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Abstract 

Application of various techniques for statistical analysis to the field of civil engineering is well 
documented. In this paper a case study is presented, where kriging is applied for producing a map 
showing the probability that the existence of collapsing soil at certain depth of Tucson, Arizona 
area exceeds a critical threshold value. The assessment is based on existing criteria with spatial 
analysis used to build up model for low, medium and high collapse potential.    
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Introduction 
Understanding the spatial distribution of data from phenomena that occur in space constitute a 
great challenge.  Due to availability of high speed computing system such studies are becoming 
common in almost every field of study, such as health, environment, geology, engineering, and 
many others. Besides visual perception of the spatial distribution of the phenomenon, the analysis 
is useful to translate the existing patterns in to objective and measureable quantities by estimating 
parameters at an unknown location. Since the emphasis of spatial analysis is to measure properties 
and relationship, taking in to account the spatial localization of the phenomenon under study, such 
analysis may be used for geotechnical parameters. Spatial analytical technique, known as 
geostatistics may be useful for this purpose. Geostatistical technique of simple indicator kriging 
can be used with the probabilistic model to develop the probability contour with the contour of 
estimation variance.        

A soil deposit in a region may be either residual or transported. Also a transported soil may be 
either alluvial (stream borne) or Aeolian (wind borne) or colluvial (gravity transported). When 
alluvial soils are deposited in an arid or a semi-arid environment, they develop larger voids and 
undergo a large decrease in bulk volume upon saturation or load application and are known as 
collapsing soils. However, it is difficult to identify collapse susceptible soils with this definition 
due to the existence of many different types of clay minerals and many other factors that contribute 
to the collapse phenomenon. Therefore geostatistical methods in analyzing collapsing soil 
parameter would provide an optimum solution. 

In this study geostatistical techniques of simple kriging were applied to selected collapse criteria 
and collapse-related soil parameters for soil in Tucson, Arizona. Previous works on this topic was 
limited only to studies involving either specific areas or specific soil parameters. The purpose of 
this study was to gather as much information as possible from reliable sources and to use this data 
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with statistical techniques, such as regression and factor analysis, to determine the variation of 
selected collapse criteria and collapse-related soil parameters in three dimensions.  

Mathematical Details: 
Kriging is a geostatistical technique to interpolate the value Z(x0) of a random field Z(x) at an 
unobserved location x0 from observations zi=Z(xi), i= 1,….n of the random field at nearby locations 
x1,…,xn. Kriging computes the best linear un biased estimator )(ˆ

0xZ   based on a stochastic model 
of the spatial dependence quantified either by the variogram γ(x,y) or by the expectation 
μ(x)=E[Z(x)] and the covariance function c(x,y) of the random field.     

The kriging estimator is given by a linear combination  )()(ˆ
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The kriging variance must not be confused with the variance 
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Of the kriging predictor )(ˆ
0xZ  itself 

The kriging weights of simple kriging have no unbiasedness condition and are given by simple 
kriging equation system: 

𝑤𝑤 = 𝑐𝑐𝑐𝑐(0) 

Where 
















=
















=
















=

−

),(

),(
)0(

,(),(

),(),(

0

01

1

1

0111

1

xxc

xxc
c

xxcxxc

xxcxxc
c

w

w
w

n

nnn

n











Simple kriging interpolation: 
The interpolation by simple kriging is given by 
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The kriging error is given by: 
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Which leads to the generalized least squares version of the Gauss-Marcov theorem1.   
( ) ( ) ( ))()(ˆ)(ˆ)( 0000 xZxZVarxZVarxZVar −+=

ORDINARY KRIGING EQUATION  
The kriging weights of ordinary kriging fulfill the unbiasedness condition 
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and are given by the ordinary kriging equation system: 

𝜆𝜆 =  𝛾𝛾𝛾𝛾−1𝜆𝜆∗ 
where 
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The additional parameter µ is a Lagrange multiplier used in the minimization of the kriging error 
σ2

k(x) to honor the unbiasedness condition. 
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The interpolation by ordinary kriging is given by 
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COLLAPSE CRITERIA AND RELATED PARAMETERS 

In arid regions soil deposits become partially saturated with large voids due to high evaporation 
rate. Application of loads on such soils causes small deformation at low degree of saturation. 
However as soon as the soil becomes saturated, large deformations take place due to the collapse 
of the intergranular structure and the phenomenon is referred to as collapse. In general, if the dry 
density of the soil is sufficiently low to give a void space larger than that required to hold the liquid 
limit water content, then collapse upon saturation is likely. Otherwise collapse generally occurs 
only when the soil is loaded. 

