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Abstract—In order to reduce the effect of the category proliferation phenomenon in 

Fuzzy ARTMAP (FAM) and in ellipsoidal ARTMAP (EAM) architectures, The genetic 

algorithms were used to evolve networks of both architectures called GFAM and GEAM 

[3][4]. The results were very promising and the category proliferation (CP) phenomenon 

was minimized in most of the experiments, however, the author noticed that GEAM 

worked better on some problems while GFAM worked better on others, this triggered the 

idea of a hybrid Genetic ART architecture that uses categories from both EAM and FAM 

architectures, this architecture was then called HART. HART evolves networks that were 

designed to have hyper-rectangular and hyper-ellipsoidal categories. HART was tested on 

24 different datasets, the results were compared against those collected from testing 

FAM, EAM, GFAM and GEAM, HART performed well against all other networks and 

gave a great balance between accuracy and network size. 
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I. INTRODUCTION 

HE Adaptive Resonance Theory (ART) architecture  was developed by Grossberg (1976) [1]. 

In 1992 Mr. Carpenter developed a Neural Network (NN) called Fuzzy ARTMAP (FAM) [2]. 

FAM architectures became very popular and were used in the literature to successfully solve 

many classification problems. Researchers then developed other ART NN‟s such as EAM [5] 

and GAM [6] that used different category representations to attain better performance and to 

reduce the effect of a phenomenon called Category Proliferation (CP) (Creating extra categories 

for better performance especially when used with noisy data). The authors noted that FAM, 

GAM and EAM still created far more categories than needed when tried on  many datasets; 

therefore, we came up with the idea of using Genetic Algorithms (GA) to evolve the different 

ART architectures, the newly created architectures were then called GFAM, GEAM and GGAM 

[3,4]. The Genetic architectures were tested on 24 different datasets, The results then were 

compared against those of the original architectures and showed the superiority of the Genetic 

architectures [3,4]. 

Although the method described above was very successful, the authors noticed that for some 

datasets one of the FAM, EAM, GAM architectures produced the best results, while for another 

dataset another architecture did better. Furthermore, it could also be the case that EAM is better 

at describing the input patterns in a portion of the input space, while FAM might be able to do a 

better job at another portion of the input space (and the same dataset). These observations gave 

birth to the idea of HART that does not a-priori determine which is the best category structure 

(hyper-rectangle, hyper-ellipsoid) that could best represent the data in various portions of the 

input space. From another point of view, it is reasonable to think that a problem space would not 

be suitable to be covered by only one of the geometrical shapes mentioned above, and this could 
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explain the extra nodes created and the lack of accuracy attained by a specific ART architecture. 

Figure 1.a shows what might be the case when using an unsuitable architecture to cover the input 

space of a specific problem while 1.b shows the opposite. 

The organization of this paper is as follows: In section 2 we present HART. In Section 3, we 

describe the experiments and the datasets used to assess the performance of HART, and we also 

compare HART to other ART and Genetic ART networks that attempted to resolve the category 

proliferation problem in ARTMAP. In Section  4, we summarize our work and draw some 

conclusions.   

 

II. EVOLVING HYBRID FAM/EAM NETWORKS (HART) 

In this article we assume that the reader is familiar with the Fuzzy ARTMAP (FAM) neural 

network architecture, its training phase, and its network parameters (for more info see [2]). For 

every classification problem (dataset) that we experimented with we assume that we have a 

training set, a validation set and a test set. HART can operate in three distinct phases: the 

training phase, the geometry selection phase (or Genetic Phase) and the performance phase.  In 

the training phase of HART, the user defines the number of the networks the system should 

generate, referred to as sizePop . The system then creates sizePop  trained ART networks, half of 

them   FAM and the other half EAM networks. These FAM and EAM networks are generated by 

using different values of the baseline vigilance parameter and orders of training pattern 

presentations, as was done for GFAM and GEAM. For the training of this initial population of 

sizePop  ART networks a list of input patterns/output labels pairs, (i.e. 

))}(,()),...,(,()),...,(,{( 11 PTPTrr OOO IIIIII ), is repeatedly presented to the FAM/EAM network 

until it learns the required mapping. Training is over when a user defined maximum list 

presentation number is reached. After creating a FAM or EAM trained network HART converts 

it into a chromosome and saves it in the FAM/EAM network container of the HART 

architecture. A pictorial illustration of the HART architecture in its training phase, consisting of 

two independently operating FAM and EAM architectures and the associated FAM/EAM 

chromosome container is shown in Figure 2. In the geometry selection phase, the goal is to find 

an ART network (HART network) which contains the best types and smallest number of ART 

categories (rectangles or ellipsoids, or a combination of the two) that achieves good 

generalization. This HART network is found by starting from an initial population of sizePop  

HART networks and by applying the GA algorithm to this initial population, in the same way 

that it was used to produce GFAM and GEAM [3][4]. The distinct and important difference 

between the initial population of GFAMs, and GEAMs, that we started with then and the initial 

population of HARTs that we start with here is that the initial population of GFAMs and GEAMs 

consisted of chromosomes, each one of which contained categories of the same geometrical 

structure, such as rectangles or ellipsoids. Now, each chromosome in the initial population of 

HART starts from an initial population of ART networks, whose chromosome contains a mixture 

of rectangles and ellipsoids. Each member of this initial population chose the rectangles and 

categories contained in its chromosome randomly from the population of rectangles and 

categories included in the HART container from HART‟s training phase. It is important; to also 

mention that in the geometry selection phase (or genetic phase) HART is called upon to calculate 

its output for each input pattern in the validation data, i.e., HART is called upon to operate in the 

performance mode. The steps that HART is going through to produce an output label for an input 



 

 

 

pattern presented at its input during HART‟ performance mode are included below.  

