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Introduction 

 

The COVID-19 pandemic, and the required transition to virtual instruction for many, has taught 

educators that they must be flexible in their mode of content delivery. While this can be a challenge 

for many subjects, engineering courses that traditionally benefit from hands-on activities can be 

especially stressed if the infrastructure to provide those experiences is based on the use of 

experiments and demonstration apparatus which are often large and expensive pieces of 

equipment. In these instances, creating hands-on experiences to support virtual learning is a 

problem. There are reports of some cases during the pandemic where universities were able to ship 

lab kits to students (e.g., circuit kits for EE classes); however, this approach may be impractical 

for schools with limited funding and when the nature of the engineering subject matter prohibits 

the use of a kit. If only we could ship full-scale wind tunnels to students, right?  

 

So what options are there for students in traditional mechanical engineering courses to benefit from 

meaningful hands-on activities that can be completed at home? How could these experiences make 

use of materials already found around the home and how could useful data be collected? Can the 

data be shared, or crowd-sourced, in such a way that the student community benefits from a 

diversity of experiments? Regarding data collection, given the ubiquity and power of an ordinary 

smartphone – packed with various sensors and cameras - this seems like a natural choice. The 

literature contains examples of the use of smart phones and tablets for their sensors and imaging 

capabilities in activities to support teaching of coupled oscillators [1], projectile motion [2], and 

rolling motion [3], as examples. The authors of this paper were motivated to explore the use of 

smartphone-gathered data from at-home experiments in the context of an undergraduate 

engineering fluid mechanics course. But how to do this and for what topic within that class? 

 

The subject of dimensional analysis and similitude is introduced in undergraduate engineering 

fluid mechanics courses as a way of dealing with the often-complicated relationships between flow 

variables and geometric parameters [4]. Dimensional analysis, using what is known as the 

Buckingham-Pi Theorem (to be explained later), allows a researcher to reduce the number of 

variables of study in a phenomenon by creating relevant dimensionless groups. These 

dimensionless groups then lead to a smaller number of experiments which are necessary to 

understand a flow phenomenon [5]. The power and utility of dimensional analysis is most easily 

observed when one has data to work with and can view and contrast that data in both a dimensional 

form and in a dimensionless form. But quite often this data is neither provided in textbook-style 

problems nor can it be collected readily via experiment in a lecture course. Thus, experiments that 

can be performed at home and data which can be crowd-sourced to create a large set, are great 

ways to highlight the utility of dimensional analysis as a tool in the study of fluid dynamics.  

    

 



Project Description 

 

Given the interest in creating a fluid mechanics problem that could be investigated via experiments 

performed at home and with minimal materials, more complicated flow phenomena were out of 

the question. As an example, dimensional analysis is used to help guide aerodynamic studies and 

results are presented in the form of relationships between dimensionless drag (i.e., a drag 

coefficient) and a collection of variables that relate fluid properties, geometry, and object speed 

(aka the Reynolds number). But students at home cannot easily measure drag forces (or infer them 

for a wide range of objects and velocities). As another example, the results of deformation of 

droplets as they impact surfaces can be presented in a universal way using dimensionless numbers 

(dimensionless deformation and Weber number) [6]; however, this phenomenon requires 

equipment beyond the means of even a typical undergraduate teaching laboratory! A phenomenon 

which is accessible with limited materials, and which can serve as a dimensional analysis example, 

is that of the motion of a heaving buoy. In addition, there is a simple analytical solution for the 

motion that can also be employed to support the experimental findings. This forms the basis of the 

project presented in this work. 

 

The complete project that is described in this paper comprises a problem statement, instructions 

for student experiments (including analysis using the MATLAB code), and a presentation of the 

results of those experiments and the results of a dimensional analysis study. The authors feel that 

the results are best presented to the class in the form of a guided discussion. The portion of the 

project involving the problem statement and student experiments can be offered as an out-of-class 

assignment or, with the appropriate resources and time, can be completed in-class. Our overall 

objective is to provide the details necessary for any instructor to facilitate this project in order to 

enhance student learning of dimensional analysis in their engineering fluid mechanics course.  

 

The Problem Statement 

 

The inspiration for the problem statement comes from a typical dimensional analysis homework 

problem that is often posed in undergraduate fluid mechanics textbooks. An example of such a 

problem statement is as follows [7]:  
 

“A spar buoy has a period 𝑇 of vertical (heave) oscillation that depends on the waterline 

cross-sectional area 𝐴, buoy mass 𝑀, and fluid specific weight 𝛾. How does the period 

change due to doubling of (a) the mass, and (b) the area?” 
 

