
Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

 GlucoMon: A Glucose Monitoring System for the Handspring Visor PDA

John K. Estell, Jeff Haar, Josh Lemke, Jeremy Saunier, Adam Smith

Electrical & Computer Engineering and Computer Science Department
Ohio Northern University

Introduction
Over 17 million individuals in the United States are affected with diabetes. While incurable,
diabetes is manageable with proper monitoring. Currently, monitoring is performed through use
of stand-alone blood glucose meters that allows a diabetic to monitor blood sugar levels on a
periodic basis; the meter readings are either recorded into a log book or uploaded via proprietary
software to a desktop computer. The purpose of this senior design project was to offer a new
approach to patient self-monitoring through the development of a diabetes management system
using the Handspring Visor Personal Digital Assistant (PDA). The design consists of a
Springboard module containing blood glucose metering hardware and an accompanying software
package that operates the module and allows for the storage and processing of data. The
following sections outline the process followed by the senior design group in their development
of the design.

Obtaining Information About Current Glucose Meters
The first step to determine how current glucose meters obtain a reading was to look online for
documentation. This allowed the group to review several different types of meters; however, it
did not lead to any conclusive information about how an actual reading of a glucose level was
obtained from a blood sample. After struggling with the search for information, the group turned
to contacting the companies directly. Dr. David Kisor, a professor in the College of Pharmacy at
Ohio Northern University, offered to help the group contact several different companies in the
hope that one of them would be willing to form a partnership. Unfortunately, large drug
companies move very slowly and none of the companies was able or willing to provide the
design group with the necessary information in time. At this point, it was decided to examine the
patent documentation from the several glucose meters the design group had already reviewed.
One patent was found which had specifications on how the glucose level was obtained. The
patent for the Bayer Glucometer Elite1 explicitly stated that the glucose reading could be
obtained by applying 600 mV to the electrode containing the blood-testing strip, waiting five
seconds, and then measuring the current flowing through the circuit. Figure 1 contains the graph
of the response current to glucose concentration relationship as taken directly from the patent.

Session 1420

P
age 8.605.1

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

Figure 1: Raw Graph of Glucose-Current Relation from Bayer Glucometer Elite Patent

Designing the Prototype
Figure 1 provided the only detailed information that could be found; thus, it was used to generate
a working prototype. It was assumed that the electrode was acting as a resistive element with
higher glucose concentrations effecting a lowering of the resistance. A table was created in
Excel to calculate the approximate resistances of the electrode based on the patent information.
This table was also used to calculate the sensor resistance that could be used inline with the
electrode that would not introduce significant error into the reading, yet offer a sufficient voltage
drop across it for accurate measurement of the current response. By looking at available 1%
resistor values and accepting a tolerance of ±1% of the average resistance (about 1M�), the
value of 875 � was selected. The currents produced by the 600 mV source through the electrode
were from 0 to 16 �A, which accounted for a voltage drop of 0 � 14 mV across the sensor
resistor. Finally, to center the voltage applied to the electrode at 600 mV, the source voltage was
increased to 607 mV, thereby making the final electrode voltage vary from 593 mV to 607 mV.
The diagram of this completed circuit can be seen in Figure 2. The output voltage of this circuit
is amplified, then sent to a 12-bit analog to digital converter (ADC). By using an amplification
factor of 20 and a reference voltage of 1.15 volts, the glucose reading from the patent
information in Figure 1 corresponds exactly with the digital value produced by the ADC. In
other words, the digital output of the ADC is the glucose level of the blood sample in mg/dL.

P
age 8.605.2

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

Figure 2: Analog Prototype Circuit

Choosing a Hardware Development Platform
In order to facilitate hardware development, a development board was needed. The development
board needed to support at least a simple module creation. In addition, because of the limited
ten-week design period, the board needed to be easy to use. The following features were
required on the development board: low power CPLD, A/D converter, ROM, and development
programs.

