
Paper ID #23981

Hands-on Labs and Tools for Teaching Software Defined Network (SDN) to
Undergraduates

Dr. Emil H. Salib, James Madison University

Professor in the Integrated Science & Technology Department at James Madison University. Current
Teaching - Networking & Security and Cross Platform Mobile Application Development. Current Re-
search - Private Cloud Computing, Mobile IPv6 and Design for Motivation Curriculum

Mr. John David Lester

c©American Society for Engineering Education, 2018

Hands-on Labs and Tools for Teaching
Software Defined Network (SDN) to undergraduates

Dr. Emil H. Salib,and John D. Lester
salibeh@jmu.edu, lesterjd@dukes.jmu,edu

Dept of Integrated Science and Technology (ISAT),
James Madison University (JMU), Harrisonburg, VA 22807

1 Introduction

The origins of Software-Defined Networking (SDN) arose from graduate research work out of
Stanford. A graduate student, Martin Casado, observed that the current network operations are hard
[1], [2], [3]. He and his advisor took on this as an opportunity and defined a possible solution [4]
that is now known as SDN. The cause of network operations problems is a rigid architecture. The
first problem is the contrast between the methods that determine the forwarding state: distributed
forwarding state is determined by control plane algorithms and the manual configuration state is
determined by network operators. Control plane algorithms are good at adapting to change in
the network. Network operators are slower and more error prone at adapting to changes in the
network, especially at scale. So Martin hypothesized that a program can solve the problem for
network operators by determining the forwarding state that was previously manually configured.
He then discovered that there were no well-defined Application Programming Interfaces (APIs) for
datapath configurations that were focused on consistent state management. Further, there were no
general, higher-level, distributed algorithms for determining the data plane state. Martin reduced
the network operations problem to two main network architectural problems. The first problem
is poor forwarding abstractions. Network switches are fixed function pipelines not designed to be
programmed, the implementations of the chipsets were often exposed through their API, and the
APIs had unclear state consistency semantics. The second problem he noticed is that the control
plane is a distributed system that is coupled with the data plane’s topology.

SDN is an approach to solving the network operations problem by (1) generalizing the datapath
and (2) decoupling the control plane distribution model from the data plane physical topology.
Generalizing the datapath means to move from a fixed-function datapath model to a flexible, pro-
grammable datapath model with a well-defined API for consistent state management. The API
investigated in the hands-on portion of this paper is OpenFlow. The reasoning behind decoupling
the control plane distribution model from the data plane physical topology is simply that tighter
clusters are easier to program to and the control plane is implemented independently from the data
plane’s topology and hardware. The newly decoupled control plane can be designed as a sort of
network operating system that provides abstractions to control applications such as topology, link
state, and inventory [5].

Over the last few years, SDN has become a very active area of research and operational experimen-
tation [6], [7], [8]. However, the introduction of the SDN foundational knowledge at the undergrad-
uate curriculum level is slow and elementary [9], [10]. Few hands-on, lab-based teaching materials
exist in this area both for the undergraduate faculty members and the students. Seeing the value of
SDN through our recent study (Senior Capstone Project), we believe it is a great opportunity and
a critical mission to identify and enhance the right tools and platforms that enable educators and
students to teach, learn, and stay up-to-date on SDN. We also believe that it’s imperative to demon-
strate how these tools may be effectively utilized and applied through the development and delivery
of fully tested hands-on labs and exercises to our undergraduate inter-networking classes.

The paper is organized as follows. In section 2, we provide a brief overview of the opportunity and
solution definitions and the objectives of the work described in this paper. Section 3 focuses on the
solution implementation along with a brief overview of SDN architecture and components. Section
4 provides the solution results in the form of hands-on labs for teaching SDN to undergraduate
students. In section 5, we offer our conclusions and discusss potential future work.

2 Definition and Objectives

Opportunity Definition

Our opportunity is to enable undergraduate students and educators to acquire hands-on knowledge
of SDN concepts.

