally changes. In the past, the best price/performance ratio was
usually 1 or 2 rack unit servers with 2 processors. Higher density architectures, such as blade
centers and larger symmetric multiprocessor systems usually carried a significant price premium
that precluded their use for commodity clusters. The recent availability of 1U and 2U servers
that contain 2 to 4 processors with 12 cores each are fundamentally changing the analysis. At
our institution, the most recent cluster purchased contained 24 processor cores and 48 GB of
memory for each 1U server. Although the price per system increased, surprisingly the price per
CPU core has remained constant over the past few acquisition cycles. Moreover, since a single
power supply per system now serves more cores, the power consumption factor and its

P
age 22.690.8

relationship to cluster design is also fundamentally changing. This trend is making the use of
virtualization and virtual clusters much more viable and attractive, and the savings from reduced
physical space use and power consumption has the potential to more than offset the staff and
license costs needed to deploy virtual clusters. In terms of space, at our institution, the clusters
purchased during the past three acquisition cycles have each taken less floor space due to the
increased core count per system. Thus, although we are purchasing roughly the same number of
cores at roughly the same cost, the physical space occupied by each successive cluster is half of
the space of the previous cluster, which has effectively eliminated the need to construct a new
data center. The final technology factor is the emergence of graphics processor unit (GPU)
technology, which is now used on the Tianhe-1A, the fastest computer in the world 19. It is not
clear how virtualization systems will integrate GPUs as a co-processor into a virtual machine
architecture.

The use of virtualization to create virtual clusters now makes it possible to support the use of
customized operating system images that are tuned for a specific application. Without the use of
virtualization, the cluster must be loaded with a uniform operating system image across the entire
cluster, which is a “one size fits all” approach that is a trade-off between optimal application
performance and ease of systems administration. The capability to support customized VM
images opens a new world of possibilities for the use of light-weight kernels, low noise operating
systems, and ultimately a highly tuned operating system that provides maximum application
performance for a specific parallel application.

The systems administration effort needed to manage a large virtualized cluster is fundamentally
different than the effort needed for a traditional cluster. Within the VM image, the knowledge
and skills needed remain the same. At the underlying virtualization level, however, a significant
amount of new knowledge and skills are required. Systems administrators need to learn to
manage commercial (e.g. VMware) as well as open source (e.g. Xen, KVM, OpenVZ)
virtualization systems for the physical nodes. In addition to this new knowledge, they will also
need to learn to manage the IaaS, PaaS, and SaaS cloud computing layers needed to create and
manage the virtual images deployed to the virtual cluster system. The cloud computing systems
they would need to learn at a minimum include one of the popular cloud computing systems,
such as Eucalyptus or OpenNebula. An additional layer of management that systems
administrators would need to learn is how to manage the virtual networking layer and the VPNs
and VLANs needed to provide private networking space for partitions of a virtual cluster, as well
as the security infrastructure needed to keep the systems stable and secure.

Designing and operating the high performance network fabric needed to operate a high
performance computing system is a critical element of operating a successful virtual cluster. If
the network latency and bandwidth are significantly reduced, the collection of VMs will not
adequately perform as a commodity cluster, which would invalidate the virtual cluster approach.
On a physical system, high performance network interface cards (NIC) traditionally used for
clusters (such as Myrinet and InfiniBand) are designed to work with custom device drivers that

P
age 22.690.9

reduce latency in the operating system by exploiting direct access to the system hardware and
operating system kernel. On a virtual system, this is much more complicated. Hypervisor based
systems as such Xen and VMware generally don’t support specialized high performance network
interface cards unless the NIC manufacture develops a device driver specifically for the
hypervisor. Without such a driver, many hypervisor systems provide a “direct pass through”
mode between a physical device and a VM to allow a device driver in a VM to directly control a
device. The limitation of this approach is that only one VM can control and use the device,
which eliminates the ability of the hypervisor to share the device among VMs. On the positive
side, virtualization systems such as VMware and Xen use virtual network switches in the
hypervisor to create a internal network for VMs running on the physical system. By using the
virtual switch, it is possible to create a very high speed and low latency network among VMs on
the same physical system. This feature of hypervisors will become more useful as core counts
on multicore systems increase over time.

In the area of disk storage, the sharing of a limited set of physical disks by VMs is a significant
bottleneck for virtual machines. Although virtualization technology can take advantage of
multiprocessor/multicore systems by subdividing the processors and cores into partitions and
efficient use large memory systems by partitioning memory, it is much more difficult to partition
a limited number of local disk devices. The I/O bottleneck created by many VMs going through
the same physical I/O system can severely hamper file system and virtual disk performance. The
approach commonly used to overcome this problem is to use a SAN or other high speed storage
network to create a shared storage environment, which can become expensive as the system
scales up. Although it is possible to spread out VM I/O among several physical disks, the typical
server hardware used for VMs have a limited number (4 to 6) of physical disks, which ultimately
puts an upper bound on the number of I/O intensive VMs that can be effectively used on the
physical hardware. This is a difficult issue for courses that require benchmarking and
measurement of local file system of disk performance.

