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Abstract 
Today’s students are exposed to information presented in visual, intuitive and concise ways. 
They expect explanations for why a subject is important and relevant, as well as for its potential 
use. In order to adapt to students’ learning preferences and styles, efforts must be made to further 
modify teaching methods to include relevance of the material to daily life experiences. The 
material should also be presented in easy-to-comprehend, visual, and intuitive ways. This is most 
relevant in math courses that are usually taught with little or no connection to other disciplines, 
and in particular engineering.   

This paper focuses on introducing basic math concepts by linking them to daily experiences 
using relevant analogy-based examples, to be introduced prior to delving into purely 
mathematical explanations and proofs. The paper shows tangible physical explanations of 
concepts in calculus, specifically on topics such as:  

 (a) Integration and differentiation. To explain these concepts, the paper uses several examples 
such as (1) relations between steering wheel angle of a car and the physical angle of the car in 
world coordinates, (2) relations between water flow and its accumulation in a container, (3) 
elevator directional motion, and (4) energy and its temporal rate-of-change during running, 
walking, sitting, and sleeping. It also shows some unexpected examples that relay to very basic 
daily observations such as the relation between moving shadows to differentiation and 
integration.  

 (b) First order differential equation and time constant of first order system. Based on 
accumulated teaching experience, some helpful examples are: (1) battery charging a mobile 
phone at different initial charging values, and (2) cooling rate of coffee. There are of course 
many other examples, but less related to students’ everyday experiences (e.g., radioactive decay 
and carbon dating). These ideas are shared so that instructors can use them to enhance 
understanding of engineering-related math concepts, and to show their relevance.  
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We refer to this approach as “work in progress.” When using the above examples (and many 
others), students have demonstrated better, clearer understanding of difficult concepts. Even 
though this was not an official assessment, based on similar experience that was gained and 
assessed by the author multiple times in other engineering related subjects (Control Systems, 
Digital Signal Processing, Computer Algorithms, and Physics), it is believed that the approach 
has a great potential.  

 

1    Introduction  

 
This paper introduces some ideas for explaining engineering-related mathematical concepts by 
linking them to daily experiences. The focus is on visual and intuitive experience-based 
explanations in calculus, i.e., integration and differentiation, as well as on first order differential 
equations. Concepts are connected by analogy to real-life examples (other than the most common 
textbook examples that relate to the “relations between position, velocity and acceleration,” “area 
under a graph,” and “slope of a function”). The examples are meant to provide additional 
material for introductory purposes only, to allow students to see the relevance of math to their 
daily life. The examples intentionally use almost no equations. The sets of multi-faceted concept-
based examples that are illustrated in this paper are meant to allow learners to not only recognize 
and appreciate the relevance of calculus to everyday life, but also tap on different learning styles 
and keep learners engaged, thereby allowing for multiple and diverse ways of comprehension. 
 
It is important to emphasize that the material presented in this paper is meant to be add-ons to 
existing calculus textbooks, and that is not meant to suggest competition, modifications or 
replacement of existing textbooks. 
 
The material is referred to as work in progress and is to be shared and discussed with multiple 
audiences. When these and many other examples were used, students have demonstrated better, 
clearer understanding of difficult concepts, and praised the approach. Even though this was not 
an official assessment, based on similar experience that was gained and assessed by the author in 
other engineering and science related subjects (Control Systems, Digital Signal Processing, 
Computer Algorithms, and Physics), it is believed that the approach has a great potential. 
Students not only have commended the approach, but they have demonstrated its effectiveness.  

The rational for this this work stems from observations that the current generation of students 
learn differently: less textbook-reliance, and more dependence on web-based explanations, such 
as short videos, animations, and demonstrations. When it comes to concept comprehension, 
students repeatedly miss the Aha! moment, and ask for more hands-on, experiential, visual, 
intuitive, fun (e.g., game-based), and tech-based, web-based information. 
 
