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Facilitating Problem-Solving Transfer in Physics 
 

Problem: Learning to Solve Problems 

 

The most common method for teaching physics classes in universities is the worked example 

of how to solve textbook story problems.  Story problems consist of numerical values 

describing entities embedded in a thinly described context. In a worked example, the 

professor models the process for solving problems. A substantial corpus of research has 

shown that worked examples of problem solutions that precede student practice facilitates 

learning to solve problems by reducing the cognitive load and helping learners to construct 

problem-solving schemas 
1,2

.  

 

Worked examples, like most approaches to problem-solving instruction, assume that the 

learners induce or construct a schema for particular kinds of problems following 

demonstrations of the process. However, in the worked example teaching process, students 

learn to translate relationships about unknowns in the problem statement into equations 

(direct translation strategy), solve the equations to find the value of the unknowns, and check 

the values found to see if they satisfy to original problem 
3
.  So the schemas that students 

construct are process schemas that are bereft of conceptual understanding. Process schemas 

are procedures to be memorized, practiced, and habituated and that emphasize answer 

getting, not meaning making 
4
. When problem solvers attempt to directly translate the key 

propositions in the problem statement into a set of computations, they more frequently 

commit errors, because problem solving requires the capacity to recognize the deep structure 

of the problem 
5
.  

 

If we assume that the implicit goal of all problem-solving instruction is the transfer of 

problem solving skills to new, contextually divergent problems, then how do we help 

undergraduates better understand the deep structure of problems?  In order to transfer 

problem solving, learners access their schema for a particular kind of problem and 

analogically map it onto the target problem.  If they generalize the correct problem schema to 

the target problem, then the solution process is a matter of applying the solution portion of 

the problem schema to the new problem.  However, schema transfer faces three difficulties: 

over-reliance on quantitative problem representations and under-reliance on qualitative 

representations, mapping the incorrect problem schema to the target problem, and the over-

reliance on single analogues.   

 

In addition to quantitative problem representations, students need to construct qualitative 

(semantic) representations of problems. The “ability to construct and coordinate qualitative 

and quantitative problem representations is a precondition for successful and efficient 

problem solving in physics” 
6
.  Qualitative and quantitative representations are 

complementary. When solving physics problems, for example, qualitative problem 

representations are necessary prerequisites to learning quantitative representations 
7
. When 

students try to understand a problem in only one way, especially when that way conveys no 

conceptual information about the problem, students do not understand the underlying systems 

they are working in. So, it is necessary to support conceptual understanding in students 

before solving problems by helping them to construct a qualitative representation of the 
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problem as well as a quantitative one.  

 

A second difficulty in generalizing schemas during transfer is the tendency of student to 

generalize problem solutions based on surface level similarities among problems 
8, 9, 10, 11

.  

When humans are reminded of similar events by accessing them from long-term memory, 

that access is based more on surface commonalities than deeper level, structural 

commonalities
12

. Ross 
13

 found that superficial similarity influences retrieval of examples in 

statistics problems.  People fail to recall relevant examples, especially when the two case 

differ in surface features, because people focus on surface features 
14, 15

. 

 

A third impediment to schema generalization is the overuse of single analogues during 

instruction. Even though Sweller recommended multiple worked examples, the most 

common form of problem-solving instruction is the demonstration of a single problem 

followed by a practice problem. Traditional approaches to problem-solving instruction 

assume that people can abstract portable schemas from single examples and apply them to 

transfer problems. Loewenstein, Thompson, and Gentner 
16

 showed minimal transfer from a 

single example. Unfortunately, transfer from a single problem is insufficient for schema 

induction. However, over two decades of research has confirmed an advantage for comparing 

two cases over studying examples separately, a process known as analogical encoding. 

 

Analogical Encoding 

 

Analogical encoding is the process of mapping structural properties between multiple 

analogues. Rather than attempting to induce and transfer a schema based on a single 

example, Gentner and her colleagues have shown that comprehension, schema inducement, 

and long term transfer across contexts can be greatly facilitated by analogical encoding, 

comparison of two analogues for structural alignment 
16, 17, 18, 19

.  When learners directly 

compare two examples, they can identify structural similarities. If presented with just one 

example, students are far more likely to recall problems that have similar surface features. 