While this is a perfectly acceptable problem statement for a homework assignment, we can take 

something like this and modify it to start as an inquiry statement, driven by a common observation, 

and ask students to think about the fundamental physics in order to come up with the relevant 

variables themselves. We suggest starting with the following:   
 

Most of us have at some time or another likely observed an object bobbing in an 

otherwise undisturbed body of liquid (e.g., a toy in a bathtub, or an object in a swimming 

pool). Have we ever considered how certain variables might characterize and determine 

that motion? Let us think about the frequency of the vertical oscillation of that object, 

often called the ‘heave’, and consider what characteristics of the object (referred to here 

after as the ‘buoy’) might be related. After discussion, we will create a list.  



It takes very little time for students to recognize that the mass and the shape of the buoy play an 

important role in setting the heave frequency. With a little directed questioning, it is then 

understood that the cross-sectional area (which is related to the overall shape) of the buoy is 

important. The original inquiry generally makes the students think only of objects in water, so you 

might need to get them on track to considering that this question could apply to any liquid and 

even under circumstances when the gravitation acceleration might be different than that on earth 

(e.g., “Would the buoy’s heave frequency be the same on the moon?”). Now we can set the stage 

for the experiments by telling students that we want to perform a systematic experimental 

investigation of this phenomenon with buoys that they can construct with common materials 

(“around the house” items). So, to simplify matters, we will restrict our study to objects with 

constant cross-sectional area at the liquid-air interface, although not restricted to circular cross 

sections so that prismatic containers can be used. This means that the ‘shape’ of the object can 

now be thought of as the shape of the bottom end of the buoy. Thus, we conclude our discussion 

of the problem statement, and transition to experiments, by writing 

 

 𝑓 =  𝜙(𝑀, 𝐴, 𝜌, 𝜇, 𝑔, 𝑆) (1) 

 

where 𝑓 is the heave frequency of the buoy and is a function of buoy mass and cross-sectional 

area, 𝑀 and 𝐴, the liquid density and viscosity, 𝜌 and 𝜇, gravitational acceleration 𝑔, and 𝑆 captures 

the general shape of the bottom of the buoy (but without a dimensional definition, so we think of 

it as a dimensionless qualitative measure at this point). Figure 1 contains a schematic diagram that 

captures the variables and an example of typical shapes of the bottom of containers (e.g., bottles 

and cartons) that can generally be found around the home and can be used as buoys for this project.      

 

 
 

Figure 1. Schematic diagram for problem statement (left). Common buoy shapes (right) 

obtained from: a plastic bottle, steel can, soda can, cigar tube, and plastic tennis ball 

canister. Border colors and shape numbers are mapped to content in the results section.  

 

It is at this point in a textbook-style problem we would use the Buckingham-Pi theorem to 

transform the dimensional variables in Equation (1) into a smaller number of relevant 

dimensionless groups. This work will be presented later to highlight the difference between a 

dimensional and dimensionless study of the data. We should also point out that by neglecting any 

viscous effects (i.e., drag due to shear on the vertical walls of the buoy and form drag from the 



shape of the buoy bottom), a simple analytical model can be found to describe the heave frequency. 

This is accomplished by applying the equations of motion to a displaced buoy. This should be 

made clear to the students, and they should be informed that the rationale of using a heaving buoy 

as a case study is driven by both the simplicity of the experiments and the accessible analytical 

solution that can be used for comparison when the results are presented.  

 

The Experiments 

 

As previously stated, the experiments used in this project are designed to be accomplished by 

students in an at home setting and using a minimum of materials and instruments. Because of this 

goal, the instructions for building the buoy stress being creative and resourceful. In what follows, 

we present a synopsis of student instructions for (1) building a buoy, (2) collecting a video of the 

heave motion, and (3) using the MATLAB code to analyze the video and share the results. A more 

complete version of these instructions, suitable as a document to provide to students, is available 

from the authors upon request.  

 

Step 1 - Build a Buoy: In order to create a buoy, students will need to select a light-weight container 

that will float and also accommodate additional mass. The only restrictions imposed on the shape 

are that it needs to have a constant cross-sectional area around the waterline (liquid-air interface) 

as it heaves. Beyond that, we encourage students to be creative and to think about getting 

containers that will span a range of shapes and sizes when all student data is pooled together. All 

sorts of plastic bottles, cans, containers, and cartons can be used and are available to a college 

student audience. Since a typical light-weight container does not have sufficient mass to be stable 

when placed upright into water (which is a great fluid statics / stability of floating bodies question 

that you can investigate with your students as part of this project!), and since we have speculated 

that the mass of the buoy plays a role in the heave frequency, additional mass of a known amount 

needs to be added to the container. A variety of materials found around the house can be used 

including sand, dirt, rice, nuts-and-bolts, etc. For fill material like sand and dirt, these can be wetted 

to increase the mass and thereby keep the center of mass as low as possible. A trial-and-error 

approach might be needed to get a mass that provides stability without capsizing the buoy. The 