This is not new. For example, Tyler DeWitt [1] recognized this problem and taught isotopes to 
high school students using analogy to similar cars with minor changes to illustrate that isotopes 
are basically the same atom, i.e., have the same number of protons and electrons with varying 



number of neutrons. By focusing on calculus there are some books that include visual 
explanations (see for example references [2-10]). Of a special interest is the work by Apostol and 
Mamikon from Caltech [11,12]. They were able to explain integration of some functions without 
the need for mathematical formulas. The author of this paper published papers on this topic [13-
20] in addition to books [21,22], one for understanding concepts in “Control Systems” and the 
other for understanding the basics of “Newton’s Laws of Motion.”  
 
The bigger picture 

This work is part of a multi-modal integrated project aimed at understanding concepts in STEM. 
The approach is meant to help both teachers and students, thereby allowing for more innovative 
teaching and comprehension-based learning. The project is catered towards appealing to learners 
in visual, intuitive, and interactive/engaging means. It uses daily-life and life-relevant 
experiences, as well as different STEM/STEAM examples and activities. The project targets a 
broad understanding and appreciation of basic concepts in STEM, currently involving 
Physics/Mechanics, Calculus, Statics, Control Systems, Digital Signal Processing (DSP), 
Probability, Estimation, and Computer Algorithms. Though the material can be used by teachers 
and learners in classroom settings, it is primarily designed to (eventually) be web-based, 
targeting those who prefer self-paced self-learning friendly environments. Simply put, the project 
is principally designed for a learner-centered e-based environment, making it ready for large 
scale dissemination. Examples of calculus concepts that the author and his team plan to develop 
and integrate include: (a) games, (b) puzzles and teasers, (c) animations, (d) visual and intuitive 
daily-experiences-based examples, (e) movies and short video clips, (f) demonstrations, (g) 
hands-on activities (including those based on virtual reality and augmented reality), (h) teaming 
and communication exercises, (i) small-scale inquiry-based research, (j) presentations, and peer-
based teaching/learning, (k) visual click-based e-book, (l) community and social engagement, 
and (m) challenges beyond the basics. 

 
2    Calculus Examples 

The following is a set of examples for visualizing integration and differentiation and the relations 
between them. The examples are related to: (1) Water flow, (2) Driving and boating, (3) Garbage 
can and landfill, (4) Elevator motion, (5) Relation between power and energy, (6) Weight gain 
and weight loss, (7) Toilet paper rate of use, (8) Moving shadows, (9) Relationship between 
velocity and distance, (10) Output angle and angular velocity of a DC motor, (11) Mechanical 
integration in real life, and (12) Devices for calculating integration of functions. 

2.1 Water flow example 

The following snap shots (Figure 1) show a process of pouring water at a constant rate into a 
glass. At a certain point in time (second image from left) water is poured until the glass becomes 
full (right image). The graph shows the accumulation of water in the cup as indicated by arrows. 



Clearly constant flow results in linearly growing amount of accumulated water, or simply 
integration.   

 

Figure 1: Pouring water at constant rate 

A related example (Figure 2) that is easier (less messy) can also be demonstrated using grains of 
rice. It is different only in the sense that “it is not as continuous” as the earlier example with the 
water flow. However, it has a visual advantage since the accumulation of rice can be better seen.  

.  

Figure 2: Pouring rice grains at constant rate 

 

 



For animation or virtual reality demonstration purposes, one can use the following illustration 
(Figure 3). 

The water level in the container is the integration (up to a scale factor) of the water flow. Note 
that when the faucet is turned off (i.e., the case of zero flow), the water level is constant (which 
is the result of integrating “zero”). 

 

Figure 3: Accumulated water as a function of time 

The next natural step is to expand the example to multiple rates of pouring as shown in Figure 4. 