Solution Definition

To address the lack of SDN knowledge among the undergraduate community, we must identify
effective tools that enable educators to introduce and teach SDN to networking beginners and
advanced students. We must deliver a bundle of technologies that can be used to demonstrate the
main concepts of SDN. An understanding of the inner workings of SDN will be provided through
a set of well-tested lab exercises that allow students and educators to practice and develop their
skills in installing and running network applications.

Objectives

The main goal of this effort is to provide tools that assist students and teachers in acquiring hands-
on knowledge of SDN architecture. The following objectives are required to realize our goal:

• Identify and apply an open source SDN controller to modify, enhance, and build network
applications on,

• Identify and exercise an open source virtual switch that supports OpenFlow,

• Validate the controller platform by exercising and analyzing currently available network ap-
plications, and

• Deliver the aforementioned technologies as a single virtual machine for educators to use in
their course of introducing SDN to their undergraduate students.

3 Solution Implementation

In this section, we will describe the two platforms (and their tools) we identified and adopted
in the implementation of our solution to the introduction of hands-on labs and exercises in the
college-level undergraduate networking courses. Each is packaged into a virtual machine that can
be readily used for teaching the new concepts of SDN.

• The first is based on Mininet[11], a self-contained SDN environment that emulates the net-
work (including Open vSwitch and hosts) and allows one to use local or external controllers

• The second is based on GNS3 [12] along with a number of Docker [13] containers (con-
trollers, Open vSwitches, and hosts).

From a teaching perspective, we found the first platform to be ideal for beginners as it allows the
students to focus on experimenting with and understanding the SDN concepts using the self con-
tained Mininet environment. This relieves the students from the burden of integrating the SDN
components when they are running on separate devices. However, it is limited in the integra-
tion of SDN components with non-simulating devices including physical and emulated (virtual)
components such as Network Function Virtualization (NFV) elements and traditional routers and
switches. This is where the GNS3 platform shines and enables one to develop and deliver more
advanced exercises and labs for senior-level courses. Before we describe some in further detail,
the next sub-section provides a brief overview of SDN architecture and components.

3.1 Brief Overview of SDN Architecture and Components

This sub-section will provide a brief overview of the basic architecture of SDN [14]. SDN’s gen-
erally have three major components as shown in Figure 1 [15]:

Figure 1: SDN Layered Architecture [15]

• SDN Applications: SDN Applications are programs that communicate behaviors, policies,
algorithms and needed resources with the SDN controller via APIs. These applications could
include networking routing, network management, or business policies used to run large data
centers.

• SDN Controller: The SDN Controller is a logical entity that receives instructions or require-
ments from the SDN Application layer and relays them to the networking devices. The
controller also extracts information about the network from the hardware devices and com-
municates back to the SDN Applications with an abstract view of the network, including
statistics and events about what is happening.

• SDN Networking Devices: The SDN networking devices control the forwarding and data
processing capabilities for the network. This includes forwarding and processing the datap-
ath.

The SDN architecture APIs are often referred to as northbound and southbound interfaces, defin-
ing the communication between the applications, controllers, and networking components. A
Northbound interface (NBI) is defined as the connection between the controller and applications,
whereas the Southbound interface (SBI) is the connection between the controller and the physi-
cally networking hardware. Because SDN is a virtualized architecture, these elements do not have
to be physically running on the same hardware.

In this paper, we will focus on the southbound interface and therefore the following is a brief
description of the widely adopted OpenFlow protocol and the OpenFlow-based switch known as
Open vSwitch. OpenFlow [16] is the widely accepted implementation of the southbound inter-
face. Also, it is a defined standard where both the SDN controller and Network Devices must
meet for successful inter-operability. Further details can be viewed in the OpenFlow specifications
hosted at the Open Networking Foundation’s (ONF) website [17]. Open vSwitch [18] is a soft-
ware switch that implements the OpenFlow standard. The Open vSwitch Database Management
Protocol (OVSDB) is a management protocol intended to allow programmatic access to the Open
vSwitch database [19]. The Open vSwitch Database Schema is documented at [20]. Next, we
provide a brief description of the two platforms mentioned earlier.