Collapsing soils has been recognized in Africa, part of Asia, Europe as well as in the United States. 
In the United States the severity of the problem has been observed in the Midwestern and Western 
United States, where soil deposits are generally either aeolian or alluvial. 

Many criteria for predicting the collapsing potential of a soil are available in the literature (Ref 
from ASCE). Some of the criteria are derived theoretically from consolidation test results and 
some are empirical. The methods for evaluating collapse susceptibility vary from simple to very 
complex. Considerable effort has been given to establish criteria for predicting the collapse 
potential and the critical values for severity of a soil. Some of the more commonly used criteria 
are described below.   
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The parameter Cp   is known as collapse parameter and is obtained from consolidation test as shown 
in Fig. 1. (Jennings and Knight, 1957) 
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Where ∆ec and ∆Hc are changes in void ratio and sample height after saturation under a pressure 
of 200 kPa, and H0 is the initial height of sample 

Fig. 1. Typical collapse potential in one 
dimensional consolidation test 

Sabbagh(1982). 
R, known as Gibb’s parameter is obtained from the following relation: 
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Where γd is the dry unit weight, wl is the liquid limit moisture content, γw is the unit weight of 
water, and Gs is the specific gravity of soil solids  

Denisov’s (1964) criterion of collapse susceptibility is expressed as the ratio e/eLL. If the ratio is 
greater than 1 then the soil is collapse susceptible. 

eLL is the void ratio at liquid limit and e is the void ratio at natural moisture content. 
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Beside the established criteria for soil collapse, there are other parameters that contribute to 
collapse phenomenon. These related parameters are: initial dry unit weight (γd), initial moisture 
content (w0), initial void ratio (e0), initial porosity (n0), initial degree of saturation (s0) and plastic 
limit (PL). Specific cut-off values for selected parameters are given below in Table 1 

Table 1.Critical Values for and High Collapse (HC) Medium Collapse (MC) and Non-
Collapsing(NC), Soil Parameters. 

For this study field and laboratory test data were collected from local consulting engineers’ offices 
and from the reports of previous researchers (e.g. Sabbagh, 1982).  The raw data were reduced to 
obtain parameters in two categories: established criteria, such as Cp, R, and collapse-related soil 
parameters, such as, γd, w0, e0, n0, s0 and PL. Analysis performed on selected parameters are 
presented in this paper. 

Modeling of variogram: 

Modelling of variogram is the first and most important step in applying the technique of kriging, 
which is the method used here for obtaining unbiased estimate of parameters in un sampled 
location. A considerable amount of computation is necessary to obtain an adequate estimate of the 
variogram because of the empirical and subjective nature of the estimation process3. Parameters 
of interest with critical values are listed in Table 1.  The various data sets containing number of 
data points of the parameters are listed in Table 2. 

Param. (HC) (MC) (NC) 

Cp (%) > 5 2 < Cp ≤5 ≤ 2 

R ≥ 1.4 1.0 ≤ R <1.4 < 1.0 

e0 ≥ 0.82 0.67 ≤ e0 <0.82 < 0.67

γd,(kN/m3) ≤ 14.3 14.3 < γd ≤ 15.6 > 15.6 
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Table 2. Data sets used in the Analysis 

Data set 
Numer 

Range of 
depth, m 

Number of 
Data 

1 0.0-0.3 125 
2 0.3-0.6 286 
3 0.6-0.9 254 
4 0.9-1.2 100 
5 1.2-1.8 104 
6 1.8-12.2 123 
7 0.0-12.2 219 

Representative variograms were obtained for each of the parameters in each of the seven data sets, 
but only few are presented here. Since modeling of a variogram is, in part, an art requiring some 
subjective judgment, multiple trials are usually necessary in order to obtain a satisfactory 
variogram. The important parameters for a variogram are the range of influence, a, and the sill C 
in a nested model as given below. 