 

Figure 4: Effect of pouring water at different rates as a function of time 



 
2.2 Driving and boating examples 

Here are two related examples (Figure 5): (1) the relations between the angle of the front wheels 
of a car (relative to the car) and the physical angle of the car in world coordinates: a constant 
non-zero angle of the wheels results in linear performance of the car’s angle (θ) in world 
coordinates; (2) the relations between the angle of the boat’s rudder (α) (relative to the boat) and 
the physical angle of the boat (θ) in world coordinates. In a steady state ideal motion, a constant 
non-zero α results in linear behavior of θ.  

 

Figure 5: Integration effect in driving and boating 

2.3 Garbage can and landfill examples 

Depends on the group a-priori knowledge or the age level of the audience, it may sometimes be 
advantegous to start with simpler examples (Figures 6 and 7). Even though they do not show 
pure integration, they can be used to develop some intution. Familiar examples are paper garbage 
can and landfill. The added amount of garbage is not a continuous, but its accumulation gives an 
idea of the nature and meaning of integration.  



 

Figure 6: Accumulation of paper in a can 

 

Figure 7: Accumulation of garbage in a landfill as a function of time 

  2.4 Elevator example  

Elevator location as function of time can be used as a basic example to intuitively explain the 
concept of derivative. Observe the following two displays (Figure 8): the one on the left 
communicates that the elevator is located at the fourth floor, but there is no indication of its next 
move, i.e., up or down. However, even though the right image also communicates that the 
elevator is located at the fourth floor, the down pointing arrow provides additional information 
indicating the direction of motion. It is clear from the right image that the elevator is now 
moving down, meaning that the people on the first floor receive the information about the change 
in the elevator location, and that it is more likely that it will get to the first floor earlier. 

 

Figure 8: Display of elevator location and its direction of motion 



Now imagine yourself standing at the fifth floor of a building waiting for one of two elevators to 
arrive. You try to figure out which one will reach your floor first. If the displays (Figure 9) for 
both elevators show the same floor location (left image), you know that both elevators are 
stationary at the third floor, and there is no way for you to intelligently guess the likelihood of 
earlier arrival of one of them. In the second case (second image from left) the elevators are still 
near the third floor but you can also tell that both are moving up: in this case, you not only know 
the elevators’ locations, but also the general change in their locations (i.e., the sign of the 
“derivative”). In this case both elevators are moving up toward your location. Since both arrows 
are pointing up, it still does not help you in estimating which one will reach the fifth floor faster. 
In the third scenario (third image from left), even though both elevators are located at the third 
floor, only the one on the right is moving (in this case, up), indicating that the likelihood that it 
will get to your floor faster is higher. In this case, the up-pointing arrow in the display of the 
right elevator (i.e., the sign of the “derivative”) can help you become “more optimistic” about the 
arrival time of the right elevator. In the last scenario (right image), you can tell that the left 
elevator is moving away from you (due to an undesired sign of the “derivative”). You hope that 
the right elevator will start to move up soon and reach your floor faster.      

The change is key to your estimation!    

 

Figure 9: Two elevators at the 3rd floor: which one is expected to arrive earlier to the 5th floor? 

2.5 Power and energy example  

The following shows integration and differentiation in familiar situations: energy and energy 
rate-of-change as a function of time (aka power) during running, walking, sitting, and sleeping. 
A person spends a lot of energy during jogging, less in walking, even less in sitting, and very 
small amount while sleeping. 

Figure 10 shows both the cumulative lost calories, and the change (the derivative) of this 
function during the different activities. 



 

Figure 10: Calories and calories rate-of-change as function of time during running, walking, 
sitting, and sleeping. 

 

2.6 Weight gain and weight loss example  

Another example that can help in understanding integration is related to weight gain and weight 
loss as visualized in Figure 11.  

 

 



 

Figure 11: Weight gain and weight loss as a function of time 

To go beyond simple constant changes, other examples can be used and discussed. Figure 12 is a 
visual story of a penguin that gained, lost, and gained weight again. Both the weight and its 
change (derivative) are shown as a function of time.  

