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Abstract 

 
Commodity High Performance Computing (HPC) platforms such as Beowulf Clusters provide 
excellent opportunities to engage students with challenging projects. Courses such as parallel 
programming, distributed systems, operating systems, and networking can benefit from the low-
cost HPC platform. In this paper we report the results on series of student projects in an 
advanced operating systems course which jointly have contributed to a larger group project. 
Several students designed, implemented, and tested segments of manageable term projects 
contributing to the student learning in the advance topic of high performance computing. We 
focused on job scheduling for a cluster of processors as the main topic, while pursuing other 
HPC-related areas such as parallel programming, load balancing, computer simulation, and 
performance analysis embedded in the theme.   
 
In this paper we examine following scheduling polices: FCFS (First-Come-First-Serve), 
Backfilling Algorithms (Aggressive, Conservative, Multiple Queue, Look-ahead), Co-
scheduling, and Gang Scheduling. While most of the scheduling policies are batch, Gang 
Scheduling provides a timesharing approach to the multiprocessor system. Our results indicate 
that Gang scheduling offers an attractive solution to the drawbacks of batch scheduling. This is 
especially true with respect to the response time and overestimation of the processing time of the 
submitted jobs in the system.  
 

1.  Introduction 

 
High performance computing offers an excellent vehicle to accelerate computational needs of 
scientific and engineering applications. This platform currently can easily be configured with 
clusters of PCs connected through a high-speed switch on a high-speed network.  Such a tool 
provides exceptional opportunities to explore numerous projects for educational as well as 
research purposes. We have installed a Beowulf Cluster

1
 with 16 compute-nodes in our 

computing lab, and have engaged our students with exciting projects in courses such as 
Operating Systems, Communication Networks, Parallel Programming, Distributed Simulation, 
Algorithms, Data Base Management, and several others. Within a short period of time, we have 
witnessed considerable increase in student projects in our HPC lab with several success stories

2, 

3
. Student interest and their reported success are growing. They are excited to work with 

advanced and practical problems which take them beyond the theory of their textbooks. 
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In this paper, we provide a comprehensive report about a series of studies on job scheduling in a 
distributed multiprocessor environment, which engaged several students in a three-year period. 
We also show how students can utilize and build upon the results of previous groups while 
laying the ground work and providing continuity for the future students. The incremental 
development method was particularly beneficial both for the students and the faculty. Students 
were well aware that their work would be used by others, and as a result, paid extra attention to 
the viability of their work which contributed to a great learning outcome. Integrating small 
projects into larger ones has twofold benefits for faculty: achieving the research objectives, and 
sharing the obtained results in the classroom. These studies encapsulated challenging HPC-
related components such as parallel computing, load balancing, and distributed simulation.      
 
Scheduling of parallel applications on distributed-memory parallel system often occurs by 
granting each job the requested number of processors for its entire run time. This approach is 
referred to as variable partitioning which frequently utilizes non-preemptive batch scheduling

4, 5, 

6
.  That is, once a job gets hold of the requested number of compute-nodes, it continues 

execution until the job is completed or some error forces the system to abort the faulty job. 
Consequently, most parallel programs restrict their I/O bursts to the beginning and end of the 
program in order to avoid significant performance penalties. 
 
Another scheduling approach is dynamic partitioning. This scheme suggests partial allocation of 
requested nodes for a parallel job. Even though this approach could help some jobs to start 
processing their task, the scheduling method is not widely used because of practical limitations.  
As an example consider a job where it needs all its requested nodes in order to start processing 
the parallel tasks.  In this case, allocating fewer compute-nodes than requested can lead to 
system deficiencies since those allocated nodes can become idle until this job receives all of its 
requested nodes. 
 
A third method regards use of co-scheduling of the tasks and timesharing processor powers 
among existing jobs in the system. Co-scheduling can be implicit or explicit. We use the latter 
method described as Gang Scheduling

7, 8, 9
. In this method, all the processes of a parallel job are 

assigned to a Gang of processors for execution. Context switching is coordinated across the 
nodes such that all processes are executed and preempted at a fixed interval. Gang scheduling 
favors short jobs.    
 