The team initially explored the option of building a development board. This option posed many
challenges, including fitting the module into the Springboard slot of the Handspring Visor.
Another major problem was the difficulty in programming the CPLD on the development board.
Even with the ability to physically create and program a module, the design team had to consider
the cost of purchasing all the needed components and the time needed to assemble the board.
The second option was to find a commercially-available development kit. It was discovered that
Insight Electronics offered a development board that fit the needs of the design team. The
development board uses the Xilinx CoolRunner CPLD that is designed for low power
applications. It also offers a JTAG programming interface to allow simple programming of the
Xilinx chip, a 12-bit analog to digital converter, 8 MB Flash ROM, and 4 MB SRAM. Creating
a custom development board would have simply duplicated the work that had been done creating
the Insight development board; therefore, the Insight development board was purchased. Not
only was the design simple, it made the development of the hardware faster because the design
team could focus on the glucose meter development, and not the development board creation.
There was, however, one major unforeseen drawback to the Insight development board. Insight
had some problems with all of their boards, which delayed the delivery of the board by over two
months. The delay left only three weeks in the design period to complete the hardware portion
of the glucose meter. This setback kept the design in the prototype phase, as there was no
additional time to finalize the design. Documentation of the development board2 was obtained

607 mV

875 �

R1 (50 k� � 10 M�)
(electrode modeled as a
variable resistor)

Vout

I1 (0 � 16 �A)
 Sensor

Resistor

P
age 8.605.3

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

before the final delivery; however, it was difficult to understand the hardware until it could be
tested and implemented. Unfortunately, Insight has since discontinued the Springboard
Development Kit due to the phasing out of the Visor product line by Handspring.

Hardware Development
The hardware design was implemented in VHDL and consisted of three major components: the
ADC driver, the SRAM driver, and communications with the Handspring. Xilinx provided open
source drivers for the ADC and the SRAM in the form of an Oscilloscope program3. The Xilinx-
provided drivers were used in the development of the glucose meters hardware to obtain the
analog reading.

The driver for the ADC had to be modified to meet the specifications of the glucose meter
module. Fortunately, the Xilinx documentation provided a detailed explanation for the
functionality of the oscilloscope program. Due to the low voltage range coming from the strip
reader, a gain of 20 and a reference voltage of 1.15V were used to obtain the required resolution.
To communicate with the software in the Handspring Visor, additional VHDL code was written
to represent the different states of the hardware: strip insertion, blood application, and data
conversion. In the conversion state, the software signals to the hardware to start the A/D
conversion by using two different write commands. The first write command is used to reset all
information in the ADC and to reset the address pointer in the SRAM. The second write
command causes the ADC to start a new conversion. The software waits for 10 seconds to allow
the blood sample to stabilize (as specified in the patent information) then performs the analog to
digital conversion by making 32 consecutive readings, which are stored into the SRAM. Once
the conversion is done, the software application can retrieve the information from the SRAM,
average these values, and present the result to the user.

Software Requirements
The functional requirement for this design is a program that will allow patients to monitor their
glucose levels using a Handspring Visor. Before development of the software began, the team
defined additional functional requirements. First, it was determined that this software must be
able to store related sets of data within the Handspring Visor�s memory. For each data set, the
values to be stored are the date and time of the specific reading, comments about how the patient
is feeling, the type of reading (in relation to recent meals), and the glucose reading value. Once
stored in the Visor, this data is to be retrieved, reviewed, and displayed in a graphical form.

Non-functional requirements are those requirements that must be met in order to satisfy the user
and client in factors such as appearance, ease of use, and speed. The most important non-
functional requirement of this software program was ease of use. Many diabetics see taking their
glucose reading as a chore; thus, for diabetics to consistently monitor their levels, the testing
program must be as easy to use as possible. Along with �ease of use� comes an intuitive GUI
that follows the typical Palm OS style of buttons, menus, and other GUI objects. Satisfying
these non-functional requirements is just as important as the functional requirements because
they help make the program appealing and marketable.

P
age 8.605.4

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

Software Design
With the functional and non-functional requirements defined, the next step was to construct a
flow chart of how the software should function. From the flow chart, the program design was
organized into four sections: the opening section, the enter data section, the view data section,
and the graph section. For each section, a set of screen displays was developed.

First, the opening section gives the user three main choices: enter data into the system, view
current data in the system, or exit the program. This section presents the "home screen" that the
program returns to whenever the user finishes an operation. When entering data, the initial
screen allows for input of comments about how the user is feeling as well as the type of reading
(relative to meals) being entered. Once the process of getting a reading has been started, the
system waits for more user input such as the glucose strip insertion and blood application. If the
process of obtaining the glucose reading is completed without error, the system will then display
the data collected and return to the home screen. If there were an error obtaining the reading
from the external hardware, the system would alert the user, then allow the user to either attempt
another reading or manually input a glucose level. After data has been acquired by the system,
the user can select to view the data from the main screen. A typical "view data" screen can be
seen in Figure 3. This screen allows users to navigate though the database of glucose readings,
allowing for the review and possible deletion of past values.