 

Figure 12: Visualizing integration and differentiation: a story telling approach 



2.7 Toilet paper example  

The rate of change in the length of toilet paper is perhaps among the most basic examples that 
anyone at any age can relate to. Although it can be argued that it does not represent pure 
integration or differentiation due to its actual non-continuous use, it is certainly a very intuitive 
and visual example (Figure 13).  

 

Figure 13: Visualizing total length of toilet paper as a function of time 

2.8 Moving shadows example  

This example illustrates how observing shadow edges over time (due to sun rise in early 
morning) can lead to understanding of differentiation. More specifically, it shows what can be 
learned from rate of change in shadows’ edges about the relative lengths of the shadows 
themselves (and obviously about the height of the objects that cast the shadows) even without 
knowing the angle of the light source and without knowing the absolute length of the shadows! 

Observe the next set of 6 video snapshots of shadows on a horizontal surface (Figure 14; left to 
right, 1st row first). From the first image of two invisible objects (located on the right of the 
shadows) it is clear that there is neither information about the total length of the shadows, nor 
about the height of the objects that cast them. The location of the light source is also unknown. 
Now observe the set of the shadows in each of the other 5 images over time. The 2nd top image 
shows the shadows, top one being a longer one. This image by itself still does not tell us about 
the relative lengths of the 2 shadows. However, one notices that in the 3rd through 6th figures as 
time goes by, the rate of change of the shadow edges is different. In fact, a closer look at these 



edges shows a ratio of exactly 2:1, i.e. the top shadow edge moves twice as fast as the lower 
shadow edge.  

Now that we understand the effect of time on the motion of the shadows, we can say something 
about the objects that cast the shadows. If both objects have sharp top edges, the ratio of their 
relative heights is also 2:1. We can claim this even without knowing the total length of the 
shadows and also without knowing the direction (angle) of the light source! Amazingly this is 
true regardless of the rate of change of the light source!   

So here the relative derivative of functions (relative change over time in the location of the 
shadows’ edges) tells us about the relative nature of the function itself (length of shadow), even 
though it is not possible to see the whole length of the shadows.  

 

Figure 14: Partial shadows of two masked objects  

To make the point even clearer, let’s look at the next six images (Figure 15) from which the 
above shadows were obtained. Two objects with a height ratio of 2:1 cast not only 2:1 ratio of 
shadows (obvious) but also a 2:1 ratio in the shadow derivatives which can be seen by observing 
the shadow edges! 



 

Figure 15: Unmasked objects of different heights and their corresponding shadows 

In the following example (Figure 16), video snapshots of a banana and an orange were taken 
every 10 minutes. 

We can tell that the change in shadow length over time is proportional to the shadow itself. (A 
clarifying note: in this case it is “almost correct” due to the different curvatures of the 2 objects 
[23].)  

 

Figure 16: Shadow behavior for two different objects 



2.9 Velocity and distance example  

Obviously one cannot escape the classic textbook example of integration and differentiation, i.e., 
the one that relates speed and distance traveled. Here (Figure 17) it is shown, using a constant 
rate of pedaling and the related accumulated distance travelled by a bicycle, in order to make it a 
bit more intuitive and visual. Two simple bicycle pedaling cases are illustrated: constant low rpm 
and constant high rpm referring to the actual number of rotations of the wheel and the 
corresponding accumulated distance. It is clear that the slope of the distance graph is 
proportional to the speed of the wheel. From here it may be easier to expand and talk about a 
more general case when the velocity changes, i.e., when both the speed and heading vary over 
time. 