In our studies, we looked into the batch- and co-scheduling policies with Backfilling Algorithms 
using different flavors such as Aggressive, Conservative, Multiple Queue, and Look-Ahead 
schemes.     
 
The remainder of this paper is organized as follows: Section 2 provides some challenging HPC 
topics appealing student projects. Section 3 describes job scheduling problem in HPC platforms 
as well as details of the methods used in the studies. In Section 4 simulation techniques for the 
employed policies are described. Section 5 describes implementation issues, and Section 6 
provides the obtained results and analysis. Section 7 outlines future work and Section 8 provides 
concluding remarks.  
 
 
 

P
age 12.803.3



    

 

2. HPC Stimulating Topics 

 
High performance computing opens the doors for solving numerous fascinating scientific and 
engineering problems. The price of doing so, however, is the fight that one has to face in several 
fronts at the same time. In order for a HPC task to obtain the desired answer, the programmer 
needs first to be familiar with parallel programming and load balancing issues. After that, the 
programmer needs to model the application domain problem in form of a parallel program. 
Knowledge of load balancing, networking, operating systems, and parallel processing facilitate 
the goal of reaching the desired results. On top of this list, we have added two more items: the 
application domain of job scheduling in multiprocessor environment, and simulation of the job 
scheduler in the multiprocessor system. These topics often stimulate senior and graduate students 
who desire to put their theoretical knowledge into practice.  
 
We target an advanced operating systems course since in such a course, students often learn 
about concurrent processes, communication and synchronization between the processes, as well 
as task scheduling and policies. We train the students with parallel programming, load balancing, 
and simulation issues with simple examples and benchmarks.  
 
For parallel programming purpose, the Message-Passing Interface 

10, 11
 (MPI) library was used as 

part of the Beowulf cluster. MPI uses the master-slave paradigm similar to parent-child method 
of the Unix fork command. Students are well aware of this method and are excited to experiment 
with the execution of concurrent processing on multiprocessors. As a warm-up exercise, we 
assign students the matrix multiplication benchmark problem. In this problem, we assume that 
we have a large matrix A and B to be multiplied and the result to be stored in matrix C. By 
varying the dimension of matrices A and B, as well as the number of processors to obtain the 
result, we will obtain a well-designed exercise where the students will observe the following: 

‚ Writing a simple parallel program to be executed on a Beowulf cluster 

‚ Partitioning the task between the existing number of processes and  processors 

‚ Scheduling the task of multiplication to processors 

‚ Choice of static vs. dynamic task assignment 

‚ Impacts of method of assigning tasks to processors 

‚ Impacts of load balancing to the execution of parallel task 

‚ Performance of parallel execution and speedup 

‚ Inter-process communications with send, receive, scatter, gather, and broadcast 

‚ Synchronization issues such as barrier, blocking and non-blocking send and receive 

‚ Understanding the ratio of computation vs. communication 

‚ Debugging issues in parallel execution.   
 
The matrix multiplication benchmark is fairly straightforward; nevertheless it provides an 
excellent training for students and prepares them to perform their domain application task which 
in our case is scheduling of parallel programs arriving in multiprocessor environment such as a 
Beowulf Cluster.         
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3. Job Scheduling Problem  

 
Job scheduling on distributed-memory multiprocessors is a challenging task. Traditional factors 
such as job length to allocate the requested resources do not suffice. Communication delays and 
synchronization overhead which are normally in the user domain could turn out to be key issues 
for multiprocessor utilization. If scheduling does not carefully address the above issues (and 
several others), the utilization of each processor in the distributed platform can end up 
comparatively lower than a single processor system. Needless to say that such scenario needs to 
be avoided since high performance computing is all about performance. To better understand 
these issues, our studies looked into both batch orient non-preemptive schemes as well as 
preemptive timesharing polices. For both types, we used different flavors of backfilling methods 
such as conservatives, aggressive, lookahead, and multiple queues. In the following subsections 
we provide an overview of these algorithms.   
 

