
AC 2007-2445: HIGH-PERFORMANCE COMPUTING STUDENT PROJECTS

Hassan Rajaei, Bowling Green State University
HASSAN RAJAEI Hassan Rajaei is an Associate Professor in the Computer Science Department
at Bowling Green State University. His research interests include computer simulation,
distributed and parallel simulation, performance evaluation of communication networks, wireless
communications, distributed and parallel processing. Dr. Rajaei received his Ph.D. from Royal
Institute of Technologies, KTH, Stockholm, Sweden and he holds an MSEE from Univ. of Utah.

MOHAMMAD B. DADFAR Mohammad B. Dadfar is an Associate Professor in the Computer
Science Department at Bowling Green State University. His research interests include Computer
Extension and Analysis of Perturbation Series, Scheduling Algorithms, and Computers in
Education. He currently teaches undergraduate and graduate courses in data communications,
operating systems, and computer algorithms. He is a member of ACM and ASEE.

Mohammad Dadfar, Bowling Green State University

© American Society for Engineering Education, 2007

P
age 12.803.1

High Performance Computing Student Projects

Hassan Rajaei and Mohammad B. Dadfar

Department of Computer Science

Bowling Green State University

Bowling Green, Ohio 43403

{rajaei, dadfar}@cs.bgsu.edu

Abstract

Commodity High Performance Computing (HPC) platforms such as Beowulf Clusters provide
excellent opportunities to engage students with challenging projects. Courses such as parallel
programming, distributed systems, operating systems, and networking can benefit from the low-
cost HPC platform. In this paper we report the results on series of student projects in an
advanced operating systems course which jointly have contributed to a larger group project.
Several students designed, implemented, and tested segments of manageable term projects
contributing to the student learning in the advance topic of high performance computing. We
focused on job scheduling for a cluster of processors as the main topic, while pursuing other
HPC-related areas such as parallel programming, load balancing, computer simulation, and
performance analysis embedded in the theme.

In this paper we examine following scheduling polices: FCFS (First-Come-First-Serve),
Backfilling Algorithms (Aggressive, Conservative, Multiple Queue, Look-ahead), Co-
scheduling, and Gang Scheduling. While most of the scheduling policies are batch, Gang
Scheduling provides a timesharing approach to the multiprocessor system. Our results indicate
that Gang scheduling offers an attractive solution to the drawbacks of batch scheduling. This is
especially true with respect to the response time and overestimation of the processing time of the
submitted jobs in the system.

1. Introduction

High performance computing offers an excellent vehicle to accelerate computational needs of
scientific and engineering applications. This platform currently can easily be configured with
clusters of PCs connected through a high-speed switch on a high-speed network. Such a tool
provides exceptional opportunities to explore numerous projects for educational as well as
research purposes. We have installed a Beowulf Cluster

1
 with 16 compute-nodes in our

computing lab, and have engaged our students with exciting projects in courses such as
Operating Systems, Communication Networks, Parallel Programming, Distributed Simulation,
Algorithms, Data Base Management, and several others. Within a short period of time, we have
witnessed considerable increase in student projects in our HPC lab with several success stories

2,

3
. Student interest and their reported success are growing. They are excited to work with

advanced and practical problems which take them beyond the theory of their textbooks.

P
age 12.803.2

In this paper, we provide a comprehensive report about a series of studies on job scheduling in a
distributed multiprocessor environment, which engaged several students in a three-year period.
We also show how students can utilize and build upon the results of previous groups while
laying the ground work and providing continuity for the future students. The incremental
development method was particularly beneficial both for the students and the faculty. Students
were well aware that their work would be used by others, and as a result, paid extra attention to
the viability of their work which contributed to a great learning outcome. Integrating small
projects into larger ones has twofold benefits for faculty: achieving the research objectives, and
sharing the obtained results in the classroom. These studies encapsulated challenging HPC-
related components such as parallel computing, load balancing, and distributed simulation.

Scheduling of parallel applications on distributed-memory parallel system often occurs by
granting each job the requested number of processors for its entire run time. This approach is
referred to as variable partitioning which frequently utilizes non-preemptive batch scheduling

4, 5,

6
. That is, once a job gets hold of the requested number of compute-nodes, it continues

execution until the job is completed or some error forces the system to abort the faulty job.
Consequently, most parallel programs restrict their I/O bursts to the beginning and end of the
program in order to avoid significant performance penalties.