Nested Model: 

𝛾𝛾(ℎ) = 𝐶𝐶 �
3ℎ
2𝑎𝑎

−
1ℎ3

2𝑎𝑎3
� + 𝐶𝐶0   𝑓𝑓𝑓𝑓𝑓𝑓 ℎ < 𝑎𝑎        (3) 

   = C + C0     for  h  ≥  a 

and             γ(0) = C0       for  h  =  0 

In geostatistical modeling, the most commonly used model is the nested models as shown in Figure 
2. This model bears the same significance as the Normal distribution bears to statistics.
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Variograms were obtained for the analysis for all the parameters, however  few of them are 
presented here. Figures 3 and 4 show the variograms for Cp and γd of data set 5, respectively. In 
several cases a pure “nugget effect” model was obtained, indicating a complete lack of geological 
structure, Figure 5, shows such a model for the parameter e0 of data set 6. 

Fitting a Model 

Constructing a variogram is to find theoretical model that best fits the experimental variogram.  
The choice is often limited to linear or spherical models, with a spherical model being the most 
common as the parameters are estimated subjectively. However, it is important that the chosen 
theoretical model y(h) fits well to the experimental semi-variogram within the model’s limits of 
reliability5. The choice of a theoretical model is generally made by examining the experimental 
variogram and taking in to account the fact that variograms are subject to significant fluctuations 
at large distances. Since most of the experimental variograms could be approximated by a 
spherical model, such a model was fitted to all the computed variograms in this study.  

The key parameters of the selected spherical model, after cross-validation with different trial 
models for Data set 1 are presented in Table 3. The nugget value C0 which is the estimate of y at 
h=0, provide an indication of short distance variation. The greater the value of C0, the greater is 
the variance of the data set. Some of the model, e0, for example shows a “pure nugget” effect 
indicating lack of  spatial correlation.  

564

Proceedings of the 2015 American Society for Engineering Education/Pacific South West Conference 
Copyright © 2015, American Society for Engineering Education 



 

Table 3. Parameters of Spherical Models fitted to Data Set 2. 

Data Set Parameter Nugget C0 Range, a Sill C 

2 

Cp 
γd 
n0 
s0 
w0 
e0 

18.5 
12.5 
32.4 

102.0 
0.002 
0.042 

- 
35.0 
35.0 
30.0 
25.0 
30 

- 
100.0 
45.0 

148.0 
0.0025 
0.053 

The range, a, of the variogram can be interpreted as the diameter of the zone of influence which 
represents the average maximum distance over which a soil property is spatially related. In our 
study this distance was found to be 5.5 to 8 miles which is large relative to the distance over which 
soils are usually sampled for laboratory tests for a particular project, This suggest that , 
geostatistical concept can be applied successfully to the study of  geotechnical problems.  

There are three methods of kriging: punctual, block, and universal. Puntual kriging, which provides 
estimates for values of a random variable at points where there is no drift, has two forms: simple 
kriging if the mean value of the variable is known, and ordinary kriging, if the mean value is not 
known. Drift is defined as a non-stationary expectation of a random function. Block kriging is used 
when an estimation of the spatial average is required over a volume or an area. Universal kriging 
is an optimal method of interpolation that applies in all cases where drift must be taken in to 
account because of lack of data to make stationary or quasi-stationary estimates.  

In this study, variograms were estimated for each collapse criterion and collapse related soil 
parameters (Table 1) using a discrete number of values obtained from test data at incremental 
distances corresponding to sampling locations throughout the area. These variograms (Table 3) are 
then used in conjunction with ordinary kriging to estimate values of the parameters at un-sampled 
locations. Indicator kriging6 was then utilized to produce contour plots of estimated probability 
and associated kriging variance for each parameter in each data set.  

Results and discussion 

Results of analyses showing probability contour of high collapse potential with estimation variance 
are shown are in Fig 6 (a) and 6(b).   The shaded zones show areas where there is a 60%-80% 
probability of encountering collapse susceptible soil. The variance of estimation is seen to lie 
within a range of 0.5 and 0.6. Similar plots were developed for all of the other collapse criteria and 
collapse-related soil parameters for each of the seven data set, however, they are not presented 
here.  
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Fig. 6(a) Probability Contour showing 
areas of high collapse potential 

Fig. 6(b)  Contour showing estimation variance of 
estimating probability of high collapse potential 
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Conclusions 

The following conclusions are logically made from the foregoing discussions:  

1. Collapsing soil parameters can be considered as regionalized variable and the concept of
geostatistics is applicable.

2. Linear estimation method of kiriging was found to be a valuable tool for characterizing and
modeling the spatial variability of geotechnical parameters.

3. The parameters under investigation can be best be fitted by a spherical model variogram
4. Simple Kriging methods can be used to develop probability contour with estimation

variance for selected soil parameters at. This information is extremely valuable to planners
and Government officials.
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