MATLAB code that will be used is designed to capture the motion of the buoy by identifying and 

tracking a specific feature. The code has been designed to find a circular feature and this is why 

students must attach a spherical marker to the buoy. The color of the marker must contrast with 

the background behind the buoy. We have obtained the best results when students use ping pong 

balls or small Styrofoam balls as markers. Students are instructed to attach the markers to a 

toothpick or straw to extend the marker over the top of the buoy (so that there is no visual 

interference). Additionally, these types of markers are light so they hardly shift the center of mass 

of the buoy upward (which affects stability). In Step 3 we provide more details of how the MATLAB 

code processes movies and images, but for now it is important for the students to know that a 

spherical marker is essential so that if/when the buoy rolls about the vertical axis, the marker will 

have the same shape as detected by the code. An example of a buoy created using the instructions 

is shown in Figure 2(a). For this case the buoy is made with a clear plastic bottle, sand is used to 

add mass, and small foam beads have been added above the sand to help clearly show the level. A 

ping pong ball is used as a marker and is glued to a darkened toothpick that has been taped to the 

bottle neck. Note the contrast between marker and background color.   



The last part of this step is for the students to measure the relevant properties of the buoy that we 

have anticipated will drive variations in heave frequency. Students will need to measure the cross-

sectional area of the buoy as best they can given their particular set of resources (e.g., using 

calipers, ruler, etc.) and the mass of the buoy. While some students may have a small scale at 

home, a reasonable estimate of mass can be made based on the submerged volume. You can 

encourage your students to ask their friend Archimedes for help if they need to use that approach. 

Students should also make note of the shape of the bottom of the buoy and attempt to classify it 

based on general categories (for example those shown/numbered in Figure 1).   

 

 
 

Figure 2. (a) A typical buoy constructed using a plastic bottle with added sand. The 𝑥𝑦 

coordinate system is based on how MATLAB interprets position in a movie frame. (b) 

Examples of the same movie image that has been converted to black and while with various 

threshold levels. (c) MATLAB uses the black and white image to find closed regions and then 

identifies closed regions which have the property of circles. In this case it has identified only 

the marker and given it a green border. (d) An output of the MATLAB code is a movie where 

the detected marker is highlighted in each frame. Here we can see the up-down motion of 

the buoy along with it drifting to the right (time proceeds clockwise beginning in the upper 

left).     

 
Step 2 - Collect a Video of the Heave Motion: After the buoy is constructed, the heave motion will 

be measured as it oscillates vertically in a pool of liquid. For safety reasons, students should be 

told to use only clean tap water. Recall that in our formulation of the relationship between variables 

we made no mention of the size of the container that the buoy was floating in. For all intents and 

purposes, it was treated as infinite in extent (unbounded on all sides of the buoy). Since infinite 

bodies of water are hard to come by, students should use what they have available. This could be 

a large kitchen sink, bathtub, bucket, etc. As a general rule, the larger the buoy, the larger the body 

of water to avoid any influence. Once this is secured, a video recording is necessary. Recording 

the video is the least time-intensive part of this project. The student need only to use their hand to 

gently depress the buoy (e.g., tap down on the buoy) and record the motion. The only things to 

highlight here are that: 



  

• The camera cannot move during the course of filming so that only the buoy motion is captured. 

• The background, i.e., the region behind the spherical marker, should be as plain as possible and 

provide good contrast. A dark background is best to contrast with the light color the marker (see 

Figure 2(a) as an example). Students have frequently achieved this by using a towel in the 

background. The main concern are objects in the background, or even reflections, that the code 

may detect as a circular objects, although there are features in the code to help with this.  

• The marker cannot be fully blocked or go out of the field of view of the camera during the 

recording. If a hand is in the way at the start, the movie must be trimmed in length. 

• Only five to ten full heave cycles are required. Anything beyond that is unnecessary and leads 

to longer run time for the code. It is also not necessary to record the movie in high resolution or 

at very high speed (e.g., 120+ fps). Good results are achieved with FHD at 30 fps or 60 fps.    

 

Step 3 - Analyze the Video and Share Results: The MATLAB code was written by a team of 

undergraduate mechanical engineering students and the purpose of the code is to track the heave 

oscillation of the buoy so as to determine the heave frequency. We intended the code to be user-

friendly to avoid having students needing to read detailed instructions, and it contains dialog boxes 

which guide the user through their tasks and the code operation. The code was also written so that 

the user gains some insight into how the marker is detected and tracked, can see the movie frames 

analyzed, and then interact with the data before final results are provided. Versions of the code 

were written for use with the desktop version of MATLAB and the online version of MATLAB. We 

chose to use MATLAB given its general availability/familiarity to engineering students at the 

college level, and its robust Image Analysis Toolbox which has pre-written functions for specific 

tasks (e.g., the imfindcircles feature which was used in our code [8]). A flow chart 

highlighting the main operations in the code is provided in Figure 3, and a brief overview is 

provided. Once the code is initiated it performs the following tasks, with direction from the user, 

to analyze to motion of the buoy: 

 

• Code recognizes the movie file and determines movie properties (e.g., frame rate, etc.). 