Another scheduling approach is dynamic partitioning. This scheme suggests partial allocation of
requested nodes for a parallel job. Even though this approach could help some jobs to start
processing their task, the scheduling method is not widely used because of practical limitations.
As an example consider a job where it needs all its requested nodes in order to start processing
the parallel tasks. In this case, allocating fewer compute-nodes than requested can lead to
system deficiencies since those allocated nodes can become idle until this job receives all of its
requested nodes.

A third method regards use of co-scheduling of the tasks and timesharing processor powers
among existing jobs in the system. Co-scheduling can be implicit or explicit. We use the latter
method described as Gang Scheduling

7, 8, 9
. In this method, all the processes of a parallel job are

assigned to a Gang of processors for execution. Context switching is coordinated across the
nodes such that all processes are executed and preempted at a fixed interval. Gang scheduling
favors short jobs.

In our studies, we looked into the batch- and co-scheduling policies with Backfilling Algorithms
using different flavors such as Aggressive, Conservative, Multiple Queue, and Look-Ahead
schemes.

The remainder of this paper is organized as follows: Section 2 provides some challenging HPC
topics appealing student projects. Section 3 describes job scheduling problem in HPC platforms
as well as details of the methods used in the studies. In Section 4 simulation techniques for the
employed policies are described. Section 5 describes implementation issues, and Section 6
provides the obtained results and analysis. Section 7 outlines future work and Section 8 provides
concluding remarks.

P
age 12.803.3

2. HPC Stimulating Topics

High performance computing opens the doors for solving numerous fascinating scientific and
engineering problems. The price of doing so, however, is the fight that one has to face in several
fronts at the same time. In order for a HPC task to obtain the desired answer, the programmer
needs first to be familiar with parallel programming and load balancing issues. After that, the
programmer needs to model the application domain problem in form of a parallel program.
Knowledge of load balancing, networking, operating systems, and parallel processing facilitate
the goal of reaching the desired results. On top of this list, we have added two more items: the
application domain of job scheduling in multiprocessor environment, and simulation of the job
scheduler in the multiprocessor system. These topics often stimulate senior and graduate students
who desire to put their theoretical knowledge into practice.

We target an advanced operating systems course since in such a course, students often learn
about concurrent processes, communication and synchronization between the processes, as well
as task scheduling and policies. We train the students with parallel programming, load balancing,
and simulation issues with simple examples and benchmarks.

For parallel programming purpose, the Message-Passing Interface

10, 11
 (MPI) library was used as

part of the Beowulf cluster. MPI uses the master-slave paradigm similar to parent-child method
of the Unix fork command. Students are well aware of this method and are excited to experiment
with the execution of concurrent processing on multiprocessors. As a warm-up exercise, we
assign students the matrix multiplication benchmark problem. In this problem, we assume that
we have a large matrix A and B to be multiplied and the result to be stored in matrix C. By
varying the dimension of matrices A and B, as well as the number of processors to obtain the
result, we will obtain a well-designed exercise where the students will observe the following:

‚ Writing a simple parallel program to be executed on a Beowulf cluster

‚ Partitioning the task between the existing number of processes and processors

‚ Scheduling the task of multiplication to processors

‚ Choice of static vs. dynamic task assignment

‚ Impacts of method of assigning tasks to processors

‚ Impacts of load balancing to the execution of parallel task

‚ Performance of parallel execution and speedup

‚ Inter-process communications with send, receive, scatter, gather, and broadcast

‚ Synchronization issues such as barrier, blocking and non-blocking send and receive

‚ Understanding the ratio of computation vs. communication

‚ Debugging issues in parallel execution.

The matrix multiplication benchmark is fairly straightforward; nevertheless it provides an
excellent training for students and prepares them to perform their domain application task which
in our case is scheduling of parallel programs arriving in multiprocessor environment such as a
Beowulf Cluster.

P
age 12.803.4

3. Job Scheduling Problem

Job scheduling on distributed-memory multiprocessors is a challenging task. Traditional factors
such as job length to allocate the requested resources do not suffice. Communication delays and
synchronization overhead which are normally in the user domain could turn out to be key issues
for multiprocessor utilization. If scheduling does not carefully address the above issues (and
several others), the utilization of each processor in the distributed platform can end up
comparatively lower than a single processor system. Needless to say that such scenario needs to
be avoided since high performance computing is all about performance. To better understand
these issues, our studies looked into both batch orient non-preemptive schemes as well as
preemptive timesharing polices. For both types, we used different flavors of backfilling methods
such as conservatives, aggressive, lookahead, and multiple queues. In the following subsections
we provide an overview of these algorithms.

