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How First-Year Engineering Students Develop 
Visualizations for Mathematical Models

 
Abstract 
 
This research paper presents findings about first-year engineering students’ approaches for 
visualizing models within the Models and Modeling Perspective theoretical framework. This 
study is a part of a larger investigation into the impact of implementing linked model building 
and model application activities within a first-year engineering course at a large Midwestern 
university. The purpose of this research is to further address the need for developing effective 
curricula to teach students’ mathematical modeling skills and begin to address the need to teach 
students about simulations. The data for this study consisted of 141 simulations submitted by 98 
student teams at the end of the model application activity. The teams developed their simulations 
with graphical-user interfaces (GUIs) using MATLAB. Each of the 98 teams selected for this 
study consisted of at least one student that developed a complete simulation based on their 
original mathematical model. The 141 students’ simulations were analyzed using grounded 
theory to understand the types of visualizations that students used and how they related to their 
underlying mathematical models. There was a large range of ways that students decided to 
incorporate visualization into their simulations. Most students visualized an output of their 
model, but three students chose to display values that users input into the models. The most 
common types of visualization consisted of pie charts, bar charts, and line graphs. These findings 
are described quantitatively and qualitatively in greater detail. The goal of this study was to gain 
further insight into students’ thought-process of the meaning of their models through simulation 
development. These understandings can help researchers better investigate potential 
misconceptions, misunderstandings, and provide opportunities to help students learn about 
mathematical models and simulations. The findings of this study also help inform practitioners of 
ineffective and effective types of visualizations that students used in developing simulations; this 
can enable them give more informed feedback throughout implementation of similar projects.  

Introduction  
The development and use of mathematical models and simulations underlies much of the work of 
engineers. Mathematical models describe a situation or system through mathematics, 
quantification, and pattern identification. Simulations enable users to interact with models 
through manipulation of input variables and visualization of model outputs. Although modeling 
skills are fundamental, they are rarely explicitly taught in engineering. Since models are 
embedded in many engineering courses, it is beneficial to help students develop modeling skills 
early on in their engineering education. Model-eliciting activities (MEAs) represent a 
pedagogical approach implemented and researched in engineering to teach students mathematical 
modeling skills through the development of a model to solve an authentic problem.1 Model-
adaptation activities (MAAs) were created within the same theoretical framework in 
mathematics education, but they are scarcely implemented and researched within engineering.2 

 
Simulations are used in education to either enable a student to investigate a concept through an 
expert-developed simulation or challenge a student to build a simulation.3-6 Activities that 
involve building simulations typically consist of prescriptive instruction on how to develop a 
given simulation; such instruction fosters passive learning.3-6 In the literature there is a lack of 



open-ended simulation development activities reported.  This means that little is known about 
how students progress from concept generation to a fully developed simulation or how to design 
simulation development activities that promote active learning.  
 
Since 2010, students in a first-year engineering (FYE) course have engaged in a MATLAB-
based graphical user-interface design project with a variety of contexts (e.g. games, K-12 
engineering education tools, course performance monitoring systems).7 More recent projects 
have evolved from industry and research center partnerships; these partners have required the 
development of simulations backed by mathematical models.  Rodgers,  Diefes-Dux, Kong, and 
Madhavan (2015) found that students confuse general user-interactivity (e.g. button pushing at 
an interface), mathematical models, and simulations; this study resulted in a framework for first-
year engineering students’ simulation development in a design project.7 Rodgers (2016) began to 
address how first-year engineering students developed mathematical models through a model-
building activity (i.e. MEA) and a subsequent simulation-building design project (i.e. MAA).7 
This study is a continuation of the work completed by Rodgers (2016).2 The goal of this study is 
to address the following research questions: (1) What types of visualization do first-year 
engineering students use in their simulations? and (2) How do they use visualization in relation 
to their models?. 
 
