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Abstract 
 
Recent Control Systems, Communication Systems and Digital Signal Processing (DSP) courses 
have relied heavily on MATLAB and/or C, representing the state of the art in textual 
programming, for their standard computer tools.  Many textbooks are published containing 
examples, if not sections, utilizing these textual languages.  Whereas this environment may be 
efficient in manipulating equations, textual implementation of processes best described by block 
diagrams loses its intuitive substance.  In this paper, we will describe experiences in a DSP 
course with an alternative graphical programming environment, namely LabVIEW, from both a 
student’s and an instructor’s perspective.  We will describe the adjustments that have to be made 
by individuals trained in conventional, textual programming environments during the transition 
to the graphical environment.  We will give examples of implementations that are better left 
graphical, such as direct form, canonical, transpose of canonical and cascade realizations of IIR 
filters.  We will conclude with a summary of student feedback on the effectiveness of the 
graphical programming environment in the presentation of DSP topics. 
 
I.  Introduction 
 
As computer applications become indispensable tools in electrical engineering curriculum, we 
observe that a number of applications have become widespread computer tools in electrical 
engineering textbooks.  Spice and its derivatives pervade courses that cover circuit analysis and 
electronics, with most standard textbooks on these subjects devoting sections or having 
supplements available with simulations in this application1-7.  MATLAB and its derivative 
SIMULINK have become the standard computer tool for control systems8-11, communication 
systems12-14, digital signal processing (DSP)15-16 and even circuit analysis1.  The C programming 
language has replaced FORTRAN in the electrical engineering curriculum, as the more senior 
author has observed this transition from his undergraduate studies in the late seventies to 
graduate studies in the eighties.  Numerical recipes in C, either in software or printed book 
form17, have helped many a graduate student in getting through different projects.  With the 
exception of SIMULINK and the graphical interface for PSpice, these different computer tools 
of the trade are text-based environments, as opposed to a newer breed of programming 
environments that take advantage of the more recent development of the graphical interface.  
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The most ardent employer of this graphical programming environment has been National 
Instruments with their LabVIEW package that runs on a number of platforms, namely, MacOS, 
Windows, UNIX and Linux.  A contender is Hewlett-Packard’s HP VEE, available on Windows, 
HP-UX and SunOS18.  Another serious contender is SIMULINK with its textual roots on 
MATLAB.   
 
All these graphical environments are data-driven as opposed to the command-driven textual 
languages, in which the computer executes one line of command after another.  Therefore, 
processes that describe what happens to various inputs to achieve an output, so easily depicted 
by block diagrams in control systems, communication systems and DSP, are better candidates 
for simulation and/or realization in a graphical programming environment than in a textual 
environment.  On the other hand, processes that are best described by line after line of 
mathematical equations are better suited for textual programming environments.  That is not to 
say that block diagram representations cannot be realized by textual languages and vice versa.  
DSP applications traditionally implemented in C or MATLAB are testimony to the effectiveness 
of the former, but the intuitive association of the process to the code that realizes/simulates it 
becomes more obscure when the code is in a textual language.  Likewise, processes that involve 
many complicated mathematical formulae become cumbersome to code in graphical languages. 
 
This paper describes the recent experience we have had in using LabVIEW, a graphical 
programming environment, in a senior level DSP course at Dordt College.  We will first give a 
brief course description with the particular textbook used.  We will then give an overview of 
DSP utilities of LabVIEW.  We will proceed with examples in which a graphical environment is 
more intuitive for the student of DSP, who has to be able to program signal processing routines 
on top of knowing how to use them.  We will then convey the consensus of our small class on 
the effectiveness of LabVIEW in demonstrating DSP concepts, finishing with our concluding 
remarks. 
 
