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1 Introduction

Genetic algorithms, a class of robust and efficient search techniques that can be randomly sample
large spaces, have applications in the field of optimization and in a wide range of computer science
problems in pattern recognition, search, scheduling, and machine learning.  Genetic algorithms are
motivated by characteristics found in natural population genetics, among them robustness and
efficiency.  Features of biological systems found in genetic algorithms include reproduction, self-
guidance, self-repair, the nature of survival of the fittest, and variation through mutation.  Genetic
algorithms were developed by John Holland of the University of Michigan in the 1970's.  Many of
the essential properties of genetic algorithms discussed in this paper can be found in [1, 2].

When a genetic algorithm is used to find an optimal solution in the space of all feasible solutions,
the algorithm maintains a population (or set) of feasible solutions which evolve through random
process based on principles found in the mechanics of natural selection and genetics.  Each time this
set of solution evolves (or as we say iterated), a new set of solutions is generated.  The iterations are
repeated several times as necessary.  An important goal from the standpoint of genetic algorithms
is to improve the values of the objective function in an efficient, practical, or quick method.  Ideally,
as it is true for many optimization techniques, one would like to generate after several iterations a
set of solutions that includes an optimal global solution; but a genetic algorithm has its priority set
on tying improvement of an objective function with performance-practicality of the method.  In the
literature, one finds several applications of genetic algorithms in routing and scheduling problems,
machine learning, setting weights in neural nets, and testing expert systems that control complex
systems, amongst others [2].  In the next section, we focus on the algorithm itself by solving an
elementary optimization problem.

2 Genetic Algorithm: An example

We present the following to illustrate the effectiveness of genetic algorithms.  We note that although
the problem can be solved easily using a different method, it is the process involved with genetic
algorithms that is put to focus.

We wish to 
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Minimize f( , ..., ) = � (  - µ) subject to L � � M,

where µ is a given real number.  We note that this is essentially the same problem that [3] solved.
In this case, the initial state is given, say ( ).  We take L to be the minimum of these

numbers, M to be the maximum, and µ is the average of these numbers, that is, µ = � .

In particular, we look at the problem where the initial state is given by 
(2, 24, 4, 22, 6, 20, 8, 18, 10, 16, 12, 14),

so that µ = 13 and that our problem becomes

Minimize f( , ..., ) = � (  - 13) subject to 2 � � 24.

The first step in applying a genetic algorithm to our problem is to change the values of the variables 

 into digits consisting of 1 and 0, such as the binary expansion of the numbers.  The length of each
string depends greatly on the accuracy that is needed.  In our particular problem, the initial state was
rigged so that we would only use integer values between 0 and 31 for each variable .  Each

solution will then have a string of 60 characters (0 or 1), five for each variable .  The first five

of these characters is the binary expansion of , the second five is that of , and so on.  Notice

that the values of .  Notice that the values of  in this case turns out to be between 0 and 31.

This should not pose a great problem because if a solution happens to satisfy our constraints, then
it is also a solution of our original problem.  If a solution does not satisfy our constraints, then we
can simply disregard it.

The next step is to randomly generate an initial set of solutions.  This can be done in a number of
ways, one of which is to generate each possible solutions manually.  For each digit of the solution,

, we can flip a coin.  If the coin lands head, then that particular digit of that solution is 1, and if
the coin lands tail, then that digit is 0.  In this manner, we have to flip 60 coins for every solution.
Since this seems tedious for this particular problem, we can simply write a program that will
generate such a string of characters.

Note that there are  (more than 1.15� ) such solutions.  If we choose for our initial set one
that contains a small number of solutions, then we expect our genetic algorithms to run for a long
time.  Meanwhile, if we choose to have an initial set that contains a large number of solutions, then
the probability that the strong genes mate might lessen considerably.  It would be interesting to find
out if this apparent dilemna has a solution.  