3.1 Non-FCFS Batch Schemes

Strict First-Come First-Serve (FCFS) policies are seldom used for resource managers. Some sort
of priority mechanism is often added to handle resource queues. One solution is to prioritize the
jobs in the waiting queue based on a preset policy such as the requested number of processors or
the estimated wall-clock time in addition to the arrival time. The resource manager then tries to
allocate compute nodes to the waiting jobs in the order inserted in the queue. When resources
for the job at the head of the line with the highest priority are not available then other jobs in the
queue with the lower priority can obtain the available resources. This approach has three
pitfalls: 1) jobs can starve, 2) no guarantee is made to the user as to when a job is likely to be
executed, and 3) there is no real priority since high priority jobs can starve. However, most
schedulers that use this approach employ a starvation prevention policy by enforcing an upper
bound for waiting. These systems normally use two priority levels and a certain time limit, for
example 12 or 24 hours, for a job to be in the Non-FCFS waiting queue. After this time limit the
priority is increased and the FCFS policy is enforced. Another way to prevent starvation would
be to allow only a certain number of lower priority jobs to jump over a queued job. The
OpenPBS (Portable Batch Scheduler) Torque

2
, which is incorporated in numerous clusters,

employs such a policy. It is important to mention that starvation can be prevented at the cost of
utilization.

3.2 Aggressive Backfilling Algorithm

This scheme requires the user to provide an estimated runtime in order to overcome the
deficiency problem of Non-FCFS algorithm. With the additional information this algorithm
makes a first reservation scheduled for the queued job. Then, it scans through the waiting queue
to find a smaller job which can be run ahead of the reserved job without imposing any further
delay for the reserved jobs. This algorithm solves the starvation problem and improves system
utilization by using backfilling technique. That is, a job that does not risk delaying the reserved
job is allowed to execute prior to the reserved job. The drawback of this technique is that it
cannot make any guarantee about the response time of the user job at the time of job submission.
Further, the user estimation may not be correct. Early terminations and exceeding the estimated
runtime have to be dealt with. While early termination may not cause serious problems,
exceeding the estimated runtime may generate numerous problems.

P
age 12.803.5

Another issue is how to handle high priority job arrival. If a new job has a higher priority than
the reserved job in the queue, then the system has two choices: either preempt the existing
reservation and reschedule for the new job, or make another reservation for the new job
immediately after the current reservation without preempting it. There is no simple solution for
this case. Choosing the former may result in starvation again as higher priority jobs may
continue to arrive, whereas choosing the latter approach is not fair for the high priority jobs as
their requests could be delayed and hence risking not be scheduled on time.

3.3 Conservative Backfilling Algorithm

In Aggressive Backfilling algorithm only one reservation is made for the job in front of the
queue. This could delay execution of a job even though adequate resources may exist which can
be allocated for that job. The situation can be improved by allowing the scheduler to take a
further step in backfilling. In Conservative Backfilling all jobs get their own reservations when
they are submitted. Therefore this algorithm can guarantee execution time when a new job is
submitted. However, the algorithm works only for the First-Come First-Served priority policy.
As jobs arrive in the system, the scheduler makes reservation for them and provides a guaranteed
execution time for each arriving job based on the estimated times provided by the users. When a
job with higher priority arrives, the system cannot reshuffle its current reservations to provide
the higher priority job a reservation ahead of the existing ones for the previous queued jobs. The
reason is simple since any rearrangement would lead not executing existing jobs at their
guaranteed times. A system using Conservative Backfilling with guaranteed execution time can
only have FCFS priority.

Early job terminations lead to vacancies in the system. In order to make efficient use of these
vacancies the algorithm must reschedule the existing reservations for queued jobs. However,
keeping in mind that the reservations cannot be reshuffled as that may lead to not executing the
jobs at their guaranteed times, we can only compress the existing reservation schedule so that it
runs at an earlier time. This however may lead to an unfair scheduling.

3.4 Lookahead Backfilling Scheduling Algorithm

This algorithm tries to find the best packing possible for current composition of the queue, thus
maximizing the utilization at every scheduling step

12, 13
. The jobs are divided into two parts:

running and waiting jobs. The jobs that are waiting may be either in the Waiting Queue or in the
Selected Queue. The jobs in the Selected Queue are the jobs selected for execution. All jobs
have two attributes: size (number of requested processors) and estimated computing time
remaining. The main task of this algorithm is to select jobs from the Waiting Queue and
improve system utilization.

The scheduler receives the incoming jobs from the job file specified by the user. When the
scheduler starts, the simulation time is set to 0 and is incremented by 1 after each iteration.
Incoming jobs get filed in the Event Queue according to their arrival time. The arrival time of
the jobs in the Event Queue is compared with the CPU time. If they are equal, the jobs are
moved to the Waiting Queue. Jobs in this queue are ordered by estimated execution time.