3.2 Introductory Undergraduate Networking Courses Platform

To introduce SDN exercises in introductory courses, we used of a very useful tool for orchestrating
varieties of network configurations for rapid prototyping of SDN exercises: Mininet [11].

3.2.1 Mininet

Mininet uses container-based virtualization to make a single system act as a complete network.
This allows the user to specify a network topology of hosts and switches and automates their
creation. Mininet has support for Open vSwitch. One may use the Mininet CLI or API written in
Python. Mininet’s Python API can be used to develop more customizable topologies. Section 4
hands-on exercises will use Mininet’s CLI to create simple, built-in topologies.

3.2.2 Controller for Beginners

Mininet has built-in controller classes to support different network controllers, such as, the Mininet
reference controller, the Mininet ovs-controller and the less used NOX Classic. The open source
SDN controller we chose is POX (inherited from NOX) as it is one of the most popular controllers
for use with Mininet. POX, which is an open-source controller for developing SDN applications,
provides an efficient way to implement the OpenFlow protocol. The POX controller allows running
SDN applications like hub, switch, load balancer, and firewall.

POX is written in Python and offers an easy start for newcomers to SDN. POX is designed as a
group of loosely coupled modules that can communicate with each other through events. POX
includes many libraries for making it easier to create OpenFlow applications. POX provides an
OpenFlow module that listens for connections. Modules can listen to the OpenFlow module for
events such as when a connection to an OpenFlow switch is established or terminated. For exam-
ple, the event handler for a new connection to an OpenFlow datapath (switch) provides information
such as the datapath id, the port numbers, and port mac addresses. POX also provides a library
for parsing and constructing packets. It should be noted that POX only implements OpenFlow
1.0. Due to this limitation, we chose OpenDayLight and Ryu controllers for the advanced net-
working courses platform. POx Wiki [21] is the best documentation we found for developing SDN
applications with POX.

3.3 Advanced Undergraduate Networking Courses Platform

For advanced inter-networking courses, where integration of physical and emulated devices with
SDN controllers and application is required, we chose GNS3 (see Figure 2) .

Figure 2: An example of a simple SDN-based switching network

3.3.1 GNS3

Graphical Network Simulator-3 (GNS3) is an open-source network software emulator written in
Python. It allows the combination of virtual and real devices, used to simulate complex networks. It
uses Dynamips emulation software to simulate the Cisco IOS. Most recently, GNS3 has expanded
its integration portfolio to include Docker Containers, VMware virtual machines (VMs), Virtu-
alBox VMs and KVM/QEMU VMs. GNS3 is used by many large companies including Exxon,
Walmart, AT&T, and NASA, and is also popular for preparing network professional certification
exams. At our university we use it exclusively for senior-level inter-networking classes. Figure
2 represents an example of an SDN-based network we used in one of the labs to be described in
detail in Section 4.

3.3.2 Docker Containers

In the design and development of the SDN-based labs on this platform, we made extensive use
of Docker containers. Docker [13] is a tool that can package an application and its dependencies
in a virtual container that can run on any Linux server. This helps eenhance the flexibility and
portability of where the application can run, whether on premises, public cloud, private cloud,
or bare metal. For example, Docker also speeds up the development of new and more elaborate
labels as the developer is relieved of the tedious tasks of downloading, installing, configuring and
integrating numerous software packages.

For example, in a lab to be described in Section 4, we used four different Docker containers:
(1) the Docker Hub:osrg/ryu (Ryu SDN Controller) [22], (2) opendaylight/odl (OpenDaylight
SDN Controller) [23], (3) alpine (A minimal Docker image based on Alpine Linux) and (4)
gns3/openvswitch (An openvswitch container for GNS3). The containers saved the authors sig-
nificant time and resources. One major advantage of Docker containers is that they are customized
in a lightweight size. For example, the alpine Linux is customized as a host with a complete pack-
age index and is only 5 MB in size. This is ideal for developimng and performing networking
labs.