• A single frame in the middle of the movie is isolated, converted from color to black-and-white 

at nine different threshold levels, and code prompts the user to select a level from those options 

where the marker is distinguished from the background (an example is show in Figure 2(b)). 

• After using threshold level user input, closed regions are identified and analyzed to detect which 

regions are most likely circles. The circular feature most likely to be the buoy marker is 

highlighted and the user is prompted to confirm the detection (see Figure 2(c)). If this process 

fails, the user is instructed to manually identify the marker by drawing a line across it.  

• The code now knows the marker size (based on confirmation or manual selection), and it 

proceeds to track the marker sequentially through each frame of the movie. The (𝑥, 𝑦) 

coordinates of the center of the marker for each frame are recorded along with the frame number. 

Simultaneously, the code both writes and plays a new movie in which the marker is tracked so 

that the user can see the results (see Figure 2(d)).  

   

After the frames of the movie have been analyzed, the code prompts the user to enter the measured 

buoy properties (e.g., mass, cross-sectional area, and fluid specific weight). These are then stored 

and printed in a final ‘results’ text file. Once this information has been provided by the user, the 

code plots raw data for the 𝑦 location of the center of the marker in pixels versus the frame number.  



 
 Figure 3. Flow chart showing main operations of the MATLAB buoy image processing code. 



This is analogous to plotting the heaving motion (vertical motion) versus time. An example of the 

results of the code for the buoy shown in Figure 2 is provided in Figure 4(a).  
 

 
                                      (a)                                  (b) 

 

Figure 4. The heaving (vertical) motion of a buoy is captured by tracking the 𝑦 location of the 

center of the marker. (a) The first ~50 frames capture a stationary buoy which is then pushed down 

at frame ~75. The buoy then oscillates for the remainder of the frames. Not surprisingly, the motion 

of the buoy is damped, and the amplitude of the heave motion decays. (b) A detailed view of one 

peak showing that, after user input, a curve is fit to identify the frame number location of the crest. 

This is done for the first five crests and first five troughs. 

 

What remains is for the user to review the plot of heave motion to ensure that it is reasonable (free 

of any serious flaws) and then select, as prompted by the code, the approximate locations of the 

first five sequential crests and five sequential troughs corresponding to the heave motion. The user 

does this by clicking on the plot near the crests and troughs in an open plot window provided by 

the code. The code uses these approximate locations to locally fit a second order polynomial to the 

data, thereby identifying the frame number values of the peaks and troughs (interpolating between 

integers). An example of this is shown in Figure 4(b). The code now has all of the information to 

compute an average of the heave frequency in addition to an estimate of the statistical uncertainty 

of the values of heave frequency used to determine the average. This information is provided in 

the form of summary plots, in addition to a standardized ‘results’ text file. The code can be 

modified as needed to save all figures for future use.  

 

Students now have data from their experiments to share. Instructions need to be provided by the 

instructor to indicate how students can share the data. During past versions of this project, we have 

found success with using an Excel file in OneDrive that can be linked through the course learning 

management system. This sharing of data is key to this project – a large number of students each 

running a small number of experiments can create a large and diverse data set. The project 

leverages the power of crowd sourcing this data.  

 

 



Project Results 

 

The data presented in this section were collected from experiments performed by the authors and 

are indicative of the typical results obtained by students in an undergraduate fluid mechanic course 

setting (based on assigning this project several times). Experiments performed with 69 unique 

buoys, which were used to collect 251 values of heave frequency, are provided. A majority of the 

data was collected with buoys constructed using commercially available bottles and cartons; 

however, several buoys were fabricated with thin-walled plastic tubes (e.g., shipping tubes). These 

provided additional buoys with a more slender shape than most bottles.  

 

Data in Dimensional Form 

 

Figures 5(a) and 5(b) capture the results of buoy experiments and are presented in a dimensional 

form. In Figure 5(a) we see heave frequency 𝑓 (Hz units) plotted versus waterline cross-sectional 

area 𝐴 (mm2 units). In Figure 5(b) we see heave frequency plotted versus buoy mass 𝑀 (gm units). 

In both figures, the data markers have been chosen to distinguish six basic classifications of the 

buoy shape (i.e., bottom of the buoy). The numbering for these classifications is provided in Table 

1. The first observation we can make from these plots is that there is a wide range of buoy area 

and mass. The values of area span from ~ 120 – 20,000 mm2 (corresponding to buoy diameters of 

~ 12 – 158 mm). The buoy mass range is from ~ 9 – 3900 gm. All but five of the data points use 

water as the liquid. Overall, the heave frequencies measured for these wide ranges of area and 

mass fell between ~ 0.7 – 2.2 Hz.  