 

Figure 17: Distance and speed: a twist to the classical textbook example 

 



 

2.10 DC motor example (refer to Figure 18) 

 
Figure 18: Input output view of a DC motor 

 

It is possible to use physics-based equations to relate the input voltage to the DC motor, 𝑣𝑣𝑎𝑎, to 
the angular velocity, 𝜔𝜔, as well as to the angle θ of the motor shaft. Since 𝜔𝜔 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  it means that 

the relationship at all times between 𝜔𝜔 and θ is differentiation or integration depends on how we 
look at it. 

 

By plotting the input voltage V𝑎𝑎, and the outputs ω, and θ of the DC motor we get a clear 
visualization of integration and differentiation (Figure 19). 

 
Figure 19: Relation between angular velocity and angular position of a DC motor 

After transforming the equations to the s-domain and then to block diagram we obtain (Figure 
20): 

 
Figure 20: Integrator block diagram – DC motor 



To complement the understanding of the DC motor example, it is desirable to explain that the 
angular velocities and the angular position are measurable quantities, for example, using 
tachometer and potentiometer (Figure 21).  

 

Figure 21: Measurement devices for angular velocity and angular position 

2.11 Mechanical integration in real life practical examples 

“Distance measuring wheels,” aka “footage wheels” or “rolling tape measure” are used to 
measure distances. They give excellent approximations when building lots need to be measured, 
for estimating length of a fence, etc. Figure 22 shows one such device.   

 

Figure 22: Image of rolling tape measurement device 

The display indicates the distance traveled. For example, if the wheel rotates 3 turns, the distance 
of the wheel traveled is the 3 times the circumference of the wheel. Simply put, the device 
measures the number of rotations of the wheel times a scale factor (which is the circumference of 



the wheel = 2πr, where r is the radius of the wheel). Another way of looking at it is that the 
device integrates the angular velocity (up to a scale factor). For example, if it rotates at a 
constant rate of 2π rad/sec (i.e., one rotation per second) starting at t=0 then the angle after t 
seconds will be 2πt radians, i.e., a linear function of time. This result, if multiplied by the radius 
of the wheel, is identical to the traveled distance.  Note that the result is invariant to the velocity, 
i.e., it works for varying directions and speeds as illustrated below (Figure 23).   

 

     

Figure 23: Rolling tape measurement device in action 

 
2.12 Devices for calculating integration of functions  
 
Just to complete the picture we briefly discuss some mechanical devices and an electric circuit 
that integrate. From a student’s point of view, it might be fun to observe, understand and 
appreciate mechanisms of some devices that can actually “compute without using a digital 
computer.” 
 
(a) Ball-and-disk integrator (refer to Figure 24) 

 
Figure 24: Ball and disk integrator (images source: Wikipedia) 

 
Refer to the left image in Figure 24. y is the radial distance from the center of the disc to the 
point where the ball touches the disc) and is the real variable to be integrated (as a function of x). 
Assume that the thin shaft rotates at a constant rate, one miniscule (“infinitesimal”) increment dx 
at a time.  Then for a given non-zero value of the distance y the ball will rotate continuously, 

https://mathsimulationtechnology.files.wordpress.com/2012/01/integrator.jpg
https://en.wikipedia.org/wiki/File:Harmonic_analyser_disc_and_sphere.jpg


resulting in a rate-of-rotation (i.e., angular velocity) that is proportional to the value of the 
distance y. This means that for a constant value of y, the ball will rotate continuously at a 
constant rate, resulting in a continuous and constant rate-of-rotation of the cylinder (or in other 
words, the angle of shaft of the cylinder will grow linearly). Also, for larger values of y, the rate-
of-rotation of the cylinder’s shaft will be higher, and for smaller values of y the rate-of-rotation 
will be lower. Changes in the value of y will result in different values of the rate-of-rotation of 
the shaft, practically integrating y (up to a scale factor). The angle of the cylinder is the 
integration of y, i.e., ∫ 𝑦𝑦 𝑑𝑑𝑑𝑑  (again, up to a scale factor).  
 