4 Solution Results - Labs & Exercises

In this section, we present a number of hands-on lab exercises designed and developed for teaching
SDN functionality to undergraduate telecommunications and networking students. Exercises 1
and 2 are designed for introductory courses in networking while Exercise 3 is for senior students
majoring in telecommunications, networking and security.

4.1 Exercise 1: Open vSwitch Flows Using Mininet

The teaching approach here is to ease students into the concept: the students start Step 1 on Exer-
cise 1 by configuring the Mininet environment to allow the ovs-controller to automatically create
and populate the flows in the Open vSwitches. This action is triggered by a request from a host
such as pingall. In Step 2, the students learn and practice how to design the flows and manually
populate them into the Open vSwitches.

Step 1 - Create Flows in OpenvSwitch (OVS) automatically by the controller

The students start by creating a minimal topology of one OVS bridge connected to two hosts and
a controller. Also, they print a summary of the Open vSwitch database contents.
mn
ovs-vsctl show

Figure 3: Mininet creates the network Figure 4: Overview of Open vSwitch database

To begin, the flow table of the s1 bridge is empty. S1 is the Open vSwitch created by Mininet when
the mn command is launched.
ovs-ofctl dump-flows s1

Figure 5: Empty flow table on s1

The students initiate a pingall so that they can begin to understand how the controller and flow
tables work.
mininet>pingall

Figure 6: Verifying connectivity between the hosts

Next, the students view the flow tables. There should be a number of flow installed by the con-
troller in response to the traffic they generated on the hosts and switches.
ovs-ofctl dump-flows s1

The flow table in Figure 7 does not look like a typical switch built-in forwarding table. For exam-
ple, a flow in an SDN flows table specifies the input and output ports. As you can see, the first flow
states if a packet is received at port 2 (in port=2), forward to port 1 (actions= output:1).

Figure 7: Flow table populated by the controller

Step 2 - Create Flows in OpenvSwitch (OVS) manually

In this step, the students add the flows rather than have the ovs-controller add the flows to better
understand the OpenFlow protocol. To do this, the students start Mininet with no controller for the
bridges to connect to.
mn - -controller=none - -mac

After verifying the flow table is empty and no connectivity exists between the hosts, the students
add a simple configuration to enable connectivity between the hosts.

ovs-ofctl add-flow s1 in port=1,action=output:2
ovs-ofctl add-flow s1 in port=2,action=output:1

The flow table should now show these two new flow entries.
ovs-ofctl dump-flows s1

Figure 8: Verifying the flows were added

The hosts should now be able to communicate.
mininet>pingall

Figure 9: Verifying connectivity between the hosts

By the end of Exercise 1, the students would have a clear understanding of the flow structure:
both the ones that are created automatically by the SDN controller and manually by a network
administrator in the field.

4.2 Exercise 2: OpenFlow Protocols Using Wireshark

So far, the students have seen what goes on at the data-plane level, that is, the packet forwarding
plane. Next, the students will see what goes on at the control-plane level, which is the domain of
the SDN controller. We will replace the built-in controller (know as ovs-controller) with another
that is more flexible and powerful. The control framework the students are asked to use is POX
[24] which happens to be bundled with Mininet as well.

Step 1 - POX Forwarding L2 Application

From the POX directory, the students will execute the POX script with the L2 learning module.

$./pox.py forwarding.l2 learning

Figure 10: Running the POX l2 learning application

The students are asked then to launch Wireshark and capture on the loopback interface to see the
OpenFlow packets between the switch and POX controller.

wireshark

Note that the dissector for OpenFlow 1.0 does not support all the fields, unlike OpenFlow 1.3,
which is fully supported. Wireshark does not support the action structure for OpenFlow 1.0 or the
match field for Ethernet type. The information can be deciphered easily by looking at the raw hex
data. The students may also have to reference the OpenFlow 1.0 specification for certain fields.