Figure 3: View Data Screen

From this screen, the user can select to either graph or display data. The graph gives the user the
ability to see visual trends of their glucose values over a day, a week, or even a month. Figure 4
shows examples of day, week, and month graphs with sample data. The zoom in button () at
the top of the screen allows the user to zoom in from month to week or from week to day. The
zoom out button () allows the user to zoom out from day to week or from week to month.

P
age 8.605.5

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

Figure 4: Day, Week, and Month Graph Views

Along with trending and other general statistical information about the day, week, and month,
the graph allows users to click on an individual data point and obtain even more information.
This additional information includes all information about the point when viewing data on the
day and week view, as well as summarized daily values when viewing data on the month view.
Samples of this information can be seen in Figure 5 for all three views.

Figure 5: Day, Week, and Month Graphs after Selecting a Single Point

Another feature of the data graphs is the ability to move sequentially through the database using
the arrows at the top of the screen. These arrows, seen in the screen shots contained in Figures 4
and 5, are dynamic in that they will only appear when there is additional data available either
forward or backwards in time. Finally, the graphing screen includes the ability to not display the
lines connecting the data points on the graph; this aids in the speed of the graph drawing and
provides another choice for the user. When selected, the dot icon () in the top right of the
screen will toggle off the line display. When a graph without the lines is displayed, the dot icon
is replaced with a graph icon () to toggle back to a graph with lines.

P
age 8.605.6

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

Software Development
Two programming languages presented a viable option to perform the functionality needed in
this design. The first environment evaluated was Metrowerks Code Warrior using C++ as a
programming language. Initial development started on this platform. Code Warrior proved to
have great functionality; unfortunately, it also had a very steep learning curve. The development
of functional code in Code Warrior took too long, and compatibility with the development board
was questionable. The second environment evaluated was Pocket C from OrbWorks
Concentrated Software4. One benefit to this environment was that Pocket C was provided with
the Insight development board. Pocket C was relatively easy to learn, and had the basic
functionality needed to complete the design. Additionally, Pocket C proved to be a more
friendlier programming environment, presenting a straight-line approach to program design.

The first step of the code development was creating the necessary toolkits that would be used to
create the GUI. This toolkit would be the root of the system by handling virtually all user input.
The toolkit includes functionality for: buttons, drop down list, text lines, and press-able bitmaps
(using an image as a button). With the design of a flexible set of functions in the GUI toolkit, the
design moved onto the layout of the main forms. These forms are simply separate functions that
set up different buttons with the GUI toolkit and display information. The program is further
organized into separate files: the main file that deals with general program control and
functionality, a utilities file that contains the graphing functions necessary for the program, and a
file containing functions to calculate information about dates. An additional file contains the I/O
library required for interacting with the Springboard interface.

Software Verification
In order to verify the software, a program was created to simulate user input into the system
through the random selection of three input values per day over a two year period. This allowed
the data retrieval and graphing functionality of the program to be fully tested. This also allowed
a large number of records to be stored in the database to assess possible problems with speed of
access, size, and data display when working with a large data file. With over two years of
information in the database based on the assumption of three glucose readings a day, the size of
the database was 109 KB. Typically, PDAs have 8 MB or more of storage space, thus this
amount of data can be easily stored. The speed of the program slightly decreased when the
program searched in the database for a previous date; however, it is still gave results within a few
seconds and gave completely acceptable performance.

To ensure that the program would work on different platforms the POSE (Palm Operating
System Emulator) system was obtained and used. With POSE, the group was able to test the
functionality of the program with multiple version of the Palm OS operating system including
versions 3.0, 3.1, 3.3, 3.5, and 4.0. The software functioned correctly on all of these systems.

P
age 8.605.7

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

Finalizing the Software Development
The software development platform arrived much earlier than the hardware; thus, this part of the
project was completed earlier than anticipated on the original project plan. Once the hardware
design was completed, there were additional modifications that were made to finalize the
software. The biggest change was adding hardware specific information within the program.
Using this information, the program sets up the hardware and obtains the digital reading of the
glucose level. Error checking was also added to the software during this process so that the
reading would be assured to be within a specific range of 10-500 mg/dL (the common unit of
blood glucose level measurement). This range was chosen to match the range indicated within
the patent information. With the final modifications complete, the software was tested with the
hardware and functioned to the design specifications.

In order to properly function, the final software package requires several files to be installed.
Table 1 summarizes the required files and the memory that they require on the system.