Literature Review 
 
Mathematical models are fundamental to most engineering work and engineering courses.9,10 
Although the development and use of mathematical models are critical, they are rarely explicitly 
taught in engineering.10 Model-eliciting activities (MEAs) are a type of mathematical model 
building activity that addresses this need in engineering.1   
 
MEAs are open-ended problems that challenge students to work as a team to develop a model for 
a client within a strategically developed context.1 MEAs require students to analyze a given 
mathematical problem, mathematize it, and then communicate a model or process to address the 
problem; this process reveals their understanding of the attributes and limitation of the situation.1 
MEAs were designed as a method to allow students to continue to develop their conceptual 
understandings though problem solving, while revealing their evolving thinking through iterative 
problem solving.11 An important feature of MEAs is their focus on the student-developed models 
rather than the results that the models produces.1,11 This emphasis on the model rather than the 
model results better enables a learning environment that allows for more diverse thinking than 
traditional mathematics problems that often focus on a single answer. MEAs have been 
extensively researched in engineering education to understand how to effectively help students 
develop their mathematical modeling skills.1,2 MEAs were originally developed in mathematics 
education within the Models and Modeling Perspective (M&MP).11 The M&MP is a theoretical 
framework that investigates how students develop mathematical modeling skills through 
interaction with other students and a modeling activity (e.g., MEAs, MAAs).11  
 
Model-adaptation activities (MAAs) are another type of modeling activity within the M&MP 
framework. MAAs challenge students to apply a mathematical model, typically a model that was 
originally developed through a MEA. There has been a limited amount of research conducted 
around the use of MAAs in engineering education.2 One type of MAA is the application of 



applying a model through simulation development. Rodgers (2016) found that students’ model 
development process is impacted by simulation development and determined that building 
simulations on existing models enables students to further explore mathematical model 
development and better understand simulations.2 
 
Simulations are a type of tool that enable users to explore and visualize a model.3-6 Simulations 
consist of a well-developed model, user-input variables, and visualization of the model.6,8 

Simulations are used in education settings in two ways: (1) using simulations and (2) building 
simulations.1 Most active learning environments that implement simulations challenge students 
to use an expert-developed simulation tool.3,6 Most learning environments that challenge students 
to build simulations involve lectures and prescribed directions.4-6 Research around student-
developed simulations in an active learning environment are limited.2,8 Rodgers, Diefes-Dux, 
Kong, and Madhavan (2014) categorized the types of GUIs that students submitted for their 
simulations as four levels: (1) basic interactions – button clicking, but no underlying model, (2) 
black-box models – user-inputs to the model and outputs without visualization, (3) animated 
simulations – visualizations of an underlying model based on set inputs without any user-
interaction, and (4) simulations – tools that allowed users to interact with an underlying model 
and displayed visualization.8 The types of visualizations used in student-developed simulations 
vary and previous research noted the need to further investigate what types and how students 
create visualizations in simualtions.2,8 This study began to address this gap in current 
understandings of simulation development in open-ended problem solving environments.  
 
Methods 
 
The data collected and analyzed for this study was based on the completion of projects in a first-
year engineering course in spring 2015 and began with research conducted by Rodgers (2016).2  
 
Participants and Setting 
 
Two sequential required first-year engineering courses at a large Midwestern university utilize 
open-ended mathematical modeling problems and design challenges along with scaffolding 
through feedback to encourage student learning of modeling and design. This study is set in the 
second course. This course facilitated students’ achievement of four course learning objectives, as 
stated on the course syllabus: 
 
1. Practice making evidence-based engineering decisions on diverse teams, guided by 

professional habits, 
2. Develop problem-solving, modeling, and design skills that you will use as an engineer,  
3. Learn how to use computer tools to solve fundamental engineering problems, where the 

emphasis will be on MATLAB, and  
4. Develop your teaming and technical communication skills. 
 