(b) Planimeter [24] (refer to Figure 25) 
 
Planimeter is a mechanical analog integrator that can measure the area of a 2d arbitrary shape by 
tracing its perimeter. There are several kinds of planimeters, with 2 main types of mechanical 
planimeters: polar and linear.  

As an example, the polar type consists of a two-bar linkage, with a pointer at the end of one link 
used to trace around the boundary of the shape to be measured. Near the intersection of the two 
links is a rotating measuring wheel. The number of turns of the wheel is a scale factor of the 
measured area. Schematics of the 2 major types is shown below [25,26]: 

 
Figure 25: Linear (left) and polar (right) planimeters 

 
 

The figures show the idea behind the tracing mechanisms of the linear and the polar planimeters. 
The pointer M follows the contour C of the shape to be measured. The linear planimeter traces 
the area by translating the elbow about the y-axis. For the polar planimeter there are two links 
that allow for 2 degrees of freedom motion. Accumulated angle as measured by a rotating wheel 
(not shown) is proportional to the area of the shape to be measured.   

 
(c) Tannery mechanical surface integrator (refer to Figure 26) 
 

https://en.wikipedia.org/wiki/File:NYW-planimeterLinear.png
https://en.wikipedia.org/wiki/File:NYW-planimeterPolar.png


The TANNERY mechanical surface integrator measures the area of 2d shape by counting the 
accumulated number of pins that are pointing up over time during the motion of the surface 
through the machine. The following are snapshots from a YouTube video [27]. 

 

Figure 26: Snapshots from YouTube video of TANNARY mechanical surface integrator 

 

  



(d) Integrating op-amp circuit 

One of the simplest electronic circuits that can integrate uses op-amp with a resistor R at its input 
and a capacitor C in its feedback as shown in Figure 27 (along with the transfer function in the s-
domain). The values of R and C determine the scale factor K of the integration.   

 

Figure 27: Op-amp-based integration arrangement 

 Visual summary (Figure 28) 

 

Figure 28: Visual “summary” of the relation between integration and differentiation 

 



3     First Order Differential Equation examples 

The following is a set of examples that shows first order systems and behaviors. We show only a 
few, but obviously there are many other examples from many disciplines. The examples are 
related to: (1) Cell phone battery, (2) Cooling rate of hot coffee, (3) Toilet mechanism, (4) 
Diffusion, (5) Car dynamics, and (6) Transient response of a DC motor. 

 
3.1 Cell phone battery example 

The voltage function during the battery charging process of a mobile phone is illustrated in 
Figure 29. It is basically a “resistor capacitor” (RC) circuit that can be described using first order 
differential equation. 

 

Figure 29: Charging a mobile phone – first order system 

Let’s observe (Figure 30) different initial charging values and at different stages of the battery’s 
life. Say someone wants to charge his or her phone in three phases, unplugging the charger and 
quickly plugging it back in, stopping at a certain time, say at the so called time constant τ, and its 
multiples, as depicted here. This is an experience-based example: We all know that cell phone 
charges faster in the beginning and slower later: the change (the derivative) is different at each 
point in time.  

 
Figure 30: Charging mobile phone in three steps 

 
 



The charging is broken down to three phases look like the following (Figure 31). Note the 
different derivatives of the graphs at different points in time: they are instants of exponentially 
decaying function.  
 

 
 

 
Figure 31: Charging mobile phone in three steps 

 
It should be noted that at any point in time the tangent line of the graph touches the line of the 
final value exactly τ seconds later. This property of a first order system was used by Mamikon 
and Apostol [11] to compute the area under the graph without using integration! 

 
 
3.2 Coffee cooling example  

Cooling rate of coffee is proportional to the difference between the coffee temperature and the 
room temperatures. The following is a brain teaser (followed by a solution) that can help in 
understanding the concept.  
 