 

  
 (a) (b) 

Figure 5. Results from buoy experiments presented in a dimensional form where frequency is 

shown to depend on both (a) cross-sectional area, and (b) buoy mass. Given the scatter in the 

data (e.g., the vertical range for any fixed value along the abscissa), it is difficult to determine 

any precise trend. The average error for values of 𝑓 are ~ 3.5% and so error bars are not plotted. 



The second observation that we can make from Figure 5 is that, in general, both area and mass 

have a role in setting the buoy heave frequency. It appears from both figures that heave frequency 

decreases with increasing mass and decreases with increasing area. However, the scatter in the 

data is significant and we would not expect to achieve an accurate fit with a single trendline. The 

conclusion that we can draw here is that neither mass nor area are good single variable predictors 

of heave frequency. There exists a more complicated relationship between the variables that 

dimensional analysis may help elucidate.       

 

Data in Dimensionless Form 

 

Given that there are several variables which influence heave frequency, we can now turn to 

dimensional analysis in order to seek relevant dimensionless groups that characterize the heave 

motion. The goal is a smaller number of dimensionless groups (i.e., 𝜋 groups) that shed light on 

the relationships between all of the variables involved. If performed correctly, the scattered data 

as shown in Figure 5 collapse to show definite relationships if relevant dimensionless groups are 

found and used. This is the utility of dimensional analysis and using dimensionless groups to find 

relationships.  

 

One procedure for finding these dimensionless group is called the Buckingham-Pi Theorem and is 

outlined in most undergraduate fluid mechanics textbooks [4]. We will briefly summarize the 

process here in order to arrive at groups for our specific problem. We have already started this 

process through the listing of dimensional variables earlier in the paper – refer to Equation (1). 

Note that within these variables are contained the primary dimensions of mass, length, and time 

(an inspection of all of the units of the variables will demonstrate this). The Buckingham-Pi 

Theorem requires the selection of what are known as ‘repeating parameters’ from the collection of 

independent variables. These are variables (i.e., parameters) that we will use to create 

dimensionless groups. We do this by combining the group of repeaters with individual remaining 

variables, one at a time, and setting the exponents of all of the variables such that the group contains 

no net dimensions. In fluid mechanics problems in which the overall group of variables contains 

primary dimensions of mass, length, and time, the repeating parameters are typically chosen so 

that one is characteristic of the fluid, one descriptive of the flow field, and one representative of 

the geometry of the flow field, for a total of three repeating parameters. The independent parameter 

is never chosen as a repeater as it should only appear once – in the dimensionless independent 

group (the independent parameter in our case is frequency 𝑓). A challenge in a student project like 

this is to have meaningful variations in fluid properties while still adhering to the at-home materials 

philosophy. Thus, typical viscous fluids that students might have around the house are cooking 

oils. Even these, in quantities necessary for experiments with bottle-sized buoys, can be a burden 

to purchase or work with, so we restrict ourselves to a study using only water. This means that we 

will eliminate viscosity 𝜇 from our list of variables. The product of density and gravity, called 

specific weight 𝛾, can be used instead of the two separate variables. Recall that we already claimed 

𝑆 is a factor that characterizes shape, but we assign it no dimensions. Thus, we are now left with a 

list of variables that appears as in Equation (2)    

 

 𝑓 =  𝜙(𝑀, 𝐴, 𝛾, 𝑆) (2) 

 



where there are only three independent variables that have dimensions, and so they must be picked 

as the repeating parameters. Given that 𝑆 is already thought of as a dimensionless group, using the 

Buckingham-Pi Theorem we now seek to find a dimensionless group by combining 𝑓, 𝑀, 𝐴, and 

𝛾. We do this by setting exponents on the variables, 𝑓1𝑀𝐵𝐴𝐶𝛾𝐷, and solving for the exponents to 

yield zero dimension of mass, length, and time for the group. This is accomplished with three 

algebraic equations to set the dimensions of mass, length, and time to zero in the group (hence 

solving for the three unknowns 𝐵, 𝐶, and 𝐷). When this is completed, we now find that we 

anticipate describing heave frequency with the following relationship, 

 

 
𝑓𝑀

1
2

𝐴
1
2𝛾

1
2

= 𝜙(𝑆) or 

𝑓

√𝛾𝐴
𝑀

= 𝜙(𝑆) 
(3) 

 

which suggests that dimensionless heave frequency is only a function of shape. If the shape is 

fixed, say for example by having bottom shapes that are only sharp-edged, then 𝜙(𝑆) = 𝐶, where 

𝐶 is a constant for that particular shape. The dimensionless frequency would be equal to a constant 

value, i.e., 𝑓1𝑀1/2𝐴−1/2𝛾−1/2 = 𝐶. If this result is true, then the values of the constants for each 

shape can be found by analyzing the data in a dimensionless form. That is a key idea in this entire 

process – we find the dimensionless groups that may be relevant, but the relationship between 

them (i.e., the function 𝜙) is found through experiments.   