3.2 Pedagogical limitations of virtual and cloud computing for HPC

The fundamental differences in physical and virtual computing environments lead to a number of
issues in determining the most relevant material to teach to students and how to teach it.
Students greatly benefit from the tactile experience of configuring and changing the hardware in
a physical system and wiring the network for their systems. They learn how the CPUs, memory,
disks, and adapters are configured and placed in the system, as well as the system design choices
and the effects of these choices on space used by the system and the cooling of the system.

The downside of virtual machines is that they completely lack this physical interaction between
the student and the computer and networking hardware. Within virtualization systems,
components, such as CPUs, memory, and disk become abstractions without a clear physical
context and definition. As mentioned earlier, the observable performance of the virtual
components will be affected by the behaviors of other virtual machines running on the physical

P
age 22.690.10

system. This situation doesn’t help clarify student understanding of the performance effects of
components and upgrades. There are also some positives to the use of virtual components.
Students can easily add devices, e.g. many network interfaces and processor cores, as well as
tune the mapping from virtual to physical on the hypervisor. These capabilities make it possible
to explore scaling and tuning as well as investigation into novel cluster architectures.

Another major problem with virtualization is that is difficult to conduct repeatable performance
measurements of parallel applications running on a shared physical infrastructure in which other
VMs are busy.

A final problem is to develop an effective approach to manage virtual machine images for
students using VMs for assignments and research, and how to manage the assignment of physical
resources to students.

There are advantages to the use of virtualization technology for high performance computing and
cloud computing. First, students can easily observe and measure the effects of changing the
amount of memory and CPU cores for parallel applications and systems. Second, students could
submit a virtual machine image as their submission for a project or an assignment. This makes it
possible to archive VMs over time and to compare VM submissions to ensure the originality of
students’ work. Finally, the use of virtualization technology enables a greatly increased
efficiency in the use limited laboratory hardware and networking resources.

3.3 Developing a hybrid laboratory infrastructure

An approach to address the shortcomings of virtualization technology while maintaining the
advantages is to develop a hybrid laboratory infrastructure that includes a collection of physical
desktop and server computing systems in conjunction with a set of virtualized systems.
Designing systems to link the physical and virtual into a collective computing system will allow
students to learn both physical and virtualization technologies, and to learn how to effectively
integrate these two types of systems. The integration of physical and virtual helps students
understand the differences and similarities between the two. Moreover, the ability to link
physical with virtual network adapters and switches provide an excellent test bed for
experimenting with networking architectures and understanding the reliability and performance
effects of virtualization.

4. Experiences deploying and using cloud computing technologies for high performance
computing

To develop a hands-on understanding of cloud computing technologies and their suitability for
high performance computing, we installed, configured, and tested several cloud computing
packages: Eucalyptus 13, Nimbus 15, and OpenNebula 18. We investigated the use of these
systems with Xen and VMware virtualization systems, as well as the ability of these systems to
support the use of an additional paravirtualization layer using OpenVZ 9.

P
age 22.690.11

The Eucalyptus system is available as a set of yum and tar format downloadable packages, and is
also available as an installation option for Ubuntu. To provide an illustrative example, the
installation of Eucalyptus for CentOS first requires the installation of Xen and the Eucalyptus
packages using the yum package utility. Once installation and configuration and complete, the
Eucalyptus system is brought up by starting Eucalyptus service daemons, and then registering the
head node and other physical nodes. Administration and configuration of Eucalyptus is
performed through a web based administration interface. There are four networking options
available in Eucalyptus that use dynamic IP addresses and VLANs to create a secure networking
environment, which can make setting up networking in Eucalyptus complex and difficult to
troubleshoot. The default VM images provided with Eucalyptus are easy to use, but the process
involved in creating and then adding a custom VM image to Eucalyptus is complex. The
problem is that the internal configuration of the VM image must match Eucalyptus’ expectations,
and must also first correctly function on the underlying virtualization system Eucalyptus is
managing. Once the VM images are loaded and working, the web based management system
works well. However, the CLI based management interface is cumbersome. Debugging and
troubleshooting Eucalyptus is difficult, due to its heavy reliance on web services.