 
 

 
 

Puzzler 

Question: 

One day, two brothers had a dispute. The first brother, Joe, claimed that coffee stays hotter if 
one pours cold creamer ten minutes after initially pouring the coffee. The second brother, Moe, 
claimed that it would stay hotter after 10 minutes if cold creamer is added right away. Based on 
what you know about time constants: which brother is correct? 

 

 



 

Answer: 

Since the first cup of coffee starts at a hotter temperature, the initial slope is greater. This 
causes the temperature of the first cup to decay more rapidly. Therefore, when Joe adds the 
creamer to the first cup, the temperature spike drops it below the temperature of cup two. This 
makes Moe correct. Simply put, pouring cold creamer first and then waiting guarantees hotter 
coffee. This is depicted in the following qualitative graph. 

 

 

 

Zooming in on the initial time: 

 

 



3.3 Toilet mechanism example (refer to Figure 32) 

 

Figure 32: Visualization of toilet mechanism – a mechanical first order system  

The water level after flushing the toilet rises following a response that is very similar to a step 
response of first order system (i.e., the change in water level is proportional to the difference 
between the actual water level and the max water level, due to the continuous decrease in water 
flow through the valve).   

3.4 Diffusion example 

Diffusion occurs at an exponential rate. This is when molecules from a region of high 
concentration move to a region of lower concentration. It occurs naturally as molecules randomly 
bounce off each other, and they are more likely to fill open space then continue to bounce off 
each other in close quarters. For example, assume there are two compartments separated by a 
wall, one filled with gas molecules and the other is just a vacuum (Figure 33). 

 

              
 

Figure 33: Diffusion: before and after 



 
Several factors affect the diffusion process, including the initial concentration/pressure, the 
ongoing pressure difference between the two chambers, and the size of the opening. Eventually 
the concentrations of molecules in the two chambers will reach the same value (Figure 34). It 
happens at an exponentially decaying rate.  
 

 
Figure 34: Diffusion: concentration as a function of time 

 
3.5 Car dynamics example 

 

 
Figure 35: Comparing “0 to 60” behaviors of three vehicles 

 
A first order system whose input is a “step”, in the case of the car, means pushing the gas pedal 
all the way to the mat will qualitatively respond as shown in different colors, green for sports car, 



blue for mini-van and orange for truck. This is a behavior that is similar to a first order system 
(Figure 35).  
 

3.6 DC motor example (refer to Figure 36) 

A DC motor has a dominant (slow) time constant, aka the mechanical time constant. Because of 
this constant, the response to a step function can be approximated by a first order linear 
differential equation. (Note that the integration relation between ω and θ of a DC motor is always 
pure integration and is independent of the time constant.) 

 

Figure 36: DC motor: effect of mechanical time constant 

Refer to Figure 19. Note the angular speed 𝜔𝜔(𝑡𝑡) and the angular position 𝜃𝜃(𝑡𝑡) of the motor as a 
function of time. When an armature voltage is applied (as a step function), the angular speed, 
𝜔𝜔(𝑡𝑡), first increases quickly then plateaus to a constant value. On the other hand, the angular 
position of the motors, 𝜃𝜃(𝑡𝑡), continues to increase. This makes sense because as the motor keeps 
spinning with a constant angular speed, the motor position will keep increasing as well. 

 
 
Conclusion  
 
The illustrated sets of examples attempt to introduce basic math concepts, i.e., integration, 
differentiation and first order differential equation, by linking them to daily experiences using 
relevant analogy-based examples. The idea is to introduce math-less visual and intuitive 
examples so that students understand and comprehend basic concepts and their importance and 
relevance. It is important to emphasize that the material presented in this paper is meant to be 
add-ons to existing calculus textbooks, and is not meant to suggest competition, modifications or 
replacement of existing textbooks. The presented material is referred to as work in progress and 
can be shared and discussed with multiple audiences. We hope that the reader will use some of 
the examples, as well as suggesting new ideas and/or sharing his/her own.  
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