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Fishers Handle Bugs Better than Fish-Receivers:  
Nourishing Computational Self-Efficacy in Engineering Coursework 

 
 
Abstract 
 
As the use of computational tools and advanced computing principles proliferates in engineering 
practice, a growing number of engineering curricula place heavy emphasis on developing 
computational reasoning skills. This pedagogical imperative presents unique challenges in 
graduate-level computational engineering courses, which often feature enormous heterogeneities 
in undergraduate background, disciplinary training and interest, and — in particular — prior 
exposure to computer programming and associated best practices. In this work, we focus on a 
graduate-level course that features a series of progressively scaffolded assignments in which 
students develop an elaborate molecular simulation code. We present strategies that have been 
deployed in this course, aimed at encouraging the development of computational self-efficacy. 
We also provide qualitative and quantitative assessments of these strategies, with special 
attention dedicated to assessment techniques that foster a growth mindset in the context of 
improving computational efficiency. We explore how providing students with a chance of 
resubmitting assignments improves learning outcomes. The positive effects are especially 
pronounced for students who have a smaller number of prior computing-related courses. We also 
discuss trends observed as a function of students’ preferred programming language, and 
correlations between preferred language (especially whether the language is compiled or 
interpreted) and likelihood of prioritizing computational efficiency. These results have natural 
implications for the inclusive and equitable growth of graduate-level computational engineering 
curricula, including and especially for graduate-level onboarding. Taken as a whole, our work 
highlights opportunities to encourage our students to — as the adage goes — seek substance 
beyond “proffered fish,” learn how to “handle bugs,” and eventually “fish for themselves.” 



Introduction 
 
A growing number of mechanical engineering programs require at least one course in 
computational engineering at the undergraduate level, with many engineering departments now 
offering significant advanced undergraduate- and graduate-level computational engineering 
coursework (and, in many cases, graduate-level degrees or certificates in computational 
engineering). As the popularity of computational engineering continues to grow, especially at the 
MS and PhD levels, so too do the challenges of teaching courses in this field, given the wide range 
of prior experiences that students bring to their graduate-level coursework. To maintain diverse, 
equitable, and inclusive classrooms, it is critical to invest in and deploy pedagogical strategies that 
help less-experienced students thrive alongside their peers with more prior computing experience. 
 
As has long been known to both teachers and students of computer programming, proficiency in 
computing requires significant iterative practice over a long period of time to develop both high-
level conceptual proficiency in addition to “muscle memory” (see, e.g., [1], [2], for historical 
discussions of student development of computational problem-solving skills).1 Unsurprisingly, 
there is considerable evidence that incremental, scaffolded exposure to programming concepts 
enhances student learning outcomes [3], [4]. Computational engineering brings an additional 
challenge in that it requires not only proficiency with computer programming, but also conceptual 
adeptness with an underlying body of domain-specific knowledge. Past work (see, e.g., [5]) has 
established that the opportunity to resubmit assignments in an undergraduate-level computing 
course improves student learning.  
 
Following in the spirit of these prior results, in this work, we tackle the following question: “Does 
providing the opportunity to resubmit earlier assignments improve student learning outcomes in a 
graduate-level computational engineering course?” In the process of addressing this question, we 
also seek to answer a related question: “Are there patterns across students who use each computer 
language that might inform best practices for instruction in computational engineering?” 
 
 
Educational Context and Methodology 
 
This study was performed in the context of a course entitled, “Molecular Simulation of Materials” 
(MSM). This is a graduate-level course in the College of Engineering at Carnegie Mellon 
University. The typical enrollment of the class is between 15 and 25 students, primarily at the MS 
and PhD levels, with a small number (typically < 10%) of undergraduate students. The course has 
no official prerequisites, but assumes basic knowledge of calculus, linear algebra, probability and 
statistics, classical mechanics, and thermodynamics at the undergraduate level.  
 
As one of the core deliverables in the course is the development of a relatively significant 
molecular simulation code from scratch (a task that requires on the order of 30-40 hours of effort), 
students are also expected to have basic proficiency with computer programming. The course staff 
flexibly accommodates students wishing to use any computer language amenable to scientific 

 
1 The same could, of course, be said for essentially any skill. Based upon the authors’ anecdotal experience, this 
claim is especially true for the skill of computer programming. Moreover, computing is an area in which students 
tend to exhibit more significant heterogeneity as compared to, e.g., background with thermodynamics. 



computing; in practice, all students have used one (or some combination) of C++, MATLAB, and 
Python. In a typical semester, there is a large amount of heterogeneity with regard to scientific 
computing background, ranging from less than one semester of prior experience to greater than 
five years of prior experience. 
 
The course has six problem sets and a final project (written report and presentation) on a topic of 
the student’s choosing. The (heavily scaffolded) problem sets guide students to develop a 
homegrown molecular simulation code that employs both the molecular dynamics (MD) and the 
Rosenbluth-Hastings-Metropolis Monte Carlo (MC) techniques. Each problem set contains a set 
of questions that emphasize theoretical principles (and generally do not require programming) as 
well as several problems that guide the student to continue developing their molecular simulation 
code.  
 