Analogical encoding fosters learning because analogies promote attention to commonalities, 

including common principles and schemas 
20

.  During analogical encoding, students must 

compare analogous problems for their structural alignment. Problems are structurally aligned 

when the relationships (arguments) among problem elements match 
18

. Despite the consistent 

results from analogical encoding research, there remain unresolved implementation issues.  

The first unresolved issue in analogical encoding is how generalizable it is. The vast majority 

of analogical encoding research has required learners to map relatively simple, context-

independent problems (e.g., Duncker’s X-ray problem) to test their understanding of single 

structural relationships 
21

.  Some analogical encoding research has focused on real-world 

negotiation problems 
16, 19, 22

, however those problems focused on only one or two structural 

comparisons among analogues. Although analogical encoding has been consistently shown to 

facilitate schema induction and transfer in simpler, domain-neutral problems, analogical 

encoding has not been tested with more complex STEM problems that have multiple 

structural relationships in the problem. Therefore, our research proposes to examine the 

efficacy of analogical encoding with more complex, context-dependent problems in physics.  
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The second unresolved issue in analogical encoding is how to elicit depth in the comparison 

process. Because learners typically compare problems based on surface level characteristics, 

learners do not tend to structurally align problems 
16

. However, Spencer and Weisberg 
23

 

showed that presentation of multiple source analogs is not sufficient to ensure transfer across 

contexts. Merely reading or receiving multiple cases is not enough to produce comparison 

effects [16]. So, a” fruitful avenue of research may involve searching for ways of helping 

learners to focus on relevant features of training examples in a variety of domains and to 

learn to reliably identify these features in transfer problems” 
17

. A limited body of research 

has examined methods for facilitating analogical encoding. In order to support that 

comparison process, different studies examined the physical juxtaposition of cases 
24

, using 

software 
25

, similarity ratings 
26,

 directed questions 
17

, describe commonalities 
20

, joint 

interpretation and alignment 
27

, and completing a diagram 
22

.   

 

Again, with complex problems, we are not certain how effective these methods would be. 

Structural alignment with more complex problems requires more systematic approach to 

analysis because of the complexity of the problems.  Therefore, we are examining how to 

support analogical encoding by asking students questions that require them to structurally 

compare problem pairs.  

 

Questions 

 

Questioning is one of the most fundamental cognitive components that guide human 

reasoning 
28

. The threads of coherent reasoning are built around questions that humans ask 

and the answers they receive.  Answering deep-reasoning questions articulates causal chains; 

goals, plans, and actions; and logical justification 
28

. The question-answer rhetorical structure 

is the most common dialogue pattern in naturalistic conversation 
29

. Question-driven 

explanatory reasoning predicts that learning improves to the extent that learners generate and 

answer questions requiring explanatory reasoning 
29

. Questioning is grounded in discourse 

theories of informal reasoning, and it is an essential process involved in problem solving, 

especially design problems 30. Questions arise in reciprocal relationship to decisions that 

must be made while solving problems.  

 Our research proposes supporting analogical encoding through questioning provided 

by a point-and-query system for selecting questions relevant to problem pairs. Catrambone 

and Holyoak 
17

 provided schema oriented questions to help learners focus on problem-

relevant aspects of the story.  They found that presentation of extensive comparison questions 

along with three analogs sufficient to enable transfer to superficially dissimilar target in the 

absence of hints.  Our research questions include: 

• Will analogical encoding improve problem-solving transfer in a physics course? 

• Will analogical encoding conceptual understanding of physics problems? 

• Will questions effectively enhance analogical encoding processes in a physics course? 

 

Methods 

 

Participants 

 P
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The participants in this study were enrolled in Phys 1210 (College Physics I), a 4 credit-hour, 

algebra-based physics at a Midwestern (U.S.) university.  A total of 207 students (108 male, 

99 female) began the course. Only 177 completed the course. This level of attrition is 

common for this type of course. The participants included sophomore, junior, and senior Pre-

med, pre-vet, and many other non-science majors (age, class, and major data were not 

available).  Like most introductory physics courses, Phys 1210 covers kinematics, dynamics, 

fluids, oscillatory motion, waves and thermodynamics. Data were collected throughout the 

spring, 2007 semester. 