II.  The Overall Environment:  The Course, the Facilities and the Tools 
 
The engineering department at Dordt College offers an ABET-accredited engineering major as 
well as a non-accredited engineering science major.  Students in the engineering major may opt 
for either a mechanical or an electrical emphasis.  As a result of the curriculum revision that has 
recently been implemented, students in the electrical emphasis have a number of class-electives 
in their senior year.  In the first semester the class chooses between Analog Circuit Design and 
Digital Signal Processing.  This year's senior class was the first to have this choice and they 
decided to go digital, inaugurating the full-semester offering of DSP.  The textbook that the 
instructor chose for this first offering was Orfanidis' Introduction to Signal Processing15.  This 
textbook was chosen because of its good balance between theory and practical applications as 
well as its many examples in C and/or MATLAB with the provision of code.  The topics covered 
in this offering were:  sampling and reconstruction, quantization, properties of discrete-time 
systems, FIR filtering and convolution, z-transforms, transfer functions, digital filter realizations 
(such as direct form, canonical form and cascade form, hardware realizations and circular 
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buffers and quantization effects in digital filters), signal processing applications (digital 
waveform generators, digital audio effects), DFT/FFT algorithms, FIR digital filter design and 
IIR digital filter design. 
 
EGR 366, Digital Signal Processing, is a three credit class which met for three 50-minute 
periods a week.  The mode of instruction employed active learning in which students were 
required to read the topic of the day prior to coming to class and the class period was utilized to 
clear concepts, emphasize important points and to study practical applications.  After the initial 
background material was covered in a conventional classroom setting, the second (and larger) 
portion of the semester was spent in the electronics laboratory, which is furnished with 
computers with the LabVIEW software. 
 
The Dordt College Engineering Department enjoys two facilities dedicated to engineering 
applications.  One is a computer lab that offers, on top of the general college-wide applications 
such as word processing and internet access, engineering specific applications such as 
AutoCAD, MathCAD (v. 8) and MATLAB (v. 6) that are served over the network.  The other 
facility is the electronics lab which is comprised of 11 workstations furnished with computers 
that are connected to the Dordt network and therefore have access to network-served 
applications plus the National Instruments’ full development version 5.1 of LabVIEW to work 
with the NI-488.2 (IEEE 488 standard) cards for the control of and communication with the 
Tektronix TDS 210 Digital Oscilloscopes and Global 2003 Sythesized Function Generators.  
During the first few weeks of the semester the class agreed to meet in the electronics lab in 
addition to regularly scheduled times to learn LabVIEW with the intent of using it for 
applications in DSP.  LabVIEW was chosen to supplement the course for two main reasons:  i) 
the professor’s prior experience with it19-23 and ii) the students’ recognition that it is a worthwhile 
programming environment that will complement the other packages, namely Visual Basic, 
MATLAB and MathCAD, already introduced in other courses. 
 
LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a graphical 
programming environment, based on the concept of data flow programming, particularly suited 
to test and measurement applications24.  The three important components of such applications 
are data acquisition, data analysis and data visualization.  LabVIEW offers an environment 
which covers these vital components.  It is the combination of these specialized components and 
the data-flow programming paradigm that makes it attractive to scientists and engineers 
interested in quick test and measurement applications. 
 
LabVIEW programs are called virtual instruments (VIs).  The Signal Processing Library of the 
LabVIEW Full Development System (v. 5.1) contains VIs that are arranged in groups.  The 
groups pertinent to the DSP course are listed below: 
 
• Signal Generation, containing VIs for generating different signals such as a sine wave, a 

square wave, a chirp signal and white noise. 
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• Time Domain [processing], containing VIs for computing convolution, deconvolution, auto-
correlation, cross-correlation, decimation and similar routines. 

 
• Frequency Domain [processing], containing VIs for computing the power spectrum, 

complex FFT, complex inverse FFT, fast Hilbert transform, inverse fast Hilbert transform and 
similar routines. 

 
• Measurement containing such procedures as auto power spectrum, cross power spectrum, 

amplitude and phase spectrum, [estimation of] transfer function, [estimation of] impulse 
function. 

 
• Filters containing such procedures as Butterworth, Chebychev, Inverse Chebychev, Elliptic, 

Bessel high/low/bandpass/bandstop filters, advanced IIR filtering, advanced FIR filtering 
(windowed coefficients, Parks-McClellan algorithm, etc.) 

 
• Windows containing such windows as Hanning, Hamming, Triangle, Blackman, Kaiser, etc. 
 
Employment of these readily-available VIs made many class demonstrations quick and 
intuitively easy to understand.  The flexibility of the programming environment allowed us to 
write some more fundamental routines on our own, adding to LabVIEW’s 'DSP toolkit' some 
specialized VIs for this class. 
 

x[n] y[n]

v0[n]

v1[n]

v2[n]

bo

b1

b2

-a 1

-a 2

w0[n]
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z -1

z -1

z -1

 
 
Figure 1:  Direct form realization of a second-order IIR filter, as depicted in a standard 
textbook. 
 