For simplicity, we look at the case when we have four solutions in our initial set.  In our particular
example, say we get the set whose strings have the following decimal representations.

 = (  1   2   3   4   5   6   7   8   9   10  11  12 ) 

 = ( 21  10  12  13  12  11  16 13  1  3  5  15 )
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 = ( 2  27  31  19  1  29  3   4  28  10  11  13 )

 = ( 19 23 12 14 14 13 22 11 23 17 19 11 ).

To each possible solution  = (  ), we associate a fitness value.  Notice that our

objective function, f, is nonnegative, so that the better fit solutions must be the ones where f has
value close to 0.  The fitness function 

g(y) = 

does the trick.  The fitness value of a solution is used for the operation called reproduction.
Reproduction is the process in which individual strings are copied according to their fitness values.
One easy way to attain our goal is to calculate the percentage of total fitness, which simply is the
fitness of the string divided by the sum of the fitness of the group.  This percentage can be thought
of as the probability of picking that particular value of  in that group.  This clearly illustrates the
notion of survival of the fittest, since the greater fitness an element has, the greater is its chance of
being used for reproduction.  The following table shows the fiyness and percentage of total fitness
for our set of initial solutions.

 Fitness Percentage of Expected Valuef( )
Total Fitness

 650 0.001538 22.90% 0.9160

400 0.002500 37.22% 1.4888

 1496 0.000067 1.00% 0.0400

 383 0.002611 38.88% 1.5552

Total 0.006716 100.00% 4.0000

The last column in the table gives the expected number of copies of the solution  that will be

reproduced.  Looking at the table, we expect 1 copy of  , and depending on our criterion on

choosing which solution is better, we will either have 2 copies of  and 1 copy of , or   2 copies

of   and 1 copy of .

For our particular problem, say we reproduce 2 copies of  since it has the highest expected value.

This means that we have 1 copy each of  and , and 2 copies of . P
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After reproduction, simple crossover may proceed in two steps.  The members of the newly

reproduced strings in the mating pool are paired at random.  In our example, say one copy of  is

paired with ; and  is paired with the other copy of .  For each of the pairs, one selects an

integer between (and including) 1 and n - 1, where n is the length of the string (in our case, n = 60).
This is where crossover will take place.  Notice that there are n - 1 spaces between the first element
of the string and the last element of the string; that is, the space between the first element and the
second element, between the second and third elements, etc.  In our case, we will take the space

number as increasing from left to right.  As an example, suppose we are mating string  with string

, and we have chosen crossover to take place at space l.  Then every digit of   to the right of

space l (where the space numbers are larger than l) will be placed in  and all the digits of  to

the right of space l will be placed in .  This is the process called crossover.

One checks that if the crossover happens at a space number that is divisible by 5, then the crossover
can be done using the decimal representation of the digits.

For the pair  and , say we have randomly chosen the thirty-fifth space.

 = ( 1   2   3   4   5   6   7 |  8   9  10 11 12 )

= ( 19 23 12 14 15 13 22 | 11 23 17 19 11 )

Crossover yields the following offsprings.

 = ( 1   2   3   4   5   6   7  11 23 17 19 11 )

 = ( 19 23 12 14 15 13 22   8   9 10 11 12 )

Suppose that when mating  and , the crossover occurred on the forty second space.  The

following are the offsprings.

 = ( 21 10 12 13 12 11 16 13   6 17 19 11 )

 = ( 19 23 12 14 15 13 22 11 17   3   5 15 )
The following table summarizes the result of crossover for our mating pool.

Mating Pool Mate Crossover Site New Population Fitness

    35 0.001324

35 0.003597

42 0.005181

42 0.002433

Total 0.12535
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One checks that the total fitness of this solution set has almost doubled, from our original solution
set with a total fitness of 0.006716 to 0.012535.  This illustrates that our solution set is improving.
The maximum fitness for this group, 0.005181, is also almost twice as that of the initial group
(0.002611).  In the case that the maximum fitness in the current group is not as big as that of our
initial group, we can flag the string that gives a current maximum value for our objective function.