P
age 12.803.6

3.5 Multiple-Queue Backfilling Scheduling Algorithm

This algorithm is based on aggressive backfilling strategy. It continuously monitors the
incoming jobs and rearranges them into different waiting queues. Rearrangement is necessary to
reduce fragmentation of the resources and improve the utilization

4
. We define several waiting

queues to separate the short jobs from the long ones. The scheduler orders the jobs according to
their estimated execution time.

The system is divided into variable partitions and processors are equally distributed among the
partitions. However, if a processor is idle in one partition then it can be used by a job in another
partition. In effect, depending upon the work load of the jobs in the partitions, the processors are
exchanged from one partition to another. In our simulation the algorithm uses four waiting
queues instead of four actual partitions. Initially, each queue has equal number of processors
assigned to it. We assume te represents the estimated execution time of a job and pi represents
the partition number where i = 1, 2, 3, 4. The jobs are classified into partitions p1, p2, p3 and p4
based on their execution times:

p1 : 0 < te <= 100
p2 : 100 < te <= 1,000
p3 : 1,000 < te <= 10,0000
p4 : 10,000 < te

3.6 Gang Scheduling

Gang scheduling refers to a policy where all the processes of a parallel application are grouped
into a gang and simultaneously scheduled on distinct processors of a parallel computer system
such as a Beowulf cluster. Multiple gangs may execute concurrently by space-sharing the
resources. Furthermore, division of the system according to time slots is supported through
synchronized preemption and later rescheduling of the gang. Context switching is coordinated
across the nodes such that all the processes are scheduled and de-scheduled at the same time. At
the end of a time slot, the running gangs get blocked allowing other gangs to run. One important
promise of the Gang scheduling regards better rescore utilization for parallel programs across the
available compute nodes. We use a synchronization scheme which is coordinated by the master
node (ParPar Scheduler or Score-D). Other options such as synchronized clocks (SHARE
Scheduler IBM SP2) are also viable.

The number of time slots n is limited to a number supplied by the user. This number should be
kept moderate since increasing it would result in a job having to wait longer for its turn to run
which can be unacceptable. The maximum time a job will have to wait after it is being pre-
empted, to get rescheduled, will be (n-1)*tq, where tq is the time quantum of each time slot. The
maximum time can be reduced by reducing tq, but it will result in increased number of context
switches which is unacceptable.

Gang Scheduling with Greedy Approach

With the greedy approach, all jobs in the waiting queue are considered as suitable candidates for
execution. The jobs that have the required number of nodes in any time slots are executed. The

P
age 12.803.7

policy does not take into consideration of the arrival time of the jobs nor does it consider the
estimated end-time. As with any greedy approach, the resulting schedule may not be fair.

Gang Scheduling with Backfilling

The jobs in the waiting queue are considered as per the lookahead backfilling policy. The job at
head of the waiting queue has the reservation of the nodes it requires, and that reservation is not
violated by the jobs that arrive later even if they get executed earlier than the first waiting job.
This approach is fairer than the greedy approach, but not as fair as the conservative backfilling
approach.

4. Simulation Studies

Three methods were used for performance studies of the selected scheduling policies: Gantt-
chart walk through, simulator using single machine, simulators using Beowulf Cluster.

4.1 Gantt-chart walk trough

As an example consider the case for aggressive backfilling algorithm in batch scheduling for a
system having 16 compute nodes. Table 1 shows a set of jobs in the system ordered based on
their arrival.

Table 1: Status of current jobs in the system for a backfilled queue

Job ID Nodes Needed Time unit Status

Job1 6 3 running

Job2 6 1 running

Job3 12 1 queued

Job4 14 1 queued

Job5 4 2 new arrival – backfilled

Job6 4 3 new arrival – backfilled

Job3 is the first queued job so it has a reservation in the system. Job4 is queued behind Job3.
When Job5 and Job6 arrive, the system attempts to backfill the jobs. Job5 can be backfilled and
scheduled immediately. Job6 is queued. This case is shown in Figure 1a for the system after
arrival of Job4 and Job5. When Job2 has terminated, its 6 nodes become available for 2 time
units before Job1 terminates. Since Job6 requires 3 time units the system cannot schedule it.
Job6 is scheduled after the termination of Job5. This case is demonstrated in Figure 1b, after
Job5 has terminated. At time 3, Job3 starts its execution. Now that Job3 has been removed from
the ready queue, Job4 becomes the first job in the queue so the system makes a reservation for it.
Figure 1c shows snapshot of the system after Job3 starts execution. Figure 1d illustrates the
overall snapshot. This example also demonstrates that the queued jobs (except the first one).