3.1 Non-FCFS Batch Schemes 

 
Strict First-Come First-Serve (FCFS) policies are seldom used for resource managers. Some sort 
of priority mechanism is often added to handle resource queues. One solution is to prioritize the 
jobs in the waiting queue based on a preset policy such as the requested number of processors or 
the estimated wall-clock time in addition to the arrival time.  The resource manager then tries to 
allocate compute nodes to the waiting jobs in the order inserted in the queue.  When resources 
for the job at the head of the line with the highest priority are not available then other jobs in the 
queue with the lower priority can obtain the available resources.  This approach has three 
pitfalls: 1) jobs can starve, 2) no guarantee is made to the user as to when a job is likely to be 
executed, and 3) there is no real priority since high priority jobs can starve.  However, most 
schedulers that use this approach employ a starvation prevention policy by enforcing an upper 
bound for waiting.  These systems normally use two priority levels and a certain time limit, for 
example 12 or 24 hours, for a job to be in the Non-FCFS waiting queue.  After this time limit the 
priority is increased and the FCFS policy is enforced.  Another way to prevent starvation would 
be to allow only a certain number of lower priority jobs to jump over a queued job.  The 
OpenPBS (Portable Batch Scheduler) Torque

2
, which is incorporated in numerous clusters, 

employs such a policy.  It is important to mention that starvation can be prevented at the cost of 
utilization. 
 

3.2 Aggressive Backfilling Algorithm 

 
This scheme requires the user to provide an estimated runtime in order to overcome the 
deficiency problem of Non-FCFS algorithm.  With the additional information this algorithm 
makes a first reservation scheduled for the queued job.  Then, it scans through the waiting queue 
to find a smaller job which can be run ahead of the reserved job without imposing any further 
delay for the reserved jobs.  This algorithm solves the starvation problem and improves system 
utilization by using backfilling technique.  That is, a job that does not risk delaying the reserved 
job is allowed to execute prior to the reserved job.  The drawback of this technique is that it 
cannot make any guarantee about the response time of the user job at the time of job submission.  
Further, the user estimation may not be correct.  Early terminations and exceeding the estimated 
runtime have to be dealt with.  While early termination may not cause serious problems, 
exceeding the estimated runtime may generate numerous problems. 
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Another issue is how to handle high priority job arrival.  If a new job has a higher priority than 
the reserved job in the queue, then the system has two choices: either preempt the existing 
reservation and reschedule for the new job, or make another reservation for the new job 
immediately after the current reservation without preempting it. There is no simple solution for 
this case.  Choosing the former may result in starvation again as higher priority jobs may 
continue to arrive, whereas choosing the latter approach is not fair for the high priority jobs as 
their requests could be delayed and hence risking not be scheduled on time. 
 

3.3 Conservative Backfilling Algorithm 

 
In Aggressive Backfilling algorithm only one reservation is made for the job in front of the 
queue.  This could delay execution of a job even though adequate resources may exist which can 
be allocated for that job.  The situation can be improved by allowing the scheduler to take a 
further step in backfilling.  In Conservative Backfilling all jobs get their own reservations when 
they are submitted.  Therefore this algorithm can guarantee execution time when a new job is 
submitted.  However, the algorithm works only for the First-Come First-Served priority policy.  
As jobs arrive in the system, the scheduler makes reservation for them and provides a guaranteed 
execution time for each arriving job based on the estimated times provided by the users.  When a 
job with higher priority arrives, the system cannot reshuffle its current reservations to provide 
the higher priority job a reservation ahead of the existing ones for the previous queued jobs.  The 
reason is simple since any rearrangement would lead not executing existing jobs at their 
guaranteed times.  A system using Conservative Backfilling with guaranteed execution time can 
only have FCFS priority. 
 