Next, the students will create the Open vSwitch bridge. An OpenFlow 1.0 connection will be es-
tablished between the Open vSwitch datapath and the POX controller listening at 127.0.0.1:6633.

mn - -controller remote,ip=127.0.0.1 - -switch ovsk,protocols=OpenFlow10

Step 2 - OpenFlow message exchange analysis using Wireshark

The students are to analyze OpenFlow packets using Wireshark. The analysis of OpenFlow pack-
ets should allow them to understand what the l2 learning module in POX does. The students then
execute the pingall on Mininet.

mininet>pingall

The students can view the series of messages (in the form packets) exchanged between the con-
troller and the switch with Wireshark. Examples of the packet in, packet out, and flow mod Open-
Flow messages can be seen in Figures 11, 12, and 13. Also, they will learn first-hand encapsula-
tion of packets such as the arp packets within the OpenFlow application layer as seen in Figure
11.

Figure 11: OpenFlow Packet In message encapsulating ARP request

Figure 12: OpenFlow Packet Out message encapsulating Flood ARP request

Figure 13: OpenFlow Flow Mod message

4.3 Exercise 3: Spanning Tree Protocol (STP) using OpenDayLight (ODL) & RYU

In this exercise, the students will make use of the advanced platform, that is, GNS3 and Docker
Containers briefly described earlier in Section 3.3. They will start with a simple network arrange-
ment that consists of three Open vSwitch bridges connected in a loop as shown in Figure 2. In
a traditional extended LAN network, the STP is implemented in the bridges and switches. STP
allows the switches to elect a root bridge and ensure that each LAN is served by only one bridge.
In an SDN-based network, the STP implementation is an application that can be exercised through
an SDN controller. An SDN controller translates the application logic into OpenFlow protocol
messages to OpenFlow-based devices such as Open vSwitches.

Step 1 - STP SDN application of ODL controller

This step should help the students understand how to use the L2 Switch application through the
OpenDayLight (ODL) controller. First, the students launch the ODL controller with karaf distri-
bution using

$./bin/karaf

and start ODL web application using

feature:install odl-dluxapps-application

Next, they exercise the L2 switch application, which includes the loop removal capabilities, by
executing the following:

feature:install odl-l2switch-switch-ui

Figure 14 shows ODL representation of the network constructed on GNS3 and shown in Figure
2.

Figure 14: ODL representation of three switches in a loop

To verify that the ODL L2 switch has discovered and prevented the loop, the students examine the
flow tables of the three switches, which are shown in Figures 15-17. They should observe (about
the flow table of OpenvSwitch-2, in Figure 16) that there is not a flow involving port 3 (eth3). The
same is true for port 3 (eth3) of OpenvSwitch-3.

Figure 15: Flow table of OpenvSwitch-1

Figure 16: Flow table of OpenvSwitch-2

Figure 17: Flow table of OpenvSwitch-3

Throughout this step of this exercise, the students should gain a strong grasp of how the SDN
applications work and how to go about analyzing the openvswitch flow records.

Step 2 - STP SDN application of RYU controller

In this step, the students are to try out a different controller, known as RYU controller on the same
network configuration given in Figure 2. However, they are to find out a few interesting facts in
the way each of the two controllers implement the STP functionality. In the case of ODL, the odl-
l2switch-switch-ui feature blocked eth3 port on both openvswitch-2 and openvswitch-3 rendering
the LAN between them unusable. However, in the case of the Ryu controller, the students should
find that the RYU team implemented the STP functionality in a way that is almost identical to
the STP traditional implementation in currently deployed switches and bridges. In addition, the
students are to be presented with a flaw (a bug) in the STP Python code that is responsible for
determining the root bridge. In appears that in the Ryu STP application, the value of the bridge ID
for the openvswitch is computed in the reverse order. The students are assigned the task to modify
the STP Python code of a Ryu SDN application (simple switch stp.py) to rectify this issue. This
is a great opportunity for the students to get experience first-hand of the paradigm shift in the
responsibility of future network analysts and implementers. Today, the network analysts place
request for change to the vendor/supplier of the switches or bridges. In the SDN world, they will
modify and enhance the application algorithms themselves.