P
age 12.803.8

(a): Snapshot after arrival of Job 4 & 5 (b): when Job5 terminated Legends

(c): when Job3 starts execution (d): Overall job scheduling order

 Figure 1: Illustration of the Aggressive Backfilling algorithm based on their arrival

4.2 Simulation of Backfilling schemes

A base class simulator was developed to support different flavors of the backfilling algorithm.
This simulator has a hierarchical view. The base simulator provides the base services needed for
all favors. From this base class, other needed types of scheduler are derived. This is illustrated in
Figure 2 with the Basic Aggressive, Multiple-Queue, and Look-ahead.

Figure 2: The class hierarchy of the simulators

Base Class: Simulator

Basic Aggressive Multiple-Queue Look-ahead

P
age 12.803.9

Lookahead Backfilling Simulator

In Figure 3, a look-ahead scheduler is derived from the base class Simulator. It receives the
incoming jobs from the job file specified by the user. When the scheduler starts, the simulation
time is set to 0 and is incremented by 1 after each iteration. Incoming jobs get filed in the Event
Queue according to their arrival time. The arrival time of the jobs in the Event Queue is
compared with the CPU time. If they are equal, the jobs are moved to the Waiting Queue. Jobs
in this queue are ordered by estimated execution time. Considering only the jobs in the Waiting
Queue, the scheduler builds a matrix of size (|WQ|+1) × (n+1) where WQ is the Waiting Queue
and n is the number of free processors in the system. Each cell of the matrix contains an integer
value called util that holds the maximum achievable utilization at this time and a Boolean flag
called selected that is set to true if it is chosen for execution. Select Queue selects all the jobs
from Waiting Queue with the selected flag set to true. The utilization is calculated according to
the number of computing nodes they have requested and what is currently available. The
selected jobs then receive the number of nodes they have requested and start to execute.

Figure 3: Overview of Look-ahead Backfilling Scheduler simulator

Multiple-Queue Backfilling Simulator

In our implementation, Multiple-Queue Simulator is derived from the base class Simulator.
When it receives input jobs it categorizes them into different waiting queues say P1, P2, P3 and P4
(Figure 4). The queues hold jobs based on their estimated execution time from 0 to 100, 101 to
1,000, and 1,001 to 10,000 and above 10,000 respectively. We use the MPI programming
package

10
, and have the first node considered as a Master and the rest as the Worker nodes. The

scheduler program runs in the master node. It divides the computing nodes into groups of 4, 4, 4
and 3 for the queues P1, P2, P3 and P4 respectively (the master node does not participate in the
computation).

Base Class: Simulator

Look-
ahead
Simulator

Job
file

Event Queue

Waiting Queue

Create dynamic
matrix

Select Jobs
from matrix

Send selected jobs to
running queue

Nodes

P
age 12.803.10

Figure 4: Overview of Multiple Queues Backfilling Scheduler simulator

Consider one of the queues in Figure 4, for example P1. It holds jobs with execution time ranges
of 0 to 100. They are ordered based on their estimated execution time and then the arrival time
in case of ties. The scheduler starts checking the number of computing nodes requested by the
first job. If there are enough free processors designated for queue P1, then it records the PBS
(Portable Batch Scheduler)

6
 script and starts running that job. Otherwise, the job is sent to

another queue called Lobby for Free Nodes where it waits for the free nodes before it can
execute. If there is a job at this queue (Lobby for Free Nodes) the scheduler searches for free
nodes from other queues (P2, P3, P4) to check if the requested number of computing nodes could
be granted. If the answer is yes, then resources will be allocated to that job to start execution.
Otherwise, the job is transferred to Ready Queue (not shown in the figure). The scheduler uses
the aggressive method to make reservation for the required number of nodes for that job. The
same process is followed for jobs in the other partitions.

4.3 Simulation of Gang Scheduler

This simulator has different design and methods from the backfilling ones mentioned previously.
The architecture of the simulator is shown in Figure 5. A simulator for the scheduler is created
on top of the Message Passing Interface (MPI) for various message passing and synchronization
purposes of the simulated scheduler. The simulation program itself is a parallel job to the cluster.
It consists of one dedicated scheduler process and several application processes. The Portable
Batch Scheduler

6
 (PBS) is used to launch the simulator from the server to the compute nodes of

the cluster. The PBS script reserves all the nodes and dispatches the job.