III.  Examples Better Suited for Graphical Programs 
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One subject that is covered in this course is the different realizations of IIR filters, such as direct 
form and canonical form realizations.  Although LabVIEW has VIs that will compute 
coefficients for cascade realizations of some typical filters and another VI that will filter an 
incoming data stream using these coefficients, the whole structure of the filter is transparent to 
the user.  Therefore we decided to write our own programs that would implement such 
realizations, thus having more fundamental VIs in our toolkit. 
 
A simple second order filter has the transfer function15 
 

H(z) =
b0 + b1z

−1 + b2 z−2

1 + a1z
−1 + a2z

−2            (1). 

 
This transfer function in the z-domain would result in an I/O difference equation of 
 

y[n] = − a1y[n −1] − a2 y[n − 2] + b0 x[n] + b1x[n − 1] + b2 x[n − 2]         (2). 
 

The direct form realization for this filter is depicted, in block diagram form, in Fig. 1.  This 
second order filter can be implemented in pseudo-code by the following sample processing 
algorithm15: 
 
for each input sample x[n] do: 

v[0] = x[n] 
w[0] = -a[1]w[1] - a[2]w[2] + b[0]v[0] + b[1]v[1] + b[2]v[2]| 
y[n] = w[0] 
v[2] = v[1] 
w[2] = w[1] 
v[1] = v[0] 
w[1] = w[0] 

end 

 
The LabVIEW realization of the same algorithm is depicted in Fig. 2.  This realization employs 
a for loop, which gets executed as many times as the number of elements of the array x coming 
to it (in LabVIEW terminology, indexing is enabled).  The loop employs two distinct shift 
registers (LabVIEW term for temporary storage for values), one for the array w and one for v.  
To a programmer familiar with LabVIEW the correspondence between Fig. 1 and Fig. 2 is 
stronger than the correspondence of Fig. 1 to the textual pseudo code given above. 
 
Fig. 3 depicts the block diagram for the canonical realization for a second order filter.  The 
canonical form realization can be implemented with the pseudo code as follows: 
 
for each input sample x[n] do: 

w[0] = x[n] -a[1]w[1] - a[2]w[2]  
y[n] = b[0]w[0] + b[1]w[1] + b[2]w[2] 
w[2] = w[1] 
w[1] = w[0] 

end 
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Figure 2:  Direct form realization of a second order IIR filter in LabVIEW. 
 

x[n] y[n]

bo

b1

b2

-a 1

-a 2

w0[n]

w1[n]

w2[n]

z -1

z -1

 
 
Figure 3:  Canonical form realization of a second-order IIR filter. 
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Figure 4: Canonical form realization for a second order IIR filter in LabVIEW. 
 
Fig. 4 depicts the LabVIEW program that realizes the filter in Fig. 3.  Note that there are now 
two summations but only one shift register, corresponding directly to the elements in the block 
diagram. 
 
In general, a filter of arbitrary order can be realized through a cascade of second order sections.  
An example in15 (Example 7.4.2, p. 290) takes a fourth order filter defined by the transfer 
function 
 

42

42

64.096.01

5476.048.01
)( −−

−−

++
+−=

zz

zz
zH             (3) 

 
and determines the cascade form of the filter as 
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(a) 

 

 
(b) 

 
Figure 5:  a) Cascade realization of a filter with second order canonical sections, b) The front 
panel showing the input (an impulse) and the output (the impulse response). 
 
Fig. 5-a depicts the LabVIEW realization of this fourth order filter by cascading two second 
order canonical form sections as we try to obtain its impulse response.  The inputs to the first 
section are the output of the impulse generator (the signal) and the a and b coefficients of the 
first component of equation (4).  The output of the first section is the signal input to the other 
section with the appropriate coefficients as a and b inputs.  The output of the second section is 
the final output and goes to a plotting block (Waveform Graph in LabVIEW).  Note that the 
graphical program is so self apparent that it can almost be used as a general block-diagram 
representation for this example.  Fig. 5-b shows the front panel of this VI with the input (the 
impulse) and the output (impulse response) of the filter.  The ease with which graphs can be 
obtained, and the ease with which they can be formatted to look like the output of a realistic 
instrument generates excitement in students. 
 