Early job terminations lead to vacancies in the system.  In order to make efficient use of these 
vacancies the algorithm must reschedule the existing reservations for queued jobs.  However, 
keeping in mind that the reservations cannot be reshuffled as that may lead to not executing the 
jobs at their guaranteed times, we can only compress the existing reservation schedule so that it 
runs at an earlier time.  This however may lead to an unfair scheduling. 
 

3.4 Lookahead Backfilling Scheduling Algorithm 

 
This algorithm tries to find the best packing possible for current composition of the queue, thus 
maximizing the utilization at every scheduling step

12, 13
.  The jobs are divided into two parts: 

running and waiting jobs.  The jobs that are waiting may be either in the Waiting Queue or in the 
Selected Queue.  The jobs in the Selected Queue are the jobs selected for execution.  All jobs 
have two attributes: size (number of requested processors) and estimated computing time 
remaining.  The main task of this algorithm is to select jobs from the Waiting Queue and 
improve system utilization. 
 
The scheduler receives the incoming jobs from the job file specified by the user.  When the 
scheduler starts, the simulation time is set to 0 and is incremented by 1 after each iteration.  
Incoming jobs get filed in the Event Queue according to their arrival time.  The arrival time of 
the jobs in the Event Queue is compared with the CPU time.  If they are equal, the jobs are 
moved to the Waiting Queue.  Jobs in this queue are ordered by estimated execution time.   
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3.5 Multiple-Queue Backfilling Scheduling Algorithm 

 
This algorithm is based on aggressive backfilling strategy.  It continuously monitors the 
incoming jobs and rearranges them into different waiting queues.  Rearrangement is necessary to 
reduce fragmentation of the resources and improve the utilization

4
.  We define several waiting 

queues to separate the short jobs from the long ones.  The scheduler orders the jobs according to 
their estimated execution time.  
 
The system is divided into variable partitions and processors are equally distributed among the 
partitions.  However, if a processor is idle in one partition then it can be used by a job in another 
partition.  In effect, depending upon the work load of the jobs in the partitions, the processors are 
exchanged from one partition to another.  In our simulation the algorithm uses four waiting 
queues instead of four actual partitions.  Initially, each queue has equal number of processors 
assigned to it.  We assume te represents the estimated execution time of a job and pi represents 
the partition number where i = 1, 2, 3, 4.  The jobs are classified into partitions p1, p2, p3 and p4 
based on their execution times: 

p1 :  0   <  te  <=  100 
p2 :  100   <  te  <=  1,000 
p3 :  1,000   <  te  <=  10,0000 
p4 :    10,000   <  te 

 

3.6 Gang Scheduling 

 
Gang scheduling refers to a policy where all the processes of a parallel application are grouped 
into a gang and simultaneously scheduled on distinct processors of a parallel computer system 
such as a Beowulf cluster. Multiple gangs may execute concurrently by space-sharing the 
resources. Furthermore, division of the system according to time slots is supported through 
synchronized preemption and later rescheduling of the gang. Context switching is coordinated 
across the nodes such that all the processes are scheduled and de-scheduled at the same time. At 
the end of a time slot, the running gangs get blocked allowing other gangs to run. One important 
promise of the Gang scheduling regards better rescore utilization for parallel programs across the 
available compute nodes.  We use a synchronization scheme which is coordinated by the master 
node (ParPar Scheduler or Score-D). Other options such as synchronized clocks (SHARE 
Scheduler IBM SP2) are also viable. 
 

The number of time slots n is limited to a number supplied by the user. This number should be 
kept moderate since increasing it would result in a job having to wait longer for its turn to run 
which can be unacceptable. The maximum time a job will have to wait after it is being pre-
empted, to get rescheduled, will be (n-1)*tq, where tq is the time quantum of each time slot. The 
maximum time can be reduced by reducing tq, but it will result in increased number of context 
switches which is unacceptable.   

Gang Scheduling with Greedy Approach 

With the greedy approach, all jobs in the waiting queue are considered as suitable candidates for 
execution. The jobs that have the required number of nodes in any time slots are executed. The 
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policy does not take into consideration of the arrival time of the jobs nor does it consider the 
estimated end-time. As with any greedy approach, the resulting schedule may not be fair. 