 

To see if each shape yields a unique value for 𝐶, we first plot the data in a dimensionless form as 

shown in Figure 6, where we have grouped the data by shape (the classifications are admittedly 

crude as, for example, we do not measure the radius of the rounded edge) and then plotted as 

dimensionless frequency versus data point number 𝑖. For simplicity, we will use 𝑓∗ to denote the 

dimensionless heave frequency in figure axis labels.   

 

 
 Figure 6. Dimensionless heave frequency plotted to elucidate whether the shape 

of the bottom of the buoy plays a strong role in determining the frequency.  



No definitive trends emerge between dimensionless frequency and buoy shape from an inspection 

of Figure 6. To further strengthen the claim that there are no significant differences in 𝑓∗for the 

shapes studied, we report basic statistics associated with values of 𝑓∗ in Table 1. Although the 

rounded bottom buoys have a higher 𝑓̅∗, this is explained more by the slenderness of the buoys 

than by the bottom shape as will be explained later. There are some minor differences in the 

averages of the other shapes (e.g., rounded edge versus concave bottom), but there is overlap of 

the values when considering the uncertainty. Note that uncertainty is computed using 𝑢 =

 ±𝑡𝑠/√𝑛, where 𝑡 is the Student-t value chosen for 95% confidence (for a two-sided distribution). 

This leads us to conclude that at least for the buoys tested as a part of these experiments, shape 

does not play a significant role in setting the dimensionless buoy frequency.  

 

Table 1. Summary of basic statistics for the average dimensionless heave frequency 

for each buoy shape. 

 
shape description sample size average std. dev. uncertainty 

𝑆 𝑛 𝑓̅∗ 𝑠 𝑢 

[ - ] [ - ] [ - ] [ - ] [ - ] 

rounded edge (1) 71 0.92 0.05 0.012 

sharp edge (2) 105 0.93 0.06 0.012 

concave bottom (3) 52 0.93 0.05 0.014 

rounded bottom (4) 09 1.00 0.02 0.015 

undulated bottom (5) 02 0.94 0.03 0.254 

unclassified (6) 12 0.95 0.07 0.041 

 

But given the scatter in the values of 𝑓∗, is there some hidden variable that we have not accounted 

for? The dimensionless groups that we find from use of the Buckingham-Pi Theorem are only as 

good as the variables that we identify at the start of the process. Looking back at Equation (2), is 

there anything else that we can think of that might play a role? One thing to consider is that perhaps 

the ‘shape’ of the buoy has less to do with the shape of the bottom, or cross-section shape, and has 

more to do with the aspect ratio, i.e., the slenderness, of the buoy. We can investigate this by 

returning to Equation (2) and modifying it to eliminate 𝑆 and instead replace it with 𝐻. We treat 

𝐻 as the submerged depth of the buoy (the portion of the buoy above the waterline does not play 

a role). We now find that the Buckingham-Pi Theorem leads us to the following, 
 

 

𝑓 =  𝜙(𝑀, 𝐴, 𝛾, 𝐻) → 

𝑓

√𝛾𝐴
𝑀

= 𝜙 (
𝐻

√𝐴
). 

(4) 

 

Since most of our buoys have a circular cross section, we can replace 𝐻/√𝐴 with 𝐻/𝐷, where 𝐷 

is the buoy diameter. We can now return to the data with this new view at finding a predictive 

relationship between the variables. Note that although students were not asked in the original 

instructions to measure the submerged depth of their buoys, this value can be computed by 

equating the mass of the buoy to the equivalent mass of liquid displaced and using the reported 

cross-sectional area. When this project was presented in class, this re-thinking of the important 

variables was presented as part of a discussion of the data; however, an instructor can choose to 

assign 𝐻 to be computed or measured by the students. With Equation (4) as our guide, we can 

generate the results show in Figure 7.  



 
 Figure 7. Dimensionless heave frequency plotted against a dimensionless 

submerged depth. The term 𝐻/𝐷 indicates the slenderness of the buoy. Large 

values, i.e.,  𝐻/𝐷 ≥ 5, were achieved with buoys fabricated from thin-walled 

plastic tubes.  

 

It is now apparent that there is a relationship between dimensionless heave frequency and the 

slenderness of the buoy. If we were so inclined, we could attempt a curve fit to yield a predictive 

relationship; however, this is not necessary for this project. What is worth a reminder is to contrast 

the results from Figure 5 with those of Figure 7. When viewed through dimensional results only, 

there is a difficulty in establishing a relationship between heave frequency and buoy mass and 

area, other than a crude increase/decrease observation. However, when guided by the results of 

dimensional analysis, and using dimensionless variables which collapse the data onto what seems 

like a single trend, we can begin to make sense of what could be a complicated fluid dynamics 

phenomenon.  