There are several advantages and disadvantages to Eucalyptus. The advantages are that
Eucalyptus: can work well in a distributed internet environment, due to its heavy reliance on web
services; is mature, since it is one of the first cloud computing systems; has a commercial version
that is supported; has an excellent web based management interface. The disadvantages to
Eucalyptus are: a heavy reliance on java, customized tools, and web services that makes it
difficult to debug and trouble shoot problems with the system; uses web services, which does not
scale well with the magnitude and size of the multi-gigabyte virtual disk images that it must
move between physical systems; and that it has a complex and non-intuitive administration
command line interface, which makes it difficult to write scripts and other commands that use
Eucalyptus.

We also assessed the Nimbus cloud computing system by using an instance of Nimbus installed
at Purdue called Wispy. The Wispy group provided a virtual box VM image for use on a local
desktop computing system that contained all of the software and authentication keys needed to
submit a VM to the Nimbus system. As of Summer 2010, only Xen images were supported in
Nimbus, and the only VMs supported were preconfigured images. The remote nature of the
system and reliance on X.509 certificates greatly complicated the debugging and troubleshooting
process, and lack of access to debugging logs on the central cloud computing system made it
very difficult to use the system.

The advantages to Nimbus are that it is supported by Argonne National Laboratory, and that it
has some limited use today for specific applications within the scientific community in a trial
mode. The disadvantages are that the strong legacy connection with Globus and X.509 based
authentication makes installation and configuration complex; the undocumented requirements for
the internal structure of the virtual machine images makes the system brittle; and finally that the

P
age 22.690.12

focus of Nimbus is on the use of clouds for scientific computing rather than as the basis for a
general computing utility.

The third cloud computing system we investigated was OpenNebula, which was developed at the
the Universidad Complutense de Madrid. OpenNebula is based on standard Linux technologies,
such as NSF, ssh, and rsync. To manage the virtualization layer, OpenNebula uses the libvirt
system, which provides a uniform management veneer layer over VMware, Xen, and KVM.
This combination of standard Linux technologies with the uniform libvirt management interface
greatly simplifies troubleshooting and debugging. The management of nodes, virtual machines,
and networks is performed using an OpenNebula management command line interface, which is
very logical and simple to use.

The advantages of OpenNebula are: it is based on standard Linux system utilities and services; is
easy to troubleshoot and debug compared with Eucalyptus and Nimbus; and it provides a clear
and logical management CLI. The disadvantage of OpenNebula is that the development is
managed by a small group in Europe, which may make it difficult to get timely answers to any
questions or problems.

One cloud computing system that we did not assess was Microsoft Hyper-V and Azure. These
systems are not broadly used today for High Performance Computing, and consequently are not
included in our HPC courses today.

4.1 Practical considerations in deploying cloud technologies for high performance computing
education.

Our department provides courses in designing, building, and developing a high performance
computing system cluster and parallel file systems. There are several practical considerations to
be considered in using cloud computing technology for these courses. First, it is difficult to
provision sufficient physical machines for scaling tests and performance comparisons among
several parallel file systems simultaneously. Second, the amount of disk space needed for
potentially hundreds of virtual machine disk images would require a tremendous amount of disk
space as well as networking infrastructure to quickly transfer images among physical servers.
Moreover, using older computer systems can be problematic, since the failure of a single
physical server can render several virtual machines inoperable.

Based on the assessment of VMware, Eucalyptus, NIMBUS, we found that a pure hypervisor
based virtualization approach is not scalable for several reasons. First, a large disk image is
required for each virtual machine. There is not opportunistic sharing of any content among
virtual machine images that could significantly reduce the amount of storage needed for virtual
disks. Moreover, transferring and cloning large virtual disk images is difficult and time
consuming. Second, the current state and stability of the management tools for Nimbus and
Eucalyptus makes it difficult to easily and reliably manage VM images. VMware is the notable
exception in this regard – the management GUI provided by VMware is exceptionally easy to

P
age 22.690.13

use and is reliable. Third, we found that Nimbus and Eucalyptus (the open source version) was
unstable. Additionally, the community is migrating from Xen to KVM, so there is limited
pedagogical value learn Xen instead of KVM.

Overall, we found that the combination of OpenNebula, KVM, and OpenVZ is the most
promising practical approach for provisioning cloud computing systems. OpenNebula provides
a straightforward and simple approach for deployment and managing Xen and KVM images that
uses a suite of standard Linux technologies. On top of KVM virtual machine images, OpenVZ
can deploy several virtual machine containers within each VM images that shares a kernel with
the KVM VM image. For the parallel data systems class in which students design, build, and test
a parallel file system, we are planning to have students build parallel file systems within OpenVZ
containers. The major constraint in this approach is the I/O performance bottleneck for the I/O
server components of parallel file systems running in virtual machines that must share physical
disks on the services on which they operate. The approach we are considering to overcome this
constraint is to schedule final performance runs for students running on physical servers. Based
on our assessment of the cloud computing and virtualization technologies, we believe that we
can scale up to at least 40 virtual machine containers using a combination of Open Nebula,
KVM, and OpenVZ on five physical servers.