Gang Scheduling with Backfilling 

The jobs in the waiting queue are considered as per the lookahead backfilling policy. The job at 
head of the waiting queue has the reservation of the nodes it requires, and that reservation is not 
violated by the jobs that arrive later even if they get executed earlier than the first waiting job. 
This approach is fairer than the greedy approach, but not as fair as the conservative backfilling 
approach. 
 

4. Simulation Studies 

 
Three methods were used for performance studies of the selected scheduling policies: Gantt-
chart walk through, simulator using single machine, simulators using Beowulf Cluster. 
 

4.1 Gantt-chart walk trough   

 
As an example consider the case for aggressive backfilling algorithm in batch scheduling for a 
system having 16 compute nodes. Table 1 shows a set of jobs in the system ordered based on 
their arrival.  
 

Table 1: Status of current jobs in the system for a backfilled queue 

Job ID Nodes Needed Time unit Status 

Job1 6 3 running 

Job2 6 1 running 

Job3 12 1 queued  

Job4 14 1 queued 

Job5 4 2 new arrival – backfilled

Job6 4 3 new arrival – backfilled

 
Job3 is the first queued job so it has a reservation in the system.  Job4 is queued behind Job3.  
When Job5 and Job6 arrive, the system attempts to backfill the jobs.  Job5 can be backfilled and 
scheduled immediately.  Job6 is queued.  This case is shown in Figure 1a for the system after 
arrival of Job4 and Job5.  When Job2 has terminated, its 6 nodes become available for 2 time 
units before Job1 terminates.  Since Job6 requires 3 time units the system cannot schedule it.  
Job6 is scheduled after the termination of Job5.  This case is demonstrated in Figure 1b, after 
Job5 has terminated.  At time 3, Job3 starts its execution.  Now that Job3 has been removed from 
the ready queue, Job4 becomes the first job in the queue so the system makes a reservation for it.  
Figure 1c shows snapshot of the system after Job3 starts execution.  Figure 1d illustrates the 
overall snapshot.  This example also demonstrates that the queued jobs (except the first one).  
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(a):   Snapshot after arrival of Job 4 & 5 (b):  when Job5 terminated        Legends 
 
 

               
(c):   when Job3 starts execution          (d):   Overall job scheduling order 
 

 Figure 1: Illustration of the Aggressive Backfilling algorithm based on their arrival 
 
 

4.2 Simulation of Backfilling schemes    

 
A base class simulator was developed to support different flavors of the backfilling algorithm. 
This simulator has a hierarchical view.  The base simulator provides the base services needed for 
all favors. From this base class, other needed types of scheduler are derived.  This is illustrated in 
Figure 2 with the Basic Aggressive, Multiple-Queue, and Look-ahead. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The class hierarchy of the simulators 
 
 
 

Base Class: Simulator

Basic Aggressive Multiple-Queue Look-ahead 
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Lookahead Backfilling Simulator 

 
In Figure 3, a look-ahead scheduler is derived from the base class Simulator.  It receives the 
incoming jobs from the job file specified by the user.  When the scheduler starts, the simulation 
time is set to 0 and is incremented by 1 after each iteration.  Incoming jobs get filed in the Event 
Queue according to their arrival time.  The arrival time of the jobs in the Event Queue is 
compared with the CPU time.  If they are equal, the jobs are moved to the Waiting Queue.  Jobs 
in this queue are ordered by estimated execution time.  Considering only the jobs in the Waiting 
Queue, the scheduler builds a matrix of size (|WQ|+1) × (n+1) where WQ is the Waiting Queue 
and n is the number of free processors in the system.  Each cell of the matrix contains an integer 
value called util that holds the maximum achievable utilization at this time and a Boolean flag 
called selected that is set to true if it is chosen for execution.  Select Queue selects all the jobs 
from Waiting Queue with the selected flag set to true.  The utilization is calculated according to 
the number of computing nodes they have requested and what is currently available.  The 
selected jobs then receive the number of nodes they have requested and start to execute.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Figure 3:  Overview of Look-ahead Backfilling Scheduler simulator 
 