 

Additional Explorations 

 

Recall that in our development of a problem statement we asked students to consider the influence 

of various liquids on the heave frequency. Neglecting any variations in viscosity, we can see from 

Equations (3) and (4), that density (within specific weight) can play a role. In other words, the 

same buoy (mass and area) in liquids with different density ought to have different dimensional 

heave frequencies, but that dimensionless frequencies should be the same as they are set only by 

the ratio 𝐻/𝐷. To demonstrate this, the authors performed a limited set of experiments to highlight 

the motion of a buoy in both water and acetone. Acetone was chosen as it has a low viscosity, 

similar to the value for water, but a noticeably lower density of 0.79 gm/cm3 [9]. Because acetone 

is a strong solvent, can dissolve many common plastics, and should be handled in small quantities, 

we chose to use a small buoy made from a thin metal tube. The buoy was floated in approximately 

1 liter of acetone stored in a glass container. Five different buoy masses were tested for both the 

experiments with water and those with acetone. The results are presented in Figure 8. Note the 



buoy masses for the two liquids are different and the purpose here was to test a similar range of 

𝐻/𝐷 for each buoy. The results presented in Figure 8 show that when plotted as 𝑓 versus 𝑀, the 

two data sets are noticeably separated. Error bars indicate no overlap of the trends. However, when 

the frequency is plotted using 𝑓∗, we see the two sets collapse onto a single trend.  

 

 
 Figure 8. Results of experiments using a small metal tube buoy tested in 

water (black markers) and acetone (white markers). Both the dimensional 

frequency 𝑓 data (in Hz units ranging from ~1.7 – 2.0 Hz) and 

dimensionless frequency 𝑓∗ (unitless and ~1) data are shown on the same 

plot. Error bars represent the magnitude of the standard deviation from 

each value. It is obvious that buoy frequency changes with fluid density, 

but that dimensionless frequency is insensitive to it.    

 

Because we chose to create buoys with slender plastic tubes with larger values of 𝐻/𝐷 for which 

𝑓∗ ~ 1 (versus using only bottles – typical of student experiments), we have the ability to look back 

at those particular experiments and investigate changes in heave frequency by isolating changes in 

buoy mass and buoy area. A type of investigation such as this further strengthens the results of the 

dimensional analysis study, i.e., it can be used to confirm the exponents predicted for each variable 

(cf. Equation (3)), and it can be used to investigate the more typical textbook dimensional analysis 

question (cf. Page 2). We start by taking the data from seven buoys made from clear plastic tubes 

with circular cross section. The waterline cross-sectional areas, A, of these buoys are: 349, 471, 

665, 985, 1432, 1754, and 2291 mm2, and all are classified as having a square edge. The results of 

the experiments with just these buoys are shown in Figure 9(a). The abscissa of this plot is a log-

scale, and although the ordinate is a linear scale, because of the narrow variation of ordinate values, 

it would appear the same on a log-scale (we chose the linear scale to show the major divisions). 

Each data set is connected with a power-law curve fit, produced using the trendline feature in 

Excel®, and buoy area A increases from left to right. The curve fits appear linear on this plot 

because of the actual power-law trend of the data. Dimensional analysis predicted that 𝑓 ∝
 𝑀−1/2, and the average of the seven exponents from the trendlines is 0.49 with a standard 



deviation of ±0.05. In other words, the buoy data predicts that 𝑓 ∝  𝑀−0.49. Figure 9(a) contains 

seven data sets with regular cross-sectional areas because we used tubes of set diameter. The 

masses used in these experiments were chosen to create a spread in the submerged depths. Thus, 

regular repeated buoy masses were not used. Because of this we cannot isolate the trend in heave 

frequency with area alone. To remedy this, and because of the result found from Figure 9(a), we 

can investigate the effect of area on the product 𝑓𝑀1/2. Dimensional analysis predicts that 

𝑓𝑀1/2 ∝  𝐴1/2 according to Equation (3). Results from the buoy data are shown in Figure 9(b).  

 

  
 (a) (b) 

Figure 9. Results from buoy experiments using slender plastic tubes of constant cross-sectional 

area. These results confirm the dependence of heave frequency on (a) buoy mass 𝑀 and (b) area 

𝐴. In both cases, the experimental results are consistent with the predicted exponents of 1/2 on 

both area and mass as given in Equation (3). 

 

Each data set from Figure 9(a) collapses to nearly a single point, with negligible variation, in Figure 

9(b). A power-law curve fit through the data of Figure 9(b) yields 𝑓𝑀1/2 ∝ 𝐴0.48 (the curve fit 

appearing linear on a log-log plot confirms the power-law nature of the data). This exponent is 

essentially the value of 0.5 predicted by theory.   