There are a number of ways to terminate a genetic algorithm.  One way is to stop when the string that
gives the maximum value for our objective function has not changed for a certain number of iteration
(say, 100).  Another way is if the total fitness in our current solution set ceases to increase.

Genetic algorithms have another operator that plays a secondary role to reproduction according to
fitness combined with crossover.  It is called mutation.  Although there is much confusion as to the
role of mutation in natural and artificial genetics, it is needed because reproduction and crossover
may occasionally become overzealous and may potentially lose the 1's and 0's in places where they
are needed.  Also, the initial gene pool may be very weak.  Mutation is done by randomly choosing
a location in the staring, and changing the digit in that particular string.  For example, a mutation on
x = ( 0 0 0 0 1 ) that takes place on the third digit would make it x’ = ( 0 0 1 0 1 ) .  To obtain good
results in empirical genetic algorithm studies, [1] suggests an order of one mutation per thousand bit
(position) transfer.

3 Summary

Genetic algorithm is a robust and efficient search technique, motivated by the mechanics of natural
population genetics, with direct applications in the field of optimization.  The algorithm provides
for a practical method for improving the values of an objective function that is being optimized.

A genetic algorithm, as we have illustrated with an elementary optimization problem, maintains a
population or set of feasible solutions which evolve through three basic operators, namely
reproduction, crossover, and mutation; operators that are inspired by features commonly found in
natural genetic systems.  When a population evolves, a new population or set of solutions is
generated.  It would be ideal if a new population would contain a global optimal solution.  But the
class of search techniques, genetics algorithms, has its priority set on tying improvement of an
objective function with practicality and efficiency.

The particular optimization problem considered in the second section belongs to a class of
optimization problems of the form

Maximize f( ,..., ) subject to  �  �  

where f is a positive-valued objective function,  are integers, and , are fixed constants for

i = 1,..., n.  To implement a genetic algorithm, one must represent or code the set of all possible
solutions ( ,..., ).  In our particular example, we represented each  by its binary

representation.  Thus, ( ,..., ) was represented by a string of sixty digits consisting of 0's and

1's.
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After the coding of the set of all possible solutions, we randomly chose an initial set with four

solutions ,..., , where  is a sequence of sixty digits consisting of 0's and 1's.  (In general, one
would choose an initial set with an even number of solutions so that mating and reproduction can

follow.)  The fitness f( ) of each initial solution  was found.  Then this was followed by

reproduction, i.e., a random selection of four solutions ; the stochastic nature of the selection was
based on the relative fitness of the four initial solutions.  For example, as illustrated in our example,
a solution with a relatively high fitness when compared to those of the other solutions has a strong
probability of being selected and reproduced.  This illustrates the principle of survival of the fittest -

a feature found in genetic systems.  If { ,...,  } is the set of solutions that has been reproduced

from the initial set, then the ‘s were randomly paired.  Given a pair, mating proceeded and this
is described in general by an exchange of information between the mates in the pair.  The exchange
in information, called crossover, is guided by stochastic means; thus generating a set of solution

{ ,...,  }.  After the crossovers, a third operator called mutation may be applied to the ‘s and

which can change the solution  to another solution .  Mutation, also a feature of genetic
systems, is useful in optimization in that it can help identify false global optimum points (which can
happen if an optimization problem has local optimum points which are not global optimum points).

After choosing an initial set of four solution , as in our example, we applied three operators,

namely reproduction, crossover, and mutation to produce another set of four solutions .  This

process is iterated several times, i.e., now the ‘s form the new initial set of solutions and the three
operators are applied to this new initial set to produce a third set of solutions.

Since genetic algorithms are characterized by robust random searches and inspired by principles of
natural genetic systems, they find many applications in the field of combinatorial optimization and
in computer science problems related to pattern recognition, search, and machine learning.
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