Multiple-Queue Backfilling Simulator 

 
In our implementation, Multiple-Queue Simulator is derived from the base class Simulator.   
When it receives input jobs it categorizes them into different waiting queues say P1, P2, P3 and P4 
(Figure 4).  The queues hold jobs based on their estimated execution time from 0 to 100, 101 to 
1,000, and 1,001 to 10,000 and above 10,000 respectively.  We use the MPI programming 
package

10
, and have the first node considered as a Master and the rest as the Worker nodes.  The 

scheduler program runs in the master node.  It divides the computing nodes into groups of 4, 4, 4 
and 3 for the queues P1, P2, P3 and P4 respectively (the master node does not participate in the 
computation).  

Base Class: Simulator 

Look-
ahead 
Simulator 

Job 
file 

Event Queue 

Waiting   Queue 

Create dynamic 
matrix  

Select Jobs 
from matrix 

Send selected jobs to 
running queue 

Nodes
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Figure 4:  Overview of Multiple Queues Backfilling Scheduler simulator 
 
 
Consider one of the queues in Figure 4, for example P1.  It holds jobs with execution time ranges 
of 0 to 100.  They are ordered based on their estimated execution time and then the arrival time 
in case of ties.  The scheduler starts checking the number of computing nodes requested by the 
first job.  If there are enough free processors designated for queue P1, then it records the PBS 
(Portable Batch Scheduler)

6
 script and starts running  that job.  Otherwise, the job is sent to 

another queue called Lobby for Free Nodes where it waits for the free nodes before it can 
execute.  If there is a job at this queue (Lobby for Free Nodes) the scheduler searches for free 
nodes from other queues (P2, P3, P4) to check if the requested number of computing nodes could 
be granted.  If the answer is yes, then resources will be allocated to that job to start execution.  
Otherwise, the job is transferred to Ready Queue (not shown in the figure).  The scheduler uses 
the aggressive method to make reservation for the required number of nodes for that job.  The 
same process is followed for jobs in the other partitions. 
 

4.3 Simulation of Gang Scheduler   

 
This simulator has different design and methods from the backfilling ones mentioned previously. 
The architecture of the simulator is shown in Figure 5. A simulator for the scheduler is created 
on top of the Message Passing Interface (MPI) for various message passing and synchronization 
purposes of the simulated scheduler. The simulation program itself is a parallel job to the cluster. 
It consists of one dedicated scheduler process and several application processes. The Portable 
Batch Scheduler

6
 (PBS) is used to launch the simulator from the server to the compute nodes of 

the cluster. The PBS script reserves all the nodes and dispatches the job. 
 

Base Class: Simulator 

Multiple 
Queue 
Simulator 

P1 

P2 

P3 

P4 

Execute   Queue 

Write PBS script 

Nodes 

Lobby for Free Nodes
Schedule

Schedule

Schedule

Schedule 
Job 
File 

P
age 12.803.11



    

 

 
Figure 5: Simulator Architecture 

 

Since our simulator runs on top of MPI/PBS, we use one node as the simulated scheduler and 
the rest as the simulated computed nodes. All 16 nodes of the cluster are reserved using the PBS 
commands. As an MPI application, the program lets Node 0 to act as a scheduler, while all the 
other 15 nodes wait for messages from the scheduler. The simulator accepts jobs from the user. 
Depending on the simulated policy, the scheduler allocates the required number of nodes for the 
job from the available resources among the 15 workers. For the Gang scheduling policy, the 
scheduler also allocates the time slot for the job. 