This course primarily consists of lectures and two open-ended projects to help students achieve 
these goals. The alignment of these course objectives to the course projects is further described by 
Rodgers, Boudouris, Diefes-Dux, and Harris (2016).13 

 



Spring enrollment in this course is typically 1300-1650 students in 12-15 sections; each section 
consists of up to 120 students. This course structure for the spring 2015 offering along with the 
numbers of students that completed the course, sections, and teaching assistants is shown in 
Figure 1. 
 

 
 

Figure 1. Structure of First-Year Engineering Courses 
 
This course has two team projects that each span about half of the semester. The teams consisted 
of three to four students and were assigned at the beginning of the semester using the team 
formation feature of the Comprehensive Assessment of Team Member Effectiveness (CATME) 
tool;12 this ensures, at a minimum, that underrepresented students are not isolated and students’ 
schedules are compatible. The first project challenges the student teams to develop a 
mathematical model through a MEA with the fundamental purpose of increasing students’ 
understandings of models and modeling in context. MEAs had been implemented in the FYE 
course since 2002.1 The second project challenges the students to design MATLAB-based tools to 
meet the needs of a project partner. GUI design projects of various sorts had been implemented in 
the course since 2010. This study focuses on a project that was the result of a partnership with an 
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NSF-funded nanotechnology research center. The development of the two projects implemented 
in the course for this study are described by Rodgers, Boudouris, Diefes-Dux, and Harris (2016).13 
Within the MEA, teams had to develop one mathematical model to create a solar panel with 
various quantum dot (QD) materials based on provided data and some relevant equations. Within 
the GUI design project (i.e. a type of MAA), teams had to develop one simulation per a student on 
the team based on the model from their MEA and other models they found on nanoHUB.org or 
other resources. The two implemented projects in spring 2015 were a quantum dot solar cell 
(QDSC) MEA and a QDSC GUI design project. The implementation of these projects are 
described in greater detail by Rodgers (2016).2 
 
QDSC Model-Eliciting Activities. This MEA challenged teams to develop a mathematical model 
to create three different solar panels out of a mixture of five quantum dots for three different 
goals: (1) minimize the cost, (2) minimize toxicity, and (3) optimize for both minimum cost and 
toxicity, while adhering to given constraints. All of the project requirements were described to 
student teams in memos from a designated client, Power-by-Nano Technologies.  These MEAs 
were completed over the course of six weeks and required three submissions. The teams had to 
describe their models in a memo format to respond to the client. The students’ submissions 
consisted of the required memos and frequently included additional supporting documents (e.g., 
spreadsheets, MATLAB code, graphs, tables). For each of the submissions the team received 
feedback from teaching assistants or their peers. 
 
QDSC GUI Design Projects. Following the development of their mathematical models in the 
QDSC MEA, the same teams had to develop a simulation suite. The requirements of the project 
were that the team had to determine the audience for their project with the context related to 
nanotechnology and solar energy, each student on the team had to develop their own simulation, 
and at least one of the simulations had to be based on their QDSC model. The GUI design 
project was implemented through a series of milestones that follow a design process from 
problem scoping, idea generation and reduction, prototyping, development, demonstration, and 
communication. Along the way, both peers and instructors provide feedback. The milestones are 
described in Table 1. 
  



Table 1. QDSC Design Project Milestones (M) Implementation Sequence 

M Primary Focus/Function 
Completed by: 

Week Due Feedback Individual Team 
0 Project Introduction X  6A In-class 
1 Problem scoping X  7A TAs 

2 User profile and GUI evaluation X  8B TAs and 
automated 

3A Concept generation  X 9A TAs 
3B Concept reduction  X 11A TAs 

4 Navigation map and rapid prototype 
(PowerPoint of potential GUI)  X 12A nanoHUB (based 

on Project Rubric) 

5 Final proposal (final PowerPoint 
submission of potential GUI)  X 13A TAs (based on 

Project Rubric) 