IV.  The Impressions of the Students 
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Apart from spontaneous comments of the students, a survey was conducted to gauge their 
response to the presentation of DSP topics in LabVIEW.  The verbal comments uttered inside 
the laboratory and in the corridors indicated that in general, the students welcomed the idea and 
were even having fun doing it!  Because of the small size of the class, the survey results would 
not be statistically insignificant and are treated as documented anecdotes for this paper.  
According to the survey results, all of the students were familiar with a textual programming 
language prior to this class.  The self-reported skill level was, on the average, "generating 
moderately complex programs".  As a result of exposure in this course, all students indicated 
that they were able to write simple programs in LabVIEW.  When asked for what tasks textual 
languages are better suited than LabVIEW, all agreed that mathematical formulae are better 
handled by textual languages.  One indicated that even a simple formula might take up a lot of 
space on the screen when implemented in LabVIEW and that even the use of a formula node 
requires many "connections" to the node, complicating the program. 
 
All of the students appreciated the visual feedback LabVIEW provides.  They all indicated the 
ease of "block diagram programming" and noted the abundance of DSP algorithms provided and 
their ease of use.  They all indicated that it is very easy to see the connection of a LabVIEW 
program to a block diagram.  The question on the connection of a textual program to the block 
diagram got mixed responses.  One indicated that once a block processing algorithm is found, 
the connection is easy but failed to comment how typical block processing algorithms 
correspond to the process.  One indicated that the language the textbook used, namely C, was 
enigmatic to him.  In general, the students did not find the connection as intuitive as LabVIEW. 
 
V.  Conclusions 
 
The results of the survey did not reveal any information that the authors did not expect.  Indeed, 
mathematical formulae are better dealt with by textual languages and there are some algorithms, 
such as the implementation of circular buffers, that are very simple in the C language but present 
great difficulty in LabVIEW.  Therefore, we should not abandon the use of such languages, but 
use every tool in applications where its strengths excel.  However, the instrument-like user 
interface of LabVIEW, its abundance of analysis VIs make it very attractive and inviting to 
implement most DSP routines.  In applications where it is cumbersome, one of two routes can be 
chosen:  write the program in C and import it into LabVIEW through its Command Interface 
Node, which can be done by someone experienced in both languages, or have the experienced 
programmer write the painstakingly difficult algorithm in LabVIEW and then make it available 
as a subVI to the rest of the class so that students do not get bogged down by a few non-intuitive 
programs.  In either case, this activity would add to the richness of DSP algorithms available for 
LabVIEW and will no doubt make the utilization of the graphical interface in DSP, an already 
pleasant experience, even more pleasant. 
 
 
 

P
age 6.513.9



 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

ACKNOWLEGEMENTS:  The LabVIEW software used in this course, as well as the NI-488.2 
cards and Tektronix TDS 210 Digital Oscilloscopes in the electronics lab were purchased 
through a grant from Johnson Controls in Holland, MI.  The authors would like to thank Johnson 
Controls for the upgrade of the electronics lab.  The authors would also like to thank the three 
other students in the DSP class, Eric Eekhoff, James Grossman and Seth VerMulm for sharing 
their impressions frankly. 
 
 
 
Bibliography 
1. Nilsson, J. W. and Riedel, S. A. Electric Circuits, Sixth Edition, Upper Saddle River, NJ: Prentice Hall (2000). 
 
2. Rashid, M. H., Spice for Power Electronics and Electric Power, Engle wood Cliffs, NJ: Prentice Hall (1993). 
 
3. Sedra, A. S. and Smith, K. C., Microelectronic Circuits, Fourth Edition, New York, NY: Oxford University 

Press (1998) 
 
4. Roberts, G. W. and Sedra, A. S., Spice for Microelectronic Circuits Third Edition by Sedra/Smith, New York, 

NY: Oxford University Press (1992). 
 
5. Howe, R. T.and Sodini, C. G., Microelectronics – An Integrated Approach, Upper Saddle River, NJ: Prentice 

Hall (1997). 
 