  
For the Gang scheduler, at the end of each time quantum, the simulated scheduler broadcasts a 
SWITCH_CONTEXT message using scatter provided by the communicator class. The message 
contains information about which time slot is to be scheduled next. On receiving the context 
switch command from the scheduler, each node stops the currently running process using 

SIGSTOP, and resumes the jobs scheduled to run next using the signal SIGCONT. Experiments 
were carried out with a randomly generated workload.  The arrival time, estimated execution 
time of the jobs (submitted by the user), the actual simulated run-time by the simulator, and the 
number of requested nodes were generated randomly.  
  

5. Implementation issues 

 
In this study, several backfilling scheduling policies as well as Gang Scheduling with Greedy 
Approach and Gang Scheduling with Lookahead Backfilling Policy were simulated. This section 
provides some details of the implementations. Interested readers can see Rajaei and Dadfar

1 2, 3
. 

The Environment:  

Our cluster has the following system features: 16 homogeneous compute nodes; 2.8 GHz 
Pentium 4 processor per node; 1 GB of RAM per node; 1 GB/sec Ethernet switch; Gentoo Linux 
operating system; Batch System with PBS based Torque. 

The Simulators 

All simulators are written in C++. Those running on the cluster are using MPI. The base class 
Simulator provides some very basic functionalities of the simulation platform. It maintains an 
event list where events, in the form of arrival of new jobs, are inserted in the order of their 
arrival time. It also maintains the waiting queue where events that cannot be scheduled 
immediately are queued. Derived classes override processEventQueue() and processWaitQueue() 
methods to process the event and waiting queues. 

 

Linux Kernel

PBS Scheduler

MPI Library

Simulated  
Scheduler

Jobs 
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For time management, the simulator provides one-shot timer functionality. Subclasses need to 
override a method called timerFunction() which is invoked when the one-shot timer expires. The 
scheduler classes, derived from the Simulator class, make use of the timer to trigger events like 
global context switch and the start and the termination of jobs. The simulation time is forwarded 
at the timer expiration. The resolution of simulation time and the time interval between context 
switches have been kept the same in this implementation for simplicity.  
 
Jobs are generated in a pseudo-random fashion using the Linux rand() function in the current 
implementation. Other distributions, like exponential or Poisson, can be used for the study of 
scheduling characteristics under various workloads.  
 

6. Results and Analysis 

 

6.1 Batch processing with Backfilling 

 
Experiments were carried out with a randomly generated workload.  Further, following 
parameters of interest were used: 1) Makespan: Total time to complete processing all jobs from a 
given pool representing utilization, 2) Wait Time: Length of time for a task waiting in the 
scheduling queue, 3) Number of requested compute-nodes, and 4) Estimated execution time. 
  
The results for this part are show in Figure 6 and 7.  Waiting time for the jobs in the Multiple 
Queue is more than Look-ahead backfilling algorithms and for the aggressive backfilling is 
smallest in comparison to the other two.  Looking at the line graph of each algorithm in Figure 6 
separately, it seems that all three algorithms have one thing in common: the execution jobs do 
not depend on the arrival time.  The jobs arriving late may execute before the other jobs that 
arrive before them, and hence, the algorithms are not fair.  In case of look-ahead, the waiting 
time depends upon the utilization value of the job at that particular instant in time.  The 
utilization value of each job is calculated by checking the number of requested processors and 
the number of available computing nodes at that time.  
 

Requested Nodes versus Waiting Time 

 
Figure 7 shows the waiting time of a job based on the number of compute-nodes it needs.  In the 
basic aggressive algorithm, jobs that request more nodes wait longer than jobs that request fewer 
nodes.  For multiple queues, the jobs requesting fewer nodes are executed before the jobs 
requesting more nodes in that queue.  This figure suggests that the look-ahead backfilling 
algorithm provides better utilization.  Further, jobs in Multiple Queue algorithm wait longer than 
the jobs in the other two backfilling algorithms. 