 

Instruments 

 

Assessment instruments included standard examinations for the course that included both 

quantitative problems and conceptual questions. Embedded within these examinations were 

calculation questions (see example in Figure 1) and conceptual questions requiring 

comprehension of the relationships among problem elements but no calculations (see 

example in Figure 2).  These exams were time-restricted and completed during normal 

classroom periods during the semester. Student exam scores were calculated by adding the 

point values achieved by the students on all of the calculation questions plus the conceptual 

questions that were related to the treatment.  Examinations were graded by teaching 

assistants using standard answer rubrics.  For example, on the first exam in the course, 

student scores on problem 1 and questions 1, 2, and 5 were summed to provide the dependent 

variable for the first unit (dynamics).  The same kind of assessment was conducted for each 

of the other four units, work and energy, linear momentum and collisions, fluids (only 

sections related to the continuity equation and Bernoulli’s theorem), and thermodynamics.   

 

 
Figure 1. Sample calculation question embedded in examination. 

 

 
Figure 2. Sample conceptual question embedded in examination.   

 

Additionally, students completed pretest and posttest administrations of the Force Concept 

Inventory [31]. The Force Concept Inventory (FCI) is a multiple-choice test designed to 

assess student understanding of basic concepts in Newtonian physics. The primary purpose 

of the FCI is to evaluate the effectiveness of instruction.   
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Materials 

 

All instructional materials were presented to students on the course website, developed in 

WebCT, which was used to deliver all materials and assignments in the course except for the 

examinations.  During five units covered throughout the course, including Dynamics 

(Newton’s laws and applications), Work and energy, Linear momentum and collisions, 

Fluids (only sections related to the continuity equation and Bernoulli’s theorem), and 

Thermodynamics (only sections related to thermal cycles and the 2
nd

 law of 

thermodynamics), students were assigned to complete a “Conceptual Test.” In each 

conceptual test, a pair of problems taken from a textbook not used by the students in this 

class was presented (see Figure 3 for problem pair presented during the study of linear 

momentum and collisions). Following the presentation of each problem pair, several 

questions (Range = 7-17) were presented requiring students to compare the each problem in 

the pair for structural alignment (see Figure 4 for sample questions related to linear 

momentum and collisions).  These questions asked students to compare problem pairs on 

conceptual attributes of each problem. Because each question was asked about each of the 

problems in the pair, they required students to compare the problems related to the 

relationships examined by the question.  That is, each pair of questions required students to 

analogically compare a pair of problems.  No feedback was provided to the students about 

the correctness of their answers. Students’ responses to each question were automatically 

collected and summarized for each student by WebCT and made available for analysis.   

 

Procedure 

 

Consent to participate in the study was collected through a link on the course website. After 

reading about the requirements of the study, all students agreed to participate.   

 

Data were collected during the completion of five units in the course, including Dynamics 

(week 4), Work and energy (week 6), Linear momentum (week 7), Fluids (week 12), and 

Thermodynamics (weeks 14-15). These units were selected to represent a broad variety of 

physics concepts normally taught in an introductory course. Each unit was studied by the 

students for one to two week periods prior to moving on to the next unit. In addition to the 

Conceptual Tests described before, students attended lectures, read textbook assignments, 

and met with teaching assistants during recitation sections.  A limitation of this study is that 

we were unable substantially alter the pedagogy of the course because of students 

expectations about methods and workload.  Classroom expectation pose a serious limitation 

to all in situ classroom research. 
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Figure 3. Problem comparison for linear momentum and collisions unit. 

 

The Force Concept Inventory was completed by students during the first week of the class 

and again during the tenth week of class. Material covered subsequent to the tenth week were 

not addressed by the FCI.   

 

Results 

 

Student scores on the Conceptual Tests were generated by WebCT and are presented in Table 

1.  On average, students score 71% on the Conceptual Test assignment, with a range of 60% 

to 83%.  This variability is common in introductory physics courses, owing to the differential 

complexity of the material being learned in the course and the myriad individual differences 

that mediate that learning.  However, in this study, students scored lowest on the work-

energy assignments, even though work-energy concepts are seldom regarded as the most 

difficult. 
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Figure 4. Question prompts for structurally comparing linear momentum and collisions 

problems. 