6 
Draft GUI (interfaces completed, but 
coding behind functionality not yet 
developed) 

 X 14B TAs 

7 Beta 1.0 demonstration for         
instructional team (full GUI)  X 15B TAs 

8 Beta 2.0 demonstration for           
nanoHUB (full GUI)  X 16A nanoHUB (based 

on Project Rubric) 

9 Final demonstration for             
instructional team (full GUI)  X 16B TAs (based on 

Project Rubric) 
 
Data Collection 
 
The final submissions (Milestone 9) were selected as the data source for this study. The teams’ 
final deliverable consisted of their final MATLAB-based cohesive package of simulations tools 
(graphical user interfaces, or GUIs, with the supporting MATLAB codes) and an executive 
summary describing their work. Only the GUIs that were determined to be complete simulations 
and based on the QDSC model were analyzed for this study.  
 
Based on previous analysis of 230 teams’ solutions conducted by Rodgers (2016),2 122 teams 
(54%) incorporated the mathematical model originally developed in the MEA in at least one of 
their GUIs. Within these 122 teams, 187 students developed a GUI  based on their QDSC 
model.2 Based on the analysis on their GUIs, 141 of the submissions (75%) were complete 
simulations (i.e. backed by a model and front-ended with user-input and visualization 
capabilities).2,8 The 141 complete simulations were completed by students within 98 teams. Each 
of the teams had a range of one to four students on the team that completed a simulation based 
on the QDSC model. This meant the other students on the team focused on different models for 
their simulations. The teams that had more than one student on the team that created a simulation 
based on the QDSC model focused on different aspects of the model in their simulation. These 
141 complete simulations were analyzed for this study. 

 



Data Analysis 
 
Open coding and axial coding14 were applied as the strategies of inquiry to analyze student teams’ 
design project submissions. Coding categories were developed and refined through multiple 
sessions amongst two researchers to categorize the nature of the visualization types seen in the 
data and applying the categories to the data to test and modify them. The resulting categories were 
four major categories of types of visualization with seven sub-categories (described in Table 2) 
and two additional codes about the nature of the visualization. One code was to determine if the 
model visualized the material composition of the resulting QDSC solar panel (the primary output 
of the original QDSC model) or not. The other code was to determine if the visualization either 
displayed information about the outputs of the model or not. 
 

Table 2. Types of Visualization Presented in Students’ Simulations 
Types of 
Visualization 

Variety of Types 
of Visualizations 

Description 

Pie Chart Traditional A pie chart of two or more values being compared. 
Bar Chart Traditional Vertical and horizontal bar charts of two or more bars of displayed 

data. These did not include any additional features. 
Additional features Some bar charts that displayed data for two or more outputs had 

additional features, such as split bars in the bar graph.  
Single outputs Some bar charts were only based on one data point. Some of these 

allowed users to change inputs and hold the previous outputs so they 
could compare single data point results for different inputs. 

Line Graph Traditional These consisted of any line with or without displayed points on a 
graph with a value for both x and y coordinates.  

Scatter Plot Traditional These consisted of two or more points on a plot with a value for both 
an x and y coordinate. 

Single outputs Scatter plots that were only based on one data point. Some of these 
allowed users to change inputs and hold the previous outputs so they 
could compare single data point results for different inputs. 

 
To ensure reliability, Cohen’s kappa was calculated to determine agreement between the two 
researchers for the analyses across the established categories.15-16 Each researcher independently 
coded 20 students’ simulations. Based on the Cohen’s kappa, the researchers agreed 93.5% of the 
time for the types of visualizations across the seven different subcategories. This is considered 
very good agreement. 15-16 The researchers agreed 70.0% of the time for the simulations that 
visualized the material composition of the QDSC model. This is considered good agreement.15-16 
Based on Cohen’s kappa, an acceptable agreement could not be attained for the examples of 
students’ simulations that did not visualize outputs of the model because there were two few 
examples. All occurrences of these were discussed by both researchers to reach agreement. Once 
agreement was established, one researcher coded each of the students’ simulations based on the 
established criteria to determine how many students had visualizations within each of the 
categories.  
 