6. Franco, S., Electric Circuit Fundamentals, Philadelphia, PA: Saunders College Publishing (1995). 
 
7. Jaeger, R. C., Microelectronic Circuit Design, New York, NY: McGraw-Hill (1997). 
 
8. Nise, N. S., Control Systems Engineering, New York, NY: John Wiley & Sons (2000). 
 
9. Ogata, K, Modern Control Engineering, Upper Saddle River, NJ: Prentice Hall (1997). 
 
10. Dorf, R. C. and Bishop, R.H., Modern Control Engineering, 8th Ed., Reading, MA: Addison Wesley (1998). 
 
11. Palm III, W. J., Modeling, Analysis, and Control of Dynamic Systems, 2nd Edition, New York, NY: John Wiley 

& Sons (2000). 
 
12. Couch II, L. W., Digital and Analog Communication Systems, Sixth Edition, Upper Saddle River, NJ: Prentice 

Hall (2001). 
 
13. Bateman, A., Digital Communications: Design for the Real World, 1/e, Upper Saddle River, NJ: Prentice Hall 

(1999). 
 
14. Anderson, J. B., Digital Transmission Engineering, 1/e, Upper Saddle River, NJ: Prentice Hall (1999). 
 
15. Orfanidis, S. J., Introduction to Signal Processing, Upper Saddle River, NJ: Prentice Hall (1996). 
 
16. Moon, T. K. and Stirling, W. C., Mathematical Methods and Algorithms for Signal Processing, Upper Saddle 

River, NJ: Prentice Hall (2000). 
 

P
age 6.513.10



 
 

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

17. Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., Numerical Recipes in C : The Art of 
Scientific Computing, Cambridge: Cambridge University Press (1993) 

 
18. Helsel, R., Cutting Your Test Development Time with HP VEE, Englewood Cliffs: Prentice Hall (1994). 
 
19. Tanyel, M., Engineering Explorations with LabVIEW, Philadelphia, PA:  Harcourt Brace Custom Publishers 

(1994). 
 
20. Tanyel, M., "Virtual Experimentation in Freshman and Sophomore Years," in Proceedings of 58th Annual 

ASEE North Midwest Section Meeting, Oct. 1996. 
 
21. Abu Zeid, O. A., Tanyel, M., "Innovation in Teaching Mechanical Engineering Applications", in Proceedings 

of 1994 Frontiers in Education Conference, pp. 82-86, Nov. 1994. 
 
22. Scoles, K., Tanyel, M., Onaral, B., "Computing in Electrical Engineering Education at Drexel University", in 

IEEE Transactions on Education, vol. 36, no. 1, pp. 198-203, Feb. 1993. 
 
23. Tanyel, M., Quinn, R., Barge, E., "An Engineering Laboratory for Freshmen - Computer Utilization", in 1990 

ASEE Annual Conference Proceedings, Toronto, June 26-29 1990. 
 
24. Chugani, M. L., Samant, A. R., Cerna, M., LabVIEW Signal Processing, Upper Saddle River, NJ: Prentice Hall 

(1998). 
 
 
 
MARLIN VISS 
Marlin Viss is a senior engineering student at Dordt College.  He is expected to obtain his B. S. in engineering with 
an electrical emphasis in May 2001.  He spent several years programming in C and PERL for a consulting firm, and 
works as a TA for the engineering programming courses at Dordt College.  He plans to continue DSP studies in 
graduate school. 
 
MURAT TANYEL 
Murat Tanyel is a professor of engineering at Dordt College.  He teaches upper level electrical engineering courses.  
Prior to teaching at Dordt College, Dr. Tanyel taught at Drexel University where he worked for the Enhanced 
Educational Experience for Engineering Students (E4) project, setting up and teaching laboratory and hands-on 
computer experiments for engineering freshmen and sophomores.  For one semester, he was also a visiting 
professor at the United Arab Emirates University in Al-Ain, UAE where he helped set up an innovative introductory 
engineering curriculum.  DU��7DQ\HO�UHFHLYHG�KLV�%��6��GHJUHH�LQ�HOHFWULFDO�HQJLQHHULQJ�IURP�%R÷D]LoL�8QLYHUVLW\��
Istanbul, Turkey in 1981, his M. S. degree in electrical engineering from Bucknell University, Lewisburg, PA in 
1985 and his Ph. D. in biomedical engineering from Drexel University, Philadelphia, PA in 1990. 

P
age 6.513.11