 

Individual students scores for each of the Conceptual Tests were regressed onto the 

examination scores (see Table 2).  For every assignment, the students’ scores on the 

Conceptual Tests significantly predicted performance on the examination questions. The 

student scores on the treatment activity accounted for a range of 4.8% to 19.2% of the 

variance in student performance on the examination questions related to the treatment.   

 

Treatment Total Mean StdDev 

1 17 12.88 2.78 

2 10 8.27 1.87 

3 14 9.21 2.41 

4 11 6.57 1.97 

5 18 13.71 3.83 

Table 1. Descriptive statistics on treatments (Conceptual Tests). 

 

 

In order to assess the effects of the analogical encoding activity on problem solving vs. 

conceptual understanding, we split out the results on the two kinds of questions for practice 

assignments 1, 3, and 5 (see Figure 3). In all three exams assessing understanding of all five 

units, performance on the analogical encoding practice significantly predicted problem-

solving performance, accounting for approximately 10% of the variance for each problem.  

However, in only two of the three exams did the analogical encoding practice significantly 

predict performance on the conceptual questions, and those were barely significant at the .05 

level, accounting for only one or two percent of the variance.     
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Model SumSquares df MeanSq. F Sig. R
2
 

Exam 1 

Regression 

1589.47 1 1589.47 26.64 .000 .115 

Exam 1 

Residual 

12231.74 205 59.67    

Exam 2 

Regression 

139.97 1 139.97 9.60 .002 .048 

Exam 2 

Residual 

2798.41 192 14.57    

Exam 3 

Regression 

1249.99 1 1249.99 15.04 .000 .075 

Exam 3 

Residual 

15372.71 185 83.09    

Exam 4 

Regression 

1610.76 1 1610.76 41.59 .000 .192 

Exam 4 

Residual 

6777.45 175 38.72    

Exam 5 

Regression 

615.15 1 615.15 21.58 .000 .109 

Exam 5 

Residual 

5017.10 176 28.51    

Table 2. Regression analyses of assignments scores onto examination scores. 

 

Only 153 students completed both administrations of the Force Concept Inventory. Because 

the test was administered during recitation sections, which were not required, not all students 

enrolled in the course completed both the pretest and posttest.   A two-tailed t-test was used 

to compare the scores on the pretest and posttest (t (152)= -24.68, p =.000). Students’ scores 

on the posttest  (M=17.22 (4.84)) were significantly higher than they were on the pretest 

(M=9.10 (3.82)) indicating substantial gains in understanding of Newtonian mechanics. 

These gains (.41 std dev) are consistent with those that Hake found for several interactive-

engagement courses in physics 
32

. It is impossible to discern exactly what effects the 

analogical encoding treatments had on this gain. The improvement provides only evidence of 

improved conceptual understanding during the Newtonian portion of the course. 

 

Model Sum Squaresdf MeanSq F Sig. R
2
 

Exam 1 Problem Solving - 

Regression 

1012.63 1 1012.63 29.09 .000 .124 

Exam 1 Problem Solving 

Residual 

7135.53 205 34.81    

Exam 1  Conceptual -

Regression 

64.75 1 64.75 4.03 .046 .019 

Exam 1  Conceptual - 

Residual 

3292.02 205 16.06    

Exam 2 Problem Solving - 

Regression 

746.77 1 746.77 18.76 .000 .087 

Exam 2 Problem Solving 7363.59 185 39.80    
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Residual 

Exam 2  Conceptual -

Regression 

64.50 1 64.50 2.51 .115 .008 

Exam 2  Conceptual - 

Residual 

4750.62 185 25.70    

Exam 3 Problem Solving - 

Regression 

351.76 1 351.76 21.51 .000 .109 

Exam 3 Problem Solving 

Residual 

2877.83 176 16.35    

Exam 3  Conceptual -

Regression 

36.56 1 36.56 4.21 .041 .023 

Exam 3  Conceptual - 

Residual 

1525.57 176 8.67    

Table 3. Regression analyses assignments onto problem solving and conceptual 

understanding. 