Base Class: Simulator

Multiple
Queue
Simulator

P1

P2

P3

P4

Execute Queue

Write PBS script

Nodes

Lobby for Free Nodes
Schedule

Schedule

Schedule

Schedule
Job
File

P
age 12.803.11

Figure 5: Simulator Architecture

Since our simulator runs on top of MPI/PBS, we use one node as the simulated scheduler and
the rest as the simulated computed nodes. All 16 nodes of the cluster are reserved using the PBS
commands. As an MPI application, the program lets Node 0 to act as a scheduler, while all the
other 15 nodes wait for messages from the scheduler. The simulator accepts jobs from the user.
Depending on the simulated policy, the scheduler allocates the required number of nodes for the
job from the available resources among the 15 workers. For the Gang scheduling policy, the
scheduler also allocates the time slot for the job.

For the Gang scheduler, at the end of each time quantum, the simulated scheduler broadcasts a
SWITCH_CONTEXT message using scatter provided by the communicator class. The message
contains information about which time slot is to be scheduled next. On receiving the context
switch command from the scheduler, each node stops the currently running process using

SIGSTOP, and resumes the jobs scheduled to run next using the signal SIGCONT. Experiments
were carried out with a randomly generated workload. The arrival time, estimated execution
time of the jobs (submitted by the user), the actual simulated run-time by the simulator, and the
number of requested nodes were generated randomly.

5. Implementation issues

In this study, several backfilling scheduling policies as well as Gang Scheduling with Greedy
Approach and Gang Scheduling with Lookahead Backfilling Policy were simulated. This section
provides some details of the implementations. Interested readers can see Rajaei and Dadfar

1 2, 3
.

The Environment:

Our cluster has the following system features: 16 homogeneous compute nodes; 2.8 GHz
Pentium 4 processor per node; 1 GB of RAM per node; 1 GB/sec Ethernet switch; Gentoo Linux
operating system; Batch System with PBS based Torque.

The Simulators

All simulators are written in C++. Those running on the cluster are using MPI. The base class
Simulator provides some very basic functionalities of the simulation platform. It maintains an
event list where events, in the form of arrival of new jobs, are inserted in the order of their
arrival time. It also maintains the waiting queue where events that cannot be scheduled
immediately are queued. Derived classes override processEventQueue() and processWaitQueue()
methods to process the event and waiting queues.

Linux Kernel

PBS Scheduler

MPI Library

Simulated
Scheduler

Jobs

P
age 12.803.12

For time management, the simulator provides one-shot timer functionality. Subclasses need to
override a method called timerFunction() which is invoked when the one-shot timer expires. The
scheduler classes, derived from the Simulator class, make use of the timer to trigger events like
global context switch and the start and the termination of jobs. The simulation time is forwarded
at the timer expiration. The resolution of simulation time and the time interval between context
switches have been kept the same in this implementation for simplicity.

Jobs are generated in a pseudo-random fashion using the Linux rand() function in the current
implementation. Other distributions, like exponential or Poisson, can be used for the study of
scheduling characteristics under various workloads.

6. Results and Analysis

6.1 Batch processing with Backfilling

Experiments were carried out with a randomly generated workload. Further, following
parameters of interest were used: 1) Makespan: Total time to complete processing all jobs from a
given pool representing utilization, 2) Wait Time: Length of time for a task waiting in the
scheduling queue, 3) Number of requested compute-nodes, and 4) Estimated execution time.

The results for this part are show in Figure 6 and 7. Waiting time for the jobs in the Multiple
Queue is more than Look-ahead backfilling algorithms and for the aggressive backfilling is
smallest in comparison to the other two. Looking at the line graph of each algorithm in Figure 6
separately, it seems that all three algorithms have one thing in common: the execution jobs do
not depend on the arrival time. The jobs arriving late may execute before the other jobs that
arrive before them, and hence, the algorithms are not fair. In case of look-ahead, the waiting
time depends upon the utilization value of the job at that particular instant in time. The
utilization value of each job is calculated by checking the number of requested processors and
the number of available computing nodes at that time.

Requested Nodes versus Waiting Time

Figure 7 shows the waiting time of a job based on the number of compute-nodes it needs. In the
basic aggressive algorithm, jobs that request more nodes wait longer than jobs that request fewer
nodes. For multiple queues, the jobs requesting fewer nodes are executed before the jobs
requesting more nodes in that queue. This figure suggests that the look-ahead backfilling
algorithm provides better utilization. Further, jobs in Multiple Queue algorithm wait longer than
the jobs in the other two backfilling algorithms.

Estimated Time versus Waiting Time

Normally, jobs with shorter estimated time are executed before jobs with larger estimated times.
However, our results suggest that the look-ahead algorithm does not execute the jobs according
to the estimated time of completion. In all three cases presented in our studies, Multiple Queue
exhibits longer waiting time and look-ahead appears as a better choice.