The results consist of qualitative notes and quantitative analysis of the resulting framework 
applied. In addition to this analysis, the resulting codes were compared to scores the teams 
received on their QDSC models to further investigate any potential relationship between 
visualization types used in simulations and understanding of underlying mathematical models; 



these scores were coded in a previous study.2 These scores were coded based on the rubric used to 
assess teams’ MEAs. The scores assessed the implementation of a given equation as part of their 
mathematical model (out of 2), the ability of the developed model to address the complexity of the 
model (out of 6), and the amount that the model limited the search space (i.e. limiting the number 
of iterations to find the optimal solutions) (out of 2). Table 3 summarizes these criteria. 
 

Table 3. QDSC MEA Rubric for Mathematical Model Elements 

Categories of Model 
Elements 

Mathematical Model Elements 
from Rubric 

Fully  
Addressed  
(2 pt) 

Somewhat 
Addressed 
(1 pt) 

Inadequately 
Addressed 
(0 pt) 

Given equation 
functions 

There is a mechanism for achieving 
the desired (Eg,quantum dot)eff 

   

Optimization strategy 

There is a mechanism for 
minimizing cost    

There is a mechanism for 
minimizing toxicity    

There is a mechanism for 
minimizing cost and toxicity    

Search space 
The solution space is searched with 
some attention to minimizing the 
number of iterations 

   

 
Results 
 
The 141 student developed simulations had a range of underlying models because the QDSC 
model upon completion of the MEA varied across teams and some students modified their QDSC 
model to focus on different outputs. The original output of the model, as designed in the MEA, 
was the material composition of the QDSC solar panel. This was the most frequent type of output 
in all the students’ simulations (78 out of 141 students – 55.3%). All 78 students who developed 
visualizations of this output used either pie charts or bar charts; more often pie charts (64.1%). 
 
The types of visualizations that all 141 students created are summarized in Figure 2 and described 
in detail below. The most common types of visualizations were pie charts and bar charts. All of 
the students only used one type of visualization in their simulations. Some of the students’ 
simulations contained more than one graph or chart in their simulation, but the majority (89.4%) 
only had one graph or chart. Meaning that some students included multiple charts or graphs of the 
same style (examples in Figures 4, 5, 6, and 7). 
 



 
Figure 2. Number of Students’ Simulations across Types of Visualization Categories 

 
Out of the 141 simulations, 53 students used pie charts for visualization in their simulations. The 
majority of these students (94.3%) used pie charts to display the material composition of the 
quantum dot materials in the created solar panel, which is an output of the QDSC model. An 
example of one students’ simulation that displayed a pie chart visualization is shown in Figure 3.  
 

 
Figure 3. Pie Chart displaying Material Composition 
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This team received 8 out of the 10 possible points on their underlying QDSC model (for 
simualtion shown in Figure 3). The student enabled the user to select any of the three types of 
models (i.e. minimize cost, toxicity, or both) and change the band gap energy; the user could not 
include their own weighting for importance of cost and toxicity for the model to minimize both 
(i.e. they lost one point for this). They also minimized the search space in the underlying model. 
 
Out of the 141 simulations, 44 sutdents used bar charts with two or more bars to display data in 
their simulations. Twenty-eight students (63.6%) used bar charts to display the material 
composition of the quantum dot materials in the created solar panel, which is an output of the 
QDSC model; this was the most common use of the bar chart.  
 
An example of this in one students’ simualtions is displayed in Figure 4. This team received 5 out 
of the 10 possible points on their underlying QDSC model because they determined the solutions 
with minimal cost, toxicity, and both by running through every iteration which meant they only 
somewhat addressed the task and did not address the search space at all. 
 