  

Discussion 

 

An underlying assumption of this study was that any learning strategy, in order to have 

utility, must be able to be implemented in classroom settings. Despite the consistently 

positive findings for domain-neutral concepts, analogical encoding must be able to facilitate 

learning in authentic, classroom settings. However, conducting experimental research in 

classroom settings is subject to numerous limitations and a lack of experimental control.  In 

this content, heavy course requirements precluded experimental manipulations of treatments 

and the high level of interpersonal interactions among students enrolled in the course 

precluded a control group or alternative treatment.  In future studies, we hope to be able to 

implement more experimental control, although we anticipate confounding factors in the 

treatments.  

  

Despite the methodological limitations, the results of this study provide preliminary evidence 

supporting the effectiveness of using questions to scaffold analogical encoding while 

learning to solve physics problems. In all five of the assignments, student scores on the 

analogical encoding treatment significantly predicted performance on examination 

performance. Additionally, the conceptual focus of the treatment to some degree facilitated 

significant gains on the Force Concept Inventory. We cautiously conclude that the analogical 

encoding can facilitate performance on more complex problems, such as those in physics.   

 The fact that conceptually oriented analysis of problems better supported traditional 

problem solving than conceptual understanding is a bit of a surprise, especially over the 

course of the semester.  Such a result in a study with a shorter treatment period would have 

been less surprising These results contradict those of Hung and Jonassen 
33

 that showed that 

conceptually oriented strategies supported conceptual questions but not quantitative problem 

solving. In future studies, we will address this issue by using more standard forms for 

assessing schema quality (see discussion below).   
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Future Research 

 

While this study demonstrates some effectiveness of analogical encoding on problem-solving 

performance and conceptual understanding in physics, numerous questions remain.  In this 

study, we were constrained in the kinds of treatments we could implement because of pre-

existing course requirements.  In future research, we plan to address the following issues.   

 

First, we need to compare the effects of questions scaffolded analogical comparison with no 

scaffold.  Simply directing students to compare analogues has often proven insufficient for 

engaging structural comparisons.  We plan to add an analogical encoding group that is not 

scaffolded by questions and compare it to. That is, present two problems and direct students 

to compare them (perhaps writing down their analysis). Compare that group with one or 

more groups that use questions to scaffold analogical encoding.  If possible, compare with 

control group that does not compare problems.  

 

Second, we plan to assess the relative effectiveness of providing feedback to students while 

they are completing their analogical comparison activities. Feedback is one of most well 

established methods for supporting learning, however, it is generally overly simplified.  

Hattie and Temperly 
34

 recommend that multiple kinds of feedback are required to provide 

learners about the nature of the task, how they are processing the task, how they can self-

regulate so learners can answer questions, such as where am I going, how am I going, and 

where to next?  It is likely that feedback on their conceptual comparisons will help students 

to induce stronger schemas that are more transferable. 

 

We have found some support for the use of questions to focus the structure mapping process. 

Third, can these questions provide reasonable models for student question generation, and 

will student question generation facilitate schema induction and comprehension? Research 

has shown that teaching students how to generate questions about reading material improved 

comprehension 
35

. The quality of student questions is a strong predictor of student 

achievement 
36

. For example, King 
37

 found that when students were taught to generate 

questions that promote connections among ideas within a lesson as well as ones intended to 

access prior knowledge and experience engaged in more complex knowledge construction 

than those trained in lesson-based questioning. If students are able to apply models of 

structural mapping questions to problems, we predict that schema induction will improve.  

So, we plan to examine the effects of questions vs. no questions on question generation and 

then examine the quality of student-generated questions on schema quality and problem 

solving. 

 

Fourth, we plan to explore different methods for assessing schema quality, including text 

editing 
38, 39, 40

 where students identify whether problems contain sufficient, irrelevant, or 

missing information; judging the similarity of problems 
38, 39

; problem classification
8
, or 

recall details of problems seen or solved previously 
38

 assuming that recall of surface detail 

poor schematic knowledge and recall of structural details indicates stronger schemas.  These 

more precise measures of schema quality will more likely be related to problem-solving 

performance.   
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