5 Conclusions & Next Steps

We believe that SDN is here to stay and it’s just a matter of time before the adoption rate will
take off. Taking on the challenge of exploring and developing undergraduate-level hands-on lab
exercises has been an extremely rewarding and fulfilling experience. We start the students on a self-
contained environment such as Mininet. Once they are comfortable with that environment, they are
introduced to more advanced tools that will enable them to explore and experiment with network
arrangements where the integration of the physical and emulated devices are required. With the
exercises as a starting point, we will rapidly be able to exercise more sophisticated applications
for a wide range of algorithms, such as OSPF and BGP. More importantly, we will be able to
enhance the undergraduate curriculum to include programming assignments for the students to
develop their skills further in modifying and creating new applications and algorithms that would
have been nearly unattainable in the traditional networking environment.

It should be noted that more research needs to be done on the overall effectiveness of hands-on
learning. The effectiveness of other methods of teaching versus the framework laid out in this
paper is to be evaluated in the future.

It is exciting to share our experience with SDN, the tools we adopted and the hands-on lab exer-
cises we developed with those who are interested in getting a head start on this new paradigm in
networking functionality and the innovative means of network management and operations. Be-
low is a list of SDN-related topics that we see ourselves pursuing in hands-on research projects
and teaching lab exercises in the near future.

• On-demand, elastic network services utilizing NFV/SDN concept: open-source architec-
ture - DevStack, Open vSwitch, and VxLAN+Network Services Headers (NSH) encapsula-
tion.

• Testbed of the Open vSwitch project’s Open Virtual Network (OVN): Open Virtual Net-
work adds virtual network abstractions to the Open vSwitch bridge.

• Testbed of the programmable data plane Programming Protocol:Independent Packet
Processors (P4) is another SDN protocol that looks promising by allowing the progamma-
bility of data plane protocols in the field.

• Further research into inter-operability of SDN and traditional networks as well as the
differences: Most operational networks today are brownfield legacy networks. It is impor-
tant to know if SDN inter-operates with legacy networks. If so, in what ways is it useful
and in what ways is it not? Another question is how quickly do SDN networks respond to
fail-over compared to legacy. Are they as reliable? Can SDN-based networks provide more
insight into the network to predict and mitigate problems in the network?

• Learning Networking by Reproducing Research Results: One important use of SDN for
undergraduate students is learning networking by reproducing research results. Students in
the course described in [25] have used Mininet to replicate published research results.

Acknowledgment

The authors would like to thank the Integrated Science and Technology (ISAT) Department and the
College of Science and Engineering (CISE) at James Madison University (JMU) for their support
throughout the ISAT Senior Capstone Project process and the development of this paper. Special
thanks are to Josie Salcedo, one of the authors senior capstone project partner and Paul Henriksen
for his diligence and effort in reviewing and editing this paper.

References
[1] M. C. et al., “Network virtualization in multi-tenant datacenters,” in 11th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’14)., 2014.

[2] M. Casado, “Origins and evolution of openflow/sdn,” in Open Networking Summit, 2011.

[3] M. Casado, “Keynote: Make sdn real,” in Open Networking Summit, 2017.

[4] N. Mckeown, “How sdn will shape networking,” in Open Networking Summit, 2011.

[5] S. Shenker, “The future of networking, and the past of protocols,” in Open Networking Summit, 2011.

[6] J. H. Cox, J. Chung, S. Donovan, J. Ivey, R. J. Clark, G. Riley, and H. L. Owen, “Advancing software-defined
networks: A survey,” IEEE Access, vol. 5, pp. 25487–25526, 2017.