 
Figure 4. Bar Chart displaying Material Composition 

 
  



Four students created bar charts with one data point to visualize an output for their simualtion; 
none of these were used to display an input to the model. These were used to display the cost or 
toxicity of the resulting solar panel. The majority of students (i.e. 3 out of 4) that displayed a 
single bar on their bar chart enabled users to be able to compare the cost or toxicity of the solar 
panels for different inputs by adding bars on the chart for different inputs; these displayed the 
results of inputs for ranging from two to five different runs. 
 
An example of one student’s simulation that displayed a single bar for one output then displayed 
more bars for the output as the user put in different inputs. This team received 5 out of 10 points 
on their underlying QDSC model for the same reasons as the previously discussed team. 
 

 
 

Figure 5. Bar Charts displaying Cost and Toxicity of different QDSC Panels 
 
  



Line graphs were used by 28 students. These were used various different ways and to display a 
range of data related to the QDSC model. There was no typical type of output displayed in these 
simulations, as there was for simulations that used pie charts and bar charts. A couple of different 
examples are shown in Figures 6 and 7.  
 
Figure 6 shows one student’s simulation that presents two line graphs to show the range of 
possible costs and toxicities for various solar panels generated based on the input QDSC materials 
and type of model to run (i.e. minimize cost, toxicity, or both). This team also received 9 out of 
the 10 possible points on their underlying QDSC model because they fully addressed every 
element other than the search space.  
 

 
Figure 6. Line Graphs of Solar Panels with various Band Gap Energies 

 
  



Figure 7 shows one student’s simulation that also presents two line graphs – one related to cost 
and another related to toxicity. This student’s simulation differs from the previous example in that 
the user inputs the target band gap energy so this is not the x-axis value, as the previous example. 
These line graphs display the cost and toxicity for all of the possible QDSDC material 
combinations in the solar panels based on the user-input values. The best resulting options are 
then displayed in a table at the bottom of their simulation. This team received 5 out of 10 points 
on their underlying QDSC model because they only somewhat addressed the three optimization 
strategies and did not at all attempt to limit the search space.  
 

 
Figure 7. Line Graphs of possible QDSC Material Combinations in Solar Panels 

 
  



Scatter plots were not a common type of visualization used in students’ simulations. Plots with 
single points on them were more commonly used than scatter plots. The most common type of 
scatter plots and single points on a plot were with the axes of cost (dollars per a gram) versus 
toxicity (with a rating of 1 to 4 per a material). In scatter plots, students displayed the cost vs. 
toxicity for each of the materials input in the QDSC model; an example of this is shown in Figure 
8. Students that used the cost vs. toxicity axes for plots with single points displayed the cost and 
toxicity for the solar panel generated by their model (i.e. an output of the model). This team also 
received 5 out of 10 points on their underlying QDSC model because they only somewhat 
addressed the three optimization strategies and did not at all attempt to limit the search space. 
 

 
Figure 8. Scatter Plot of Materials input in the QDSC Model 

 
  



Another variation similar to this is a student displaying the toxicity of the resulting solar panel 
(i.e. an output) and the minimum quantity of each material for the mixture (i.e. an input) in their 
single point plot; this is shown in Figure 9. This team received 8 out of 10 points on their 
underlying QDSC model because they only somewhat addressed the criteria for the optimization 
strategy to minimze both cost and toxicity and somewhat addressed the search space element. 
 

 
Figure 9. Single Point on a Plot – Output vs. Input 

 
Overall the majority of students’ simulations focused on displaying outputs of their model (e.g., 
Figures 3 – 7, and 9). There were only 3 students that displayed only inputs for their models in 
their simulations (e.g., Figure 8).  
 