 

What remains is to introduce the simple analytical model for 𝑓 (in Hz units), mentioned earlier, 

for the heaving motion of a buoy. The purpose of providing this model for this project is to 

demonstrate that the data students have collected can be used to assess the validity of a theoretical 

model (something else that typical homework problems rarely give the student an opportunity to 

do). We need only to analyze the motion of the displaced buoy to accomplish the task of developing 

the model. Using the coordinate system show in Figure 4(a), Newton’s Second Law yields  

 

 𝑑2𝑦

𝑑𝑡2
=

𝜌𝑔𝐴

𝑀
𝑦 (5) 



where the force acting on the buoy is the additional buoyant force due to the displacement 𝑦 from 

equilibrium. This equation yields an expression for 𝑦(𝑡) that predicts oscillatory motion. Upon 

solving this equation for the frequency of that oscillation we find  

 

 

𝑓 =  
1

√2𝜋
√

𝛾𝐴

𝑀
 and 𝑓̅∗ = 1. (6) 

 

where the coefficient 1/√2𝜋 provides units for frequency in Hz. Equation (6) provides us with a 

means of computing a theoretical (expected) heave frequency for any values of 𝛾, 𝐴, and 𝑀. We 

should note that this theoretical frequency does not account for drag forces on the buoy. Figure 10 

provides a direct comparison between the experimental heave frequency and the theoretical 

prediction for heave frequency.  

 

 
 Figure 10. A comparison of experimental heave frequency measurements to 

theoretical values predicated using a simple analytical model that neglects drag 

forces and added mass.  

 

What we discover from inspection of Figure 10 is that in general, the experimental data is in 

excellent agreement with the theoretical prediction at low frequencies (e.g., 𝑓 < 1), but as 

frequency increases the agreement decreases. The data points for 𝑓 < 1 correspond to slender 

buoys, which we may classify as spar buoys (vertically elongated) in contrast to other types of 

buoys such as boat buoys (horizontally elongated), sphere buoys, etc [10]. Nearly all of the 

experimental data points for 𝑓 > 1 have frequency values below the theoretical. This makes sense 



if we remind ourselves that the theoretical model does not consider drag forces which we anticipate 

would increase in magnitude with higher frequencies (and thus higher buoy speeds). What the 

simple theoretical model also does not account for is an ‘added mass’ which is often used to more 

accurately predict buoy heave frequency by accounting for the mass of the liquid that the buoy 

must accelerate as it moves [11]. If the actual mass is combined with the added mass, we expect a 

decrease in the theoretical frequency compared with the prediction from Equation (6).   

 

Future Work 

 

The project described in this work has been implemented several times in an undergraduate fluid 

mechanics course at Cal Poly San Luis Obispo and from the anecdotal feedback we have received, 

we recognize that there are many opportunities to improve and expand on the project. These 

improvements and expansions include:  

 

(1) Implementing the project with an eye toward assessment of learning outcomes as compared to 

a course that does not have a hands-on component for teaching the utility of dimensional analysis;  

 

(2) Develop a version of the code that operates using open-source software to further broaden the 

pool of potential users and promote inclusion (e.g., students that do not have access to MATLAB);  

 

(3) Build a web-based set of experiment movie files, code, and data so that students can supplement 

their own experiments with more data or share their data to add to the usable collection. Currently, 

the authors are more than happy to directly share the code and movie files upon request; and  

 

(4) Adapt the code to use artificial intelligence for marker detection. A trained version of the code 

could then be used to detect markers that are not highly spherical, for example a wadded-up ball 

of paper, thus making further reductions to the materials needed for the experiments. We see this 

project as a starting point for future undergraduate engineering studies that could benefit from 

smartphone-based image analysis.   

 

Conclusions 

 

Not all colleges and universities can provide hands-on experiments in traditional laboratory 

settings. This could be due to budgetary constraints or, as we have seen more recently, due to 

circumstances that require a sudden transition to virtual instruction. But this does not mean that 

students cannot be provided with opportunities to explore concepts and collect data outside of the 

classroom. As we have demonstrated in this paper, simple at-home experiments using minimal 

materials, utilizing smart phone video recordings analyzed with image processing software, can 

be used by students to collect and share data. Crowd sourcing this data can reduce the burden on 

any one student to complete a multitude of experiments, and by encouraging creativity and 

resourcefulness a diversity of experimental results can be obtained by the group (i.e., the crowd). 

In this particular instance, the experiments yield a rich set of data and were used to support the 

teaching and learning of dimensional analysis in an undergraduate fluid mechanics course – which 

can be used to elucidate trends in phenomena in which a number of variables play a role.    
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