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Abstract 
 
Microalloy steels are potentially used for applications in earthmoving equipments and 
automobile components. Their excellent combination of strength and ductility/formability at 
lower costs are the distinct advantages over similar high strength low alloy steels. In the present 
investigation, fatigue behavior/fracture toughness of microalloy steel was studied to evaluate 
their influence on microstructure. It was found that the fatigue properties (in terms of fracture 
toughness) as well as the tensile properties (in terms of 0.2% proof stress) of microalloy steels 
increased with increase in martensite content. Artificial neural network (ANN) based theoretical 
prediction model was developed and was found to exhibit excellent matching with the 
experimental results. This simultaneous increase in fatigue and strength properties of microalloy 
steels makes them potential materials for various engineering applications. 
 

1.  Introduction 

The normal approach for avoiding premature material failure is by designing stresses well below 
the yield strength of the material. However, many of the new high strength and/or high elastic 
materials under extreme conditions, when the same approach was used leading to catastrophic 
failures. The fractures occurred in a brittle manner and the materials did not exhibit their typical 
ductility even at lower stress levels. Design criteria have been subsequently developed for the 
safe use of materials on the basis of fracture toughness. Fracture toughness is a fundamental 
material property that depends on many factors, the most influential of which is microstructure 
of the material. The influence of microstructure on fatigue crack growth behavior in steels has 
been a subject of considerable research interest for many years. Some of the recent research 
finding of the current authors in this direction have been highly encouraging 1-5. Evaluation of 
newer materials with improved combinations of strength, ductility and toughness has led to the 
emergence of microalloy steels in recent years. Microalloy steels were developed to satisfy an 
increasing need, primarily in the automobile industry, for new high strength steels that permit 
weight reduction with neither sacrificing formability nor dramatically increasing costs. 

 
Artificial Neural Network (ANN) can be effectively used to develop models to analyze and 
predict mechanical properties of materials. Neural computing is a relatively new field of artificial 
intelligence (AI), which tries to mimic the structure and operation of biological neural systems, 
such as the human brain, by creating an Artificial Neural Network (ANN) on a computer. These 
ANNs are modeling techniques that are especially useful to address problems where solutions 
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are not clearly formulated 6 or where the relationships between inputs and outputs are not 
sufficiently known. ANNs have the ability to learn by example. Patterns in a series of input and 
output values of example cases are recognized. This acquired “knowledge” can then be used by 
ANN to predict unknown output values for a given set of input values. Alternatively, ANNs can 
also be used for classification. In this case, the artificial neural networks’ output is a discrete 
category to which the item described by the input values belongs. ANN are composed of simple 
interconnected elements called processing elements (PEs) or artificial neurons that act as 
microprocessors. Each PE has an input and an output side. The connections on the input side 
correspond to the dendrites of the biological original and provide the input from other PEs while 
the connections on the output side correspond to the axon and transmit the output. Synapses are 
mimicked by providing connection weights between the various PEs and transfer functions or 
thresholds within the PEs.  Figure 1 illustrates a simple processing element of an ANN with three 
arbitrary numbers of inputs and outputs 4. The activation of the PE results from the sum of the 
weighted inputs and can be negative, zero, or positive. This is due to the synaptic weights, which 
represent excitatory synapses when positive (wi>0) or inhibitory ones when negative (wi<0). The 
PEs output is computed by applying the transfer function to the activation, which as a result of 
the synaptic weights, can be negative, zero, or positive. The type of transfer function to be used 
depends on the type of ANN to be designed.  
 
One of the most popular neural network models is the back-propagation network.  Currently, 
back-propagation is the most popular, effective and easy to learn model for complex networks. 
To develop a back-propagation neural network, a developer inputs known information, assigns 
weight to the connections within the network architecture, and runs in the networks repeatedly 
until the output is satisfactorily accurate.  The weighted matrix of interconnections allows the 
neural networks to learn and remember 7. 