Given the broad diversity of backgrounds with computing, students are not formally assessed or 
graded on the computational efficiency or scalability of their codes (students, of course, must 
develop computer programs that can run to completion by the assignment due dates in order to 
receive full credit). Provided that the relevant scientific principles are correctly implemented, full 
credit is awarded (in many cases, suggestions targeting greater efficiency are provided as feedback 
when assignments are returned). However, depending on the use of computationally efficient 
programming practices, the time it takes to complete each assignment can vary dramatically (in 
some cases by over two orders of magnitude, even when the underlying scientific principles are 
implemented entirely correctly). The ability to quickly identify and debug errors in code also 
depends upon being able to run the code itself (or at least small portions of it).  
 
For problems that require computer programming, after receiving grades and feedback on their 
initial submission, students are allowed to “take a mulligan” (i.e., improve their code and 
resubmit). Full details on the resubmission policy are provided in the Appendix.  
 
To gain insight into the questions identified in the previous section, we have compared the 
performance of students who consistently chose to take advantage of the resubmission policy 
against those who did not. We have also looked for common patterns between students who made 
use of Python vs. MATLAB, the two most heavily used languages in the semester this study was 
conducted. 
 
 
Results 
 
A total of 11 students took advantage of the resubmission policy, and all 11 students attained higher 
assignment scores. Nine of these 11 students showed substantial improvement, with score 
increases in excess of 25%. Students with limited prior programming experience featured 
prominently in this group. Students who took advantage of the resubmission policy had taken an 
average of 1.9 prior computing-related courses (Table 1), while students who did not resubmit had 
taken an average of 4.3 courses. The latter group scored significantly higher on their initial 
submissions. 



 Prior computing-
related courses2 

Initial assignment grade 

Single submission 4.3 99% 
Resubmission 1.9 62% 

Table 1: Averages for amount of prior computing-related coursework and initial assignment 
grade, split out by whether a student took advantage of the homework resubmission policy. 
 
We noticed that the instructional staff played an important role in these improvements, as 
evidenced by interactions during office hours. Most of these students displayed engagement 
considerably beyond, “my code does not work well, why is that?”, which we attribute to significant 
additional time to revisit earlier code (and in some cases completely carry out complete 
restructuring of their code). Some of these students even took a step further than having merely 
working code, and implemented additional features to accelerate their code, well beyond basic 
assignment requirements. We believe that this curiosity was motivated by their conversations with 
the instructional staff (and fundamentally enabled by the flexible resubmission policy).  
 
Yet another observation (perhaps unsurprising to seasoned computational engineers) is that the 
prevalence of code vectorization (a consensus best practice that is associated with high 
computational efficiency) was higher amongst students electing to use MATLAB as compared to 
students electing to use Python (Figure 1). Although all students who did not initially use 
vectorization eventually performed some vectorized operations in subsequent problem set 
submissions, this (admittedly small-statistics) difference between Python and MATLAB users is 
intriguing, and potentially suggests a benefit to placing an emphasis at the undergraduate level on 
any language that naturally permits vectorization. 

 
Figure 1: Number of students using each language, as well as a particular practice (vectorization) 
associated with computational efficiency. 
 

 
2 The term “computing-related courses” covers both computer science courses and computational 
science/engineering courses, either at an introductory or an advanced level (e.g., numerical methods, computational 
fluid dynamics, finite elements, algorithms, or databases). 



From a course evaluation perspective, we have a sparse but encouraging body of results. This 
course has been offered twice by the current instructional team, with the policy on assignment 
resubmissions described in this work implemented in the second offering. Overall ratings of the 
course by mechanical engineering students increased from an average of 4.92/5.00 to 5.00/5.00 
and ratings of the instructor increased from an average of 4.92/5.00 to 5.00/5.00. Although neither 
of these increases are, of course, statistically significant, both data points are consistent with 
numerous pieces of qualitative feedback from students that these changes were positively received. 
In particular, one piece of (anonymous) end-of-semester feedback highlighted the beneficial 
effects of these course policies: 
  
“Prior to [this course], I thought I was good at coding, but this course helped me learn what I 
didn’t even realize I didn’t know. I’m glad that we had the chance to correct [our assignments], 
which took some of the pressure off and helped me focus on learning how to code better.” 
 
 
General Principles for Nurturing Computational Self-Efficacy 
 
In this section, we highlight several broad principles that we have found effective for nurturing 
computational self-efficacy, and that we believe are broadly applicable for other computational 
engineering courses. 
 