Table 1: Necessary Programs to Install

File Size (kb) Function
GlucoMon 61 Main Program
IOLib 2 Needed For Access to Hardware
MathLib 50 Part of Pocket C, additional Math Frunction
PcktCDateLib 4 A Pocket C toolkit that allows access to PalmOS Calendar

When completely installed, the program required 117 KB of memory within the Handspring
Visor (this excludes whatever memory is used for the database of patient values). This is small
enough to fit within any current Visor on the market.

Results, Observations and Conclusions
The senior design group was successful in their development of a "proof of concept" device; the
entire hardware system is shown in Figure 6. Part of the reason for their success was the open
source nature of the Visor platform. The Handspring developer's web site5 contains several
valuable documents for developers, including the "Springboard Development Guide for
Handspring Handheld Computers" which is invaluable for Springboard module development.
Other links lead to lists of suppliers for Springboard housings, product technical specifications,
application notes, emulators, and software development kit information. Another reason for the
success of this project is the relative ease of assembling a working prototype due to the large
size, when compared to other interfaces such as Compact Flash (CF) or Secure Digital (SD), of
the Springboard interface. This allows students to build prototypes without the need for highly
specialized miniaturization equipment.

As of the writing of this paper, Handspring is still marketing the Visor Pro and Visor Platinum
models at inexpensive prices (for PDAs) through their web site6. Unfortunately, this platform is
on its way out, as Handspring is now pushing their Treo line, which uses the SD expansion
interface instead of the Springboard interface. While development of new interfaces for the

P
age 8.605.8

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

Figure 6. GlucoMon system showing software application, Springboard module, and test strip

Visor are, in most cases, no longer commercially viable, it is still an excellent platform for
student projects, due in part to the wealth of design information that continues to be available.
Additionally, as corporations unload the remainder of their Visor and Visor-related products,
significant savings can be achieved through judiciously-timed purchases, which is always
beneficial on a tight budget.

It turned out that this project was more "state-of-the-art" than initially realized. This project was
finished in March of 2002, and had progressed as far as it could without having to deal with
FDA-related issues for the marketing of medical devices. In July of 2002, TheraSense
announced the FreeStyle Tracker Diabetes Management System7, which is a glucose monitoring
system integrated into a personal digital assistant; specifically, a Handspring Visor. The
operation of their device is similar to the project presented here, with the ability to test and
record glucose levels, graph the results over time, and act as a logbook. Given that this senior
design project was conducted by a handful of students who were working with limited resources
and facilities (when compared to an established company) while simultaneously taking several
classes required for the completion of their engineering degrees, the results of their efforts
compare very favorably to the TheraSense design. This senior design project was a very valuable
experience, resulted in a successful design, and provided a roadmap for those who wish to
conduct similar design projects.

 P

age 8.605.9

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2003, American Society for Engineering Education

Bibliography

1. Bayer, U.S. Patent No. 5,120,420 (June 9, 1992)
2. Xilinx, "Understanding the Insight Springboard Development Kit," XAPP359, July 11, 2001. Available:

http://www.xilinx.com/xapp/xapp359.pdf
3. Xilinx, "Designing an Oscilloscope with the Insight Springboard Kit," XAPP149, September 25, 2001.

Available: http://www.xilinx.com/xapp/xapp149.pdf
4. http://www.orbworks.com
5. http://www.springboard.com/developers/
6. http://www.springboard.com
7. http://www.therasense.com/tracker/

Biographical Information

JOHN K. ESTELL became Chair of the Electrical & Computer Engineering and Computer Science Department at
Ohio Northern University in 2001. He received his BS (1984) degree in computer science and engineering from The
University of Toledo and received both his MS (1987) and PhD (1991) degrees in computer science from the
University of Illinois at Urbana-Champaign. His areas of interest include interface design and embedded
applications. Dr. Estell is a member of ACM, ASEE, IEEE, Tau Beta Pi, and Eta Kappa Nu.

JEFF HAAR graduated from Ohio Northern University with the Bachelor of Science in Computer Engineering
degree in 2002.

JOSH LEMKE graduated from Ohio Northern University with a Bachelor of Science in Computer Engineering
degree in 2002.

JEREMY SAUNIER graduated from Ohio Northern University with a Bachelor of Science in Computer
Engineering degree in 2002.

ADAM SMITH graduated from Ohio Northern University with a Bachelor of Science in Computer Engineering
degree in 2002.

P
age 8.605.10