 

Estimated Time versus Waiting Time 

 
Normally, jobs with shorter estimated time are executed before jobs with larger estimated times.  
However, our results suggest that the look-ahead algorithm does not execute the jobs according 
to the estimated time of completion.  In all three cases presented in our studies, Multiple Queue 
exhibits longer waiting time and look-ahead appears as a better choice.  
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Figure 6:  Arrival Time versus Wait Time of the three algorithms 

 

 

 
Figure 7:  Nodes Requested versus Waiting Time 

 

6.2 Gang Scheduling and Backfilling 

 
A policy is evaluated by scheduling criteria which reflect user’s parameters of interest.  A fair 
and quick response time is desired.  Completion time of the last job, or makespan, is used in 
report.  Figure 8 advocated that the Gang scheduling outperforms the backfill with lookahead in 
terms of both makespan and the average response time.  Plotted against increasing number of 
jobs, the makespan for the backfill is always more than those for the Gang scheduling.  Within 
the Gang-scheduling 
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 (GS) category, the greedy approach seems superior to the backfilled one. 

Interestingly, GS with backfill tends to exhibit a behavior that is a compromise between backfill 
and GS with greedy approach.  For fewer jobs, the GS with backfill coalesces with GS with 
greedy approach.  This is because, as the number of jobs becomes reduced, time slots are readily 
available for most of them and neither the greedy nor the backfill policy effectively come into 
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play.  As the number of jobs increases, they are queued and scheduling criteria are applied to 
pick the job to be scheduled.  The greedy GS tries to schedule as many jobs as it can without 
consideration for fairness or reservation for the first job in the wait queue as is done by GS with 
backfill.  It is not surprising that for a fairer scheduling policy the makespan is relatively worse 
but it is still better than the backfilling used with batch processing. 
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Figure 8: Makespan and Average Wait Time vs. Number of Jobs 

 
As expected the average wait-time for the Gang scheduling is far less than that for the backfill as 
shown in Figure 8.  In the case of backfill, the average response time increases more rapidly 
making it unsuitable for interactive jobs.  The Gang scheduler performs appreciably, as the 
response time does not show a rapid increase in average response time.  It also suggests that 
more jobs are getting completed making room for newer jobs to get scheduled.  
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Figure 9: Makespan and Average Wait-Time vs. Number of Time Slots 

 
Performance of the Gang scheduling exhibits appreciable improvement when the number of time 
slots increases from 1 to 15 as suggested by Figure 9.  With only one time slot, the Gang 
scheduler behaves like a batch scheduler.  Further, as the number of time slots increases, the 
average wait time decreases significantly between the number of slots 1 and 15.  As the system 
behaves like having virtual nodes equal to the number of slots multiply the number of actual 
nodes, more jobs can run without any delay, thus reducing the total and average wait time.   
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7. Future Work 

 
Several potential extensions to the current work can be explored.  An exciting topic concerns the 
use of process migration, the second regards implicit scheduling, and third on the use of statistics 
based on real workload.  The scalability of the scheduling algorithms needs closely to be looked 
into as well.    
 
Migration appears to improve performance of the Gang scheduling

15
.  It embodies moving a job 

in the Ousterhout matrix to a row in which there are enough free processors to execute that job.  
This will allow the row from which the job got migrated to have more free nodes and can 
therefore be able to run jobs requesting large number of nodes. 
 
The workload was randomly generated in this study.  A real application could exhibit different 
result and hence impact the outcomes.  We need to look at this situation as well and running 
several benchmark processes to measure the outcome. 
 

8. Concluding Remarks 

 

In this paper we reported how a complex task like scheduling in multiprocessor environment 
could be broken in manageable pieces and assigned to several students as term projects.  Our 
experiments suggest that students appreciate working with such challenging projects in the High 
Performance Computing field.  As pilot study, we targeted an advanced operating systems course 
which had sufficient components for students to work with a HPC project.   
 
Our obtained results from the scheduling case study suggest that this project can be extended 
even further to include more sophisticated scenarios such as process migration, load-balancing of 
processor allocation, use of real tasks in the simulated scheduler instead of randomly generated 
payload, and scaling the number of processors.  Regarding the topic of scheduling, more studies 
are needed to analyze behavior of the backfilling schemes as well as Gang scheduling.         
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