P
age 12.803.13

Figure 6: Arrival Time versus Wait Time of the three algorithms

Figure 7: Nodes Requested versus Waiting Time

6.2 Gang Scheduling and Backfilling

A policy is evaluated by scheduling criteria which reflect user’s parameters of interest. A fair
and quick response time is desired. Completion time of the last job, or makespan, is used in
report. Figure 8 advocated that the Gang scheduling outperforms the backfill with lookahead in
terms of both makespan and the average response time. Plotted against increasing number of
jobs, the makespan for the backfill is always more than those for the Gang scheduling. Within
the Gang-scheduling

14
 (GS) category, the greedy approach seems superior to the backfilled one.

Interestingly, GS with backfill tends to exhibit a behavior that is a compromise between backfill
and GS with greedy approach. For fewer jobs, the GS with backfill coalesces with GS with
greedy approach. This is because, as the number of jobs becomes reduced, time slots are readily
available for most of them and neither the greedy nor the backfill policy effectively come into

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12 16

Arrival Time

W
a
i
t

T
i

m
e

Basic Aggressive

Lookahead
Multiple Queue

0

1000

2000

3000

4000

5000

6000

7000

1 2 3
4

Nodes Requested

W
a
i
t

T
i

m
e

 Lookahead
Basic Aggressive

Multiple Queue

P
age 12.803.14

play. As the number of jobs increases, they are queued and scheduling criteria are applied to
pick the job to be scheduled. The greedy GS tries to schedule as many jobs as it can without
consideration for fairness or reservation for the first job in the wait queue as is done by GS with
backfill. It is not surprising that for a fairer scheduling policy the makespan is relatively worse
but it is still better than the backfilling used with batch processing.

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80

Number of Jobs

M
a
k
e
s
p

a
n

 (
in

 T
ic

k
s
)

Backfill

GS Greedy

GS Backfill

0

5

10

15

20

25

30

35

40

10 30 50 70

Number of Jobs

A
v
e
ra

g
e
 W

a
it

 o
r

R
e
s
p

o
n

s
e

T
im

e
 (

in
 T

ic
k
s
)

Backfill

GS Greedy

GS Backfill

Figure 8: Makespan and Average Wait Time vs. Number of Jobs

As expected the average wait-time for the Gang scheduling is far less than that for the backfill as
shown in Figure 8. In the case of backfill, the average response time increases more rapidly
making it unsuitable for interactive jobs. The Gang scheduler performs appreciably, as the
response time does not show a rapid increase in average response time. It also suggests that
more jobs are getting completed making room for newer jobs to get scheduled.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Time Slots

M
a

k
e

s
p

a
n

 (
ti

c
k

s
)

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of time slots

A
v
e
ra

g
e
 W

a
it

 T
im

e
 (

T
ic

k
s
)

Figure 9: Makespan and Average Wait-Time vs. Number of Time Slots

Performance of the Gang scheduling exhibits appreciable improvement when the number of time
slots increases from 1 to 15 as suggested by Figure 9. With only one time slot, the Gang
scheduler behaves like a batch scheduler. Further, as the number of time slots increases, the
average wait time decreases significantly between the number of slots 1 and 15. As the system
behaves like having virtual nodes equal to the number of slots multiply the number of actual
nodes, more jobs can run without any delay, thus reducing the total and average wait time.

P
age 12.803.15

7. Future Work

Several potential extensions to the current work can be explored. An exciting topic concerns the
use of process migration, the second regards implicit scheduling, and third on the use of statistics
based on real workload. The scalability of the scheduling algorithms needs closely to be looked
into as well.

Migration appears to improve performance of the Gang scheduling

15
. It embodies moving a job

in the Ousterhout matrix to a row in which there are enough free processors to execute that job.
This will allow the row from which the job got migrated to have more free nodes and can
therefore be able to run jobs requesting large number of nodes.

The workload was randomly generated in this study. A real application could exhibit different
result and hence impact the outcomes. We need to look at this situation as well and running
several benchmark processes to measure the outcome.

8. Concluding Remarks

In this paper we reported how a complex task like scheduling in multiprocessor environment
could be broken in manageable pieces and assigned to several students as term projects. Our
experiments suggest that students appreciate working with such challenging projects in the High
Performance Computing field. As pilot study, we targeted an advanced operating systems course
which had sufficient components for students to work with a HPC project.