Mathematical Models and Visualization 
 
The scores that the 98 teams received on their QDSC mathematical model ranged from zero to 
nine out of ten. Across the 98 teams, the average score was 4. Based on descriptive statistics of 
the scores for the different types of visualization, there appears to be only one common pattern 
between scores and the types of visualization. The teams that scored 0 on their QDSC 
mathematical model most frequently used line graphs. The majority of students on teams that 
scored a 0 on their QDSC model (i.e. 11 out of 12 teams – 91.7%), used a line graph for the 
visualization in their simulations. Across all of the categories of visualization, the average team 
scores were four to five with the exception of two categories (i.e. Line Graphs). The average of 
the teams’ scores on the QDSC Model for the students that used line graphs was 2.89. 



Conclusion 
 
These findings begin to highlight some of the different paths that students take in developing 
visualizations for their simulations. This study helps contribute to our understanding of how 
students develop simulations in an open-ended learning environment, as previous research has 
noted is lacking.2,6,8 Although there does not appear to be any significant connection between the 
types of visualizations that students use and the quality of their underlying models, there are some 
findings that highlight some points that practitioners should target in their feedback to further 
scaffold students through simulation development in open-ended learning environments. 
 
Many students used pie charts and bar charts to display the material composition of their resulting 
QDSC solar panel, which was the primary output of the model developed through the MEA. 
Although both charts do display the information, it would be more appropriate to display this 
information in a pie chart since it is based on a total, equaling 100%, of the solar panel material. 
The students that used bar charts displayed a lack of understanding on how to effectively display 
this kind of information. Students should be provided feedback on the types of visualizations that 
they use and which are most appropriate for different types of data.  
 
One infrequent, but problematic finding of this study was that some students saw the need to add 
visualization, but did not understand the need to display outputs of their models – not inputs. 
Students that only visualize inputs need to be further prompted to understand that the purpose of 
visualization is to communicate the underlying model, which requires emphasis on outputs. The 
previously developed framework of simulation development did not address this problem. The 
framework developed by Rodgers, Diefes-Dux, Kong, and Madhavan (2015) 8 should be revised 
to have at least one more level, as shown in Table 4. Assessment based on the previous version of 
this framework showed that all teams had a complete simulation. Based on this revised version, 
98% of the teams have complete simulations (see ranking of teams bolded in the second column 
of Table 4). This framework was developed to categorize how students develop simulations in 
problem-based learning environments to further our understandings and enable practitioners to 
provide more effective feedback through simulation development in active learning environments.  

  
  



Table 4. Revised Student Developed-Simulations Framework 
Levels Name of Level Explanation of Student Work 
1 Basic Interaction These works would only consist of clicking, button 

selection, or other basic interaction. 
2 Black-Box Mathematical Model These works would have some type of mathematical 

model that the inputs could be changed on, but there 
would be no visualization or communication of how 
the mathematical model works. 

3 Incomplete Simulation  
(NEW LEVEL) 
3 teams (2%) 

These have all three major components: (1) 
interaction – variable manipulation, (2) underlying 
mathematical model, and (3) visualization. These 
are incomplete though because the visualization is 
focused on the inputs only. 

4 Animated Simulation This would be an animation of one particular run of 
a simulation. There is no opportunity for the user to 
manipulate the input variables. 

5 Simulation 
138 teams (98%) 

These have all three major components: (1) 
interaction – variable manipulation, (2) underlying 
mathematical model, and (3) visualization of 
outputs. 

 
Alessi (2000)6 discussed the lack of research addressing how to help students learn about 
simulations through active learning. Rodgers, Diefes-Dux, Madhavan, and Oakes (2013)7 began 
to address this need through research  the Network for Computational Nanotechnology (NCN – 
nanoHUB.org) looking out how to raise students’ awareness of nanotechnology through design 
projects that emphasized simulation development. This research into simulation development 
through problem-based learning was continued within the NCN team. The study presented 
furthers this investigation into how enable students to learn about simulations and simulation 
development through problem-based learning. This research needs to continue in other 
engineering courses, including upper-level undergraduate courses, to understand similarities and 
differences in this established framework. 
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