• Give students opportunities to continue improving upon their code submissions after 
assignment deadlines, without releasing official solutions: This approach, grounded in the 
principles of mastery-based learning and growth mindset, allows each student to find (and 
resolve) issues in their code at a pace that is personalized to that student (and without 
generating anxiety or discouragement upon seeing an “official” solution or solutions that 
is structured significantly differently from their own). Needless to say, this approach 
presumes that students have a sufficient level of intrinsic motivation to master the course 
material, and may be more suitable for graduate-level courses as compared to 
undergraduate-level courses. This practice may be especially helpful in computational 
engineering courses, where students are responsible for both a significant amount of code 
development as well as mastery of an underlying body of scientific and engineering 
principles. By providing students the opportunity to revisit earlier submissions, they can 
focus more on “in-the-weeds” computational details as their fluency with domain-specific 
material improves.  

• Offer to meet students “where they are” and “as they are,” even while offering them 
recommendations for improvement: Unlike an introductory course, for which students 
typically have little to no prior background with the subject matter (and, as a consequence, 
students are somewhat more likely to pattern their solution methodology after the 
approaches introduced in class), students in a graduate-level course are more inclined to 
deploy a (very) broad range of solution approaches. We have found that it is helpful to 
accommodate as much of this natural diversity as possible, and it is beneficial not to 
constrain solution approaches at the outset by requiring, e.g., the use of a specific computer 
language or the use of object-oriented programming. In our experience, most students find 



their own way to inquiring about best practices, if given the opportunity to improve upon 
their previous assignment submissions. 

• Provide students “hands-on experience” with computational efficiency (or lack thereof) as 
early as possible: In the first problem set of this course, students are asked to estimate the 
computational cost of performing a molecular simulation that explicitly accounts for all of 
the water molecules in a small (millimeter-scale) droplet of water. Without any 
optimizations for computational efficiency, this calculation suggests a total simulation time 
on a laptop that is longer than the age of the Universe. However, in our experience, 
correctly answering this cautionary tale of a question was insufficient to motivate most 
students to prioritize the use of efficient programming practices (e.g., the use of a “just-in-
time" compiler in Python), or to seek out guidance about how to improve their efficiency. 
In contradistinction, if a student encounters an estimated runtime of ~100 hours (with 
perhaps less than 24 hours left before the assignment deadline), they are much more likely 
to take the need for computational efficiency seriously. Especially in such cases, the 
availability of assignment resubmission is likely to drive improved learning outcomes, 
since a substantial restructuring of code may take several days to implement. 

 
 
Conclusion and Future Directions 
 
In this work, we have discussed several strategies implemented in a graduate-level computational 
engineering course to help students develop a sense of computational self-efficacy. Although this 
course has a specific focus on molecular simulation, the general principles described here should 
be broadly applicable to any course with a significant computational engineering component, and 
should be fairly easy to implement in graduate-level courses, especially when there is a modest 
student-to-instructional-staff ratio. Our qualitative and quantitative results indicate that the 
mastery-based practice of allowing students to iteratively improve and resubmit their code is 
helpful for improving learning outcomes and for nurturing a sense of computational self-efficacy 
in students. At its core, our work reinforces the adage, “if you give a person a fish, they will eat 
for a day; if you teach a person to fish, they will eat for a lifetime”: By giving students ample 
opportunities to “fish” for themselves, they – perhaps unsurprisingly – become more adept at 
handling bugs. 
 
In the future, it may be intriguing to collect more detailed information on each student’s specific 
computational background (e.g., computational languages and environments known, familiarity 
with object-oriented programming, number of computational courses previously taken, etc.). 
Given that most graduate students tend to take a relatively specialized course load (potentially 
featuring multiple computational engineering courses in a single semester), it would also be 
interesting to investigate the potential for synergistic (or adversarial) effects between multiple 
courses taught with different policies regarding assignment resubmission. In the years to come, it 
will be particularly interesting to study what kinds of educational practices are effective for 
nurturing computational self-efficacy in students who primarily learned computer programming 
via online courses during 2020 and 2021.  
 
 



Appendix: Sample Guidelines for Problem Resubmissions 
 
Below, we provide the text that was provided to students informing them of the opportunity to 
“take a mulligan” on the third problem set of the course (i.e., to improve and resubmit the problem 
set).  
 
All problem sets will be returned by the end of this week. You may re-do as much of the “Problem 
Set the Third!” as you would like to re-do. 
 
Several levels of mulligan are available: 

• “Simple resubmission” (essentially turning in a late and improved version of the 
assignment): Up to 30% of deducted points will be added back. 

• “Resubmission + reflection” (in addition to previous material, also attach a memo clearly 
explaining where you initially erred for each problem, and how you corrected these 
issues): Up to 60% of deducted points will be added back. 

• “Resubmission + reflection + hints” (in addition to previous material, also attach a 
thoughtful set of hints for future students tackling this problem… quality of hints will be 
judged based on helpfulness and appropriateness): Up to 90% of deducted points will be 
added back. 
 

Mulligans are due by 5 PM on Halloween (make sure to take some time and get outside on 
Halloween evening)! 
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