 

2. Material and heat treatment  

 
Commercial microalloyed steel (hot rolled condition) was used in the present investigation. The 
composition of this steel is given in Table 1. Half size compact tension (CT) specimens were 
used for the evaluation of fracture toughness as per ASTM E399 standard. All the machined CT 
specimens were austenitized at 920oC in a muffle furnace, homogenized for 30 min and then 
quenched in 9% brine solution to get a fully martensitic structure. This was to ensure the same 
starting microstructure in all the cases. The individual CT specimens were intercritically 
annealed between 730oC and 850oC to get ferrite+martensite structure with martensite content 
varying between 32 and 76%. 
 
 
Table 1 Chemical composition of microalloy steel. 
 
Element C Mn Si S P Cr Mo V B 

Weight % 0.14 1.36 0.50 0.007 0.028 0.042 0.115 0.062 0.002 
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3.  Fracture toughness test 

 
Half-size compact tension (CT) specimens were used as per the ASTM E399 standard. Fatigue 
precracking was carried out as per ASTM E647 standard using INSTRON-UTM (Model 8032 
servohydraulic closed loop test system of capacity 100 kN) machine. Load shedding technique 
was used to develop the crack growth at different stress/∆K values. Crack growth was monitored 
using a traveling microscope (with a resolution of 0.01mm) on optically polished surfaces. About 
0.05-mm crack extension was monitored at each load decrement, keeping the load ratio (0.1) 
constant. Tests were terminated when the crack size was about half the size of the width (0.5W) 
of the sample.  
 
The precracked specimens were subjected to load-displacement test under stroke control mode at 
a displacement rate of 2 mm/min, till fracture. Using the test program (software) the load 
corresponding to a 2% apparent increment in crack extension(PQ)was established. From this 

y = f(T) 

T = Σ (wi xi) 

X1 X2 X3 

w1 w2 w3 Synaptic weights 

Activation 

Transfer 
function 

Inputs coming from 
other PEs 
(corresponds to the 
dendrites of a 
biological neuron) 

y y y Output signal to 
other PEs 
(corresponds to the 
axon in biological 
neurons) 

Figure 1 Processing element of an ANN model with 
three arbitrary numbers of inputs and outputs 
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value of PQ, apparent value of fracture toughness (KQ) was calculated as per ASTM standard 
E399. 

 
4. Influence of microstructure 
 
Typical microstructures are presented in Figure 2(a) and 2(d). Martensite is platelet in type in 
most of the microstructures except blocky in type at higher volume content of martensite. 
Detailed microscopic examination was carried out for the microalloy steel samples containing 
martensite from 32% to 76%. The morphology of martensite in microalloy is known to cause 
significant differences in crack propagation thereby affecting the fracture toughness. In the 
present investigated microstructure, a martensite envelope surrounds the crack growing in ferrite. 
It has been shown that the martensite in the present microstructure constrains the plastic 
deformation in the ferrite phase.  The constraining effect in the present type of microstructure 
increases with the increase in the volume fraction of martensite having a continuous network 
enclosing ferrite phase.  
 
Typical fatigue fracture surface features for the microalloy steel at near threshold regions are 
given in Figure 2(b), 2(c), 2(e) and 2(f). At near thresholds, they are characterized by 
transgranular/intergranular cleavage resulting from the coexistence of main crack and the 
branched cracks. At the near threshold region, wherein the size of the crack becomes equal to or 
less than that of the grains, the fracture features are governed by the crystallography of individual 
grains as evident in these figures. The secondary cracks are responsible for the deceleration of 
crack growth.  
 
5.  ANN back-propagation model  
 
The major property that deems ANNs superiority to algorithmic and other network based 
systems is their ability to be trained on historical information as well as real-time data. Training 
is the act of continuously adjusting their connection weights until they reach unique values that 
allow the network to produce outputs that are close enough to the desired outputs. The accuracy 
of the developed model, therefore, depends on these weights. Once optimum weights are 
reached, the weights and biased values encode the network’s state of knowledge. Thereafter, 
using the network on new cases is merely a matter of simple mathematical manipulation of these 
values.  
 