Our obtained results from the scheduling case study suggest that this project can be extended
even further to include more sophisticated scenarios such as process migration, load-balancing of
processor allocation, use of real tasks in the simulated scheduler instead of randomly generated
payload, and scaling the number of processors. Regarding the topic of scheduling, more studies
are needed to analyze behavior of the backfilling schemes as well as Gang scheduling.

Bibliography

1. Gropp, William, Lusk, Ewing and Sterling, Thomas, Beowulf Cluster Computing with Linux, Second Edition,
ISBN 0-262-69292-9, 2003.

2. Rajaei, H., and M. Dadfar, "Comparison of Backfilling Algorithms for Job Scheduling in Distributed Memory

Parallel System", In Proceedings of the 2006 ASEE Annual Conference.

3. Rajaei, Hassan and Dadfar, Mohammad, “Job Scheduling in Cluster Computing: A Student Project”, ASEE

2005 Annual Conference, 3620-03.

4. Lawson, Barry G., Smirni, Evgenia, ”Multiple-queue Backfilling Scheduling with Priorities and Reservations
for Parallel Systems” Department of Computer Science, College of William and Mary Williamsburg, VA
23187-8795, USA

5. Srinivasan, S., Kettimuthu, R., Subramani, V., and Sadayappan, P., “Characterization of backfilling strategies
for parallel job scheduling”. IEEE International Conference on Parallel Processing Workshops, pages 514–
519, August 2002.

P
age 12.803.16

6. Bode, Brett, Halstead, David M., Kendall, Ricky and Lei, Zhou “The Portable Batch Scheduler and the Maui
Scheduler on Linux Clusters”. In Annual Technical Conference, USENIX, June 1999.

7. Góes, L. F. W., and C. A. P. S. Martins. 2004. Reconfigurable Gang Scheduling Algorithm, 10th Workshop on
Job Scheduling Strategies for Parallel Processing (JSSPP). LNCS.

8. Frachtenberg E., F. Petrini, S. Coll, and W. C. Feng. 2001. Gang Scheduling with Lightweight User-Level
Communication. International Conference on Parallel Processing (ICPP) Workshops, pp. 339-348.

9. Feitelson, Dror G., Packing schemes for gang scheduling. In Dror G. Feitelson and Larry Rudolph, editors,
2ndWorkshop on Job Scheduling Strategies for Parallel Processing (in IPPS ’96), pages 89–110, Honolulu,
Hawaii, April 16, 1996. Springer-Verlag. Published in Lecture Notes in Computer Science, volume 1162.
ISBN 3-540-61864-3.

10. MPI: Message Passing Interface. Available via http://www.mpi-forum.org.

11. Gropp, William, Lusk, Ewing and Sterling, Thomas, Using MPI, Portable Parallel Programming with
Message-Passing Interface, Second Edition, ISBN 0-262-57132-3, 2003.

12. Yu, Philip S., Wolf, Joel L., Shachnai, Hadas, "Look-ahead scheduling to support pause-resume for video-on-
demand applications", Multimedia Computing and Networking 1995; Arturo A. Rodriguez, Jacek Maitan; Eds,
March 1995

13. Shmueli, E. and D. G. Feitelson. 2003. Backfilling with Lookahead to Optimize the Performance of Parallel Job
Scheduling. Job Scheduling Strategies for Parallel Processing (JSSPP). Lecture Notes in Computer Science,
2862, Springer-Verlag, pp. 228–251.

14. Wiseman, Y., and D. G. Feitelson. 2003. Paired Gang Scheduling. IEEE Transactions on Parallel and
Distributed Systems. 14(6), pp. 581-592.

15. Zhang, Y., H. Franke, J. Moreira,. and A. Sivasubramaniam. 2003. An Integrated Approach to Parallel
Scheduling Using Gang-Scheduling, Backfilling, and Migration. IEEE Transactions on Parallel and Distributed
Systems, 14(3), pp. 236-247.

HASSAN RAJAEI
Hassan Rajaei is an Associate Professor in the Computer Science Department at Bowling Green State University.
His research interests include computer simulation, distributed and parallel simulation, performance evaluation of
communication networks, wireless communications, distributed and parallel processing. Dr. Rajaei received his
Ph.D. from Royal Institute of Technologies, KTH, Stockholm, Sweden and he holds an MSEE from Univ. of Utah.

MOHAMMAD B. DADFAR
Mohammad B. Dadfar is an Associate Professor in the Computer Science Department at Bowling Green State
University. His research interests include Computer Extension and Analysis of Perturbation Series, Scheduling
Algorithms, and Computers in Education. He currently teaches undergraduate and graduate courses in data
communications, operating systems, and computer algorithms. He is a member of ACM and ASEE.

 P
age 12.803.17