5. Conclusions

Based on our experiences with these systems, as well as VMware, we found that VMware is the
most effective commercial system. For developing virtual clusters, we found that OpenNebula is
the most effective open source cloud computing system. In related work, Sempolinski assessed
Eucalyptus, OpenNebula, and Nimbus 17, and found that Eucalyptus is geared toward private
companies, Nimbus is targeted for specific scientific communities with broad customization
requirements, and OpenNebula is geared toward groups interested in cloud and VM technology.
Our experiences are similar to Sempolinski’s observations.

In terms of design, we concluded that although the use of virtualization masks the physical
nature of the hardware, virtualization and cloud computing technologies has the potential to open
new forms of exploration and teaching in high performance computing. This new capability
provides the ability to explore larger scale clusters than would be possible with physical
hardware alone. Also, it will allow users and students to better understand the effects of
memory, CPU, and disk on cluster design and the performance of parallel applications.
Moreover, it will greatly ease the process of understanding how networking configuration and
architecture will affect performance and design of clusters and applications.

There are no functional open source turn-key virtual cluster systems available today. OSCAR-V
20 attempted to create a version of the OSCAR toolkit for clusters, but the software doesn’t
currently work and there are no plans by the developers to fix the software in the near future.
Our assessment of the cloud computing systems described in this paper leads us to conclude that
OpenNebula is the best potential system for developing virtual clusters for high performance

P
age 22.690.14

computing and cloud computing education. On the hypervisor level, our observation is that due
to increasing support for KVM, KVM is a first choice for virtualization, followed closely by
VMware and Xen.

REFERNECES

1. Feitelson, D.G., The supercomputer industry in light of the Top500 data. Computing in Science &
Engineering [see also IEEE Computational Science and Engineering], 2005. 7(1): p. 42-47.

2. Goldberg, R., Architectural Principles for Virtual Computer Systems. 1973, Storming Media.
3. Vmware, I., VMware. Inc., VMware products, VMware, Inc., Palo Alto, CA, USA (2008)< http://www.

vmware. com/products/>[accessed 01.03. 08], 2008.
4. Barham, P., et al., Xen and the art of virtualization, in Proceedings of the nineteenth ACM symposium on

Operating systems principles. 2003, ACM Press: Bolton Landing, NY, USA.
5. Kivity, A., et al. kvm: the Linux virtual machine monitor. 2007.
6. Bellard, F. QEMU, a fast and portable dynamic translator. 2005: USENIX.
7. Victoria, B., Creating and Controlling KVM Guests using libvirt. 2009, University of Victoria.
8. Yu, J. Performance Evaluation on Linux Bridge. 2004.
9. SWSoft. OpenVZ User's Guide. 2005 July 1, 2009; Available from:

http://download.openvz.org/doc/OpenVZ-Users-Guide.pdf.
10. McLennan, M. and R. Kennell, HUBzero: A Platform for Dissemination and Collaboration in

Computational Science and Engineering. Computing in Science & Engineering, 2010. 12(2): p. 48-53.
11. Watson, J., Virtualbox: bits and bytes masquerading as machines. Linux Journal, 2008. 2008(166): p. 1.
12. Corbato, F. and V. Vyssotsky. Introduction and overview of the Multics system. 1965: ACM.
13. Nurmi, D., et al. The eucalyptus open-source cloud-computing system. 2009: IEEE Computer Society.
14. Amazon, E., Amazon elastic compute cloud. Retrieved Feb, 2009. 10.
15. Keahey, K., et al., Science clouds: Early experiences in cloud computing for scientific applications. Cloud

Computing and Applications, 2008. 2008.
16. Foster, I., Globus Toolkit Version 4: Software for Service-Oriented Systems., in IFIP International

Conference on Network and Parallel Computing, Springer-Verlag. p. 2-13.
17. Sempolinski, P. and D. Thain, A Comparison and Critique of Eucalyptus, OpenNebula and Nimbus.
18. Sotomayor, B., et al., Capacity leasing in cloud systems using the opennebula engine. Cloud Computing

and Applications, 2008. 2008.
19. Chen, G., Petaflop supercomputers of China. Frontiers of Computer Science in China, 2010. 4(4): p. 427-

427.
20. Vallée, G., T. Naughton, and S. Scott. System management software for virtual environments. 2007: ACM.

P
age 22.690.15