The neural network used for the proposed model was developed with NeuroShell 2 software by 
Ward Systems Group, Inc., using a back-propagation architecture with multi- layers jump 
connections, where every layer (slab) is linked to every previous layer. In model-1, the network 
was trained for yield strength. The inputs were the annealing temperature (T), and volume 
percent of martensite content (%M), and outputs were the yield strength (0.2% Y.S.).  In model-
2, the network was trained for Charpy Toughness and Fracture Toughness. The inputs for the 
model-2 were the annealing temperature (T), volume percent of martensite content (%M), and 
yield strength (0.2% Y.S.), and outputs were Charpy Toughness and Fracture Toughness. The 
number of hidden neurons, for which the logistic activation function,  f(x)=1/{1+ exp(-x)} was 
used, was determined according to the following formula 8:  
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Figure 2 Typical microstructures and fractographic features of microalloy steel  
 
 
Number of hidden neurons = 0.5(Inputs + Outputs) + √(Number of training patterns) 
 
In the present research, several different ANN back-propagation trial models with different 
layers/slabs connections, weights and activation functions (including linear, Tanh, Tanh15, Sine, 
Symmetric Logistic, Gaussian, Gaussian Complement, etc.) were trained. In addition, pattern 
selections including “Rotation” and “Random” were used with weight updates using Vanilla, 
Momentum and TurboProp. The presented ANN back-propagation model with logistic activation 
function, "Rotation" for pattern selection, and "TurboProp" for weight updates was the best one 
among all other trials, which converges very rapidly to reach the excellent statistical performance 
with the coefficient of multiple determination, R2 = 0.999, and squared of coefficient of 
correlation, r2 =0.998. 
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The training models are presented in Figures 3 through 5 for the variation of yield strength, 
charpy toughness and fracture toughness with intercritical annealing temperature respectively. 
The ANN based training model and the experimental results show excellent matching as evident 
in all these figures. 

 
Figure 3 Annealing Temperature vs. 0.2 % Yield Strength – Actual and ANN Prediction during 
Training 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Annealing Temperature vs. Fracture Toughness – Actual and ANN Prediction during 
Training 
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6. Prediction models 

6.1. Prediction model for fracture toughness as a function of temperature 

The prediction model for the above is presented in Figure 5. Generally, both fracture toughness 
and charpy toughness increased with increase in temperature of intercritical annealing. Also, it is 
evident that the microalloy steel can be annealed above 8500C to further enhance the toughness 
properties. However, the toughness properties seem to reach the saturation point around 9300C.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5 ANN Prediction for Fracture Toughness as a function of heat treatment 

 

6.2. Prediction model for fracture toughness as a function of martensite content 

Figure 6 demonstrates the prediction model for the toughness properties as a function of 
martensite content. As in the previous case, both fracture toughness and charpy toughness 
showed a general increasing trend with increase in vol% of martensite. Furthermore, the 
toughness properties reached maximum for the microalloy steel at about 97% martensite. From 
this prediction model, it is clear that the optimization of toughness properties would occur for the 
microalloy steel containing 97 vol% martensite.  
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Figure 6 ANN Prediction for Fracture Toughness as a function of % Martensite content 

 

7. Conclusions 

The simultaneous improvement and the best combination of strength and fracture toughness were 
observed for the microalloy steel containing 76% martensite. Furthermore, based on the ANN 
prediction models, the fracture toughness properties showed maximum values at 9300C and at  
about 97% martensite. ANN based prediction model demonstrated the best statistical 
performance with the experimental results. These predicted fracture toughness values can be 
reliably used in any engineering application substituting the complexity and the higher cost 
involved in fracture toughness testing. 
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