[7] H. Farhady, H. Lee, and A. Nakao, “Software-defined networking: A survey,” Computer Networks, vol. 81,
pp. 79 – 95, 2015.

[8] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined
networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[9] S. Cosgrove, “Teaching software defined networking: It’s not just coding,” in 2016 IEEE International Confer-
ence on Teaching, Assessment, and Learning for Engineering (TALE), pp. 139–144, Dec 2016.

[10] D. C. Sher-DeCusatis, C.J., “Developing a software defined networking curriculum through industry partner-
ships,” in Conference of the American Society for Engineering Education (ASEE Zone 1), 2014.

[11] “Mininet Documentation.” https://github.com/mininet/mininet/wiki/Documentation, 2016.

[12] “The software that empowers network professionals..” https://www.gns3.com/, Retrieved, Feb, 2018.

[13] “What is docker?.” https://www.docker.com/what-docker, Retrieved, Feb, 2018.

[14] “SDN Architecture Overview.” https://www.opennetworking.org/images/stories/downloads/sdn-resources/
technical-reports/SDN-architecture-overview-1.0.pdf, Retrieved: Feb 2018.

[15] “Understanding the SDN Architecture.” https://www.sdxcentral.com/sdn/definitions/inside-sdn-architecture,
Retrieved Feb, 2018.

[16] N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“Openflow: enabling innovation in campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[17] “Openflow specifications,” Retrieved March 18, 2018.

[18] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado, “The design and implementation of open vswitch,” NSDI’15 Proceedings of the
12th USENIX Conference on Networked Systems Design and Implementation, pp. 117–130, May 04 - 06, 2015.

[19] “The Open vSwitch Database Management Protocol- RFC7047.” https://tools.ietf.org/html/rfc7047, 2012.

[20] “Open vSwitch Database Schema.” http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf, 2017.

[21] “POX Wiki.” https://openflow.stanford.edu/display/ONL/POX+Wiki, 2015.

[22] “Welcome to RYU the Network Operating System(NOS).” http://ryu.readthedocs.io/en/latest/index.html, Re-
trieved Feb, 2018.

[23] “What is an OpenDaylight Controller? AKA: OpenDaylight Platform.” https://www.sdxcentral.com/sdn/
definitions/sdn-controllers/opendaylight-controller/, Retrieved Feb, 2018.

[24] “Mininet VM Images.” https://github.com/mininet/mininet/wiki/Mininet-VM-Images, 2017.

[25] L. Yan and N. McKeown, “Learning networking by reproducing research results,” SIGCOMM Comput. Commun.
Rev., vol. 47, pp. 19–26, May 2017.

https://github.com/mininet/mininet/wiki/Documentation
https://www.gns3.com/
https://www.docker.com/what-docker
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
https://www.sdxcentral.com/sdn/definitions/inside-sdn-architecture
https://tools.ietf.org/html/rfc7047
http://openvswitch.org/ovs-vswitchd.conf.db.5.pdf
https://openflow.stanford.edu/display/ONL/POX+Wiki
http://ryu.readthedocs.io/en/latest/index.html
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/opendaylight-controller/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/opendaylight-controller/
https://github.com/mininet/mininet/wiki/Mininet-VM-Images

	Introduction
	Definition and Objectives
	Solution Implementation
	Brief Overview of SDN Architecture and Components
	Introductory Undergraduate Networking Courses Platform
	Mininet
	Controller for Beginners

	Advanced Undergraduate Networking Courses Platform
	GNS3
	Docker Containers

	Solution Results - Labs & Exercises
	Exercise 1: Open vSwitch Flows Using Mininet
	Exercise 2: OpenFlow Protocols Using Wireshark
	Exercise 3: Spanning Tree Protocol (STP) using OpenDayLight (ODL) & RYU

	Conclusions & Next Steps