The HART architecture, in its performance phase, consists of three main layers. These are: the 

input layer ( aU1 ), the category representation layer ( aU 2 ), and the output layer ( bU 2 ). The input 

layer of HART has aM2  nodes, nodes numbered 1 through aM  are connected to all the nodes in 

aU 2  layer that represent a FAM category, while only the nodes  1 to aM  are connected to those 

categories in the aU 2  layer that represent an EAM category (remember that EAM does not 

require complement encoding). 

During the performance phase, a is fed to aU1  , so it occupies the first aM nodes of aU1 and its 

complement coded version, I , occupies the  aM2  nodes of aU1 .   Layer aU 2  in HART 

represents all the categories that the HART network possesses, and hence the name category 

representation layer. This layer could have all the nodes as FAM categories, as EAM categories 

or as a mixture of both (these nodes represent categories that were randomly chosen from the 

mixture of FAM/EAM categories stored in the FAM/EAM container of HART‟s architecture, at 

the end of its training phase). The nodes in the category representation layer are connected to the 

nodes in the aU1  layer as shown in Figure 3. Finally, the output layer (layer bU 2 ) is the layer that 

produces the outputs of the network.  Every node in the output layer of HART represents one of 

the labels of the pattern recognition task. The index k ( )1 bNk  designates a generic node in

bU 2 ; bN represents the highest index needed to represent all the labels of the pattern classification 

task at hand.  

A. The Performance Phase of HART 

This phase is similar to those of a FAM or an EAM. The process can be summarized in the 

following steps: 

1. Present an input pattern (from the validation or test set) to the HART network 

2.  Calculate the CCF function, corresponding to this input pattern, for all the nodes in the aU 2  

layer according to the following equations: 
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3. Check the label of this node J. This will be the predicted label of the HART network for this 

input pattern.  

4. If more patterns are still in the list (validation or test set) present the next input pattern to the 

HART network. Otherwise, the performance phase is completed. 

B. Geometry Selection Phase (Genetic Phase) of HART 

 As it was the case for GFAM and GEAM we start with an initial population of sizePop  

HARTs that we evolve. The GA parameters used for the evolution of FAM and EAM networks 

are also used for HART networks with some additions. This process follows the following steps: 

Step 1: The process starts by creating sizePop chromosomes from the FAM and EAM networks. 

To eliminate any advantage of a FAM over an EAM network, we extract all the categories from 

all networks into a group of categories. We then populate each chromosome in the generation 

with randomly selected categories up to a random length (# of categories). At this stage all one-



 

 

 

point categories are eliminated.  As shown in figure 4, a chromosome is composed of a number 

of categories. The categories can be either FAM‟s or EAM‟s. FAM categories encode vectors u  

and v (end points), an integer l for the label, and an integer t for the type of the category, while 

EAM categories encode vectors m (center) and d (direction), l represent the label, r encodes the 

radius,   encodes the axis ratio and t type.  

We denote the category of a trained HART network with index p )1( sizePopp   by )( pa

jw , 

where ))((),(()()( , c

jj

FAMa

j

a

j pppp vuww   or ),,()()( ,

jjj

EAMa

j

a

j rpp dmww   and the label 

of this category by )( pl j  for )(1 pNj a .  

Step 2: Evolve the chromosomes of the current generation by executing the following sub-steps: 

Sub-step 2a: Calculate fitness by converting each chromosome into a HART network, feeding 

into it the validation set and calculating the Percentage of Correct Classification )( pPCC

exhibited by each network p, if this network possesses )( pNa categories, the fitness is calculated 

according to equation (1). 
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where, minCat and maxCat are the minimum and maximum number of categories that a HART 

network is allowed to have, and  is a small positive number.  

Sub-step 2b: Initialize an empty generation (referred to as temporary generation). 

Sub-step 2c: Move the best bestNC (user defined) chromosomes from the current generation and 

copies them to the temporary generation. 

Sub-step 2d: The remaining bestsize NCPop   chromosomes in the temporary generation are 

created by crossing over two parents from the current generation. Using the tournament selection 

method, two chromosomes are chosen say pp , , two random numbers nn , are generated from 

the index sets )}(...,,2,1{ pNa and )}(...,,2,1{ pNa
 , and the cross over is curried over as shown 

in figure 5.  

Sub-step 2e: Apply the addCat operator to add a new category to every chromosome created in 

step 2d with a user defined probability )( addCatP . With a 0.5 probability the new category is 

chosen to be a FAM or an EAM category. All the fields of the category are then filled randomly. 

If maxCat
 
is exceeded no addition is done.

  
 

Sub-step 2f: Apply the delCat  operator to remove one of the categories of every chromosome 

created in step 2e with a user defined
 
probability

 
)( delCatP . If minCat  is crossed, no removal 

takes place. 

Sub-Step 2g: Mutate every chromosome created by step 2f as follows: with a user defined 

probability )(mutP  every category is mutated. If a FAM category is chosen, with 50% chance 

either u  or v  is mutated, every element of this vector is mutated by adding to it a small number 

drawn from a Gaussian distribution with 0 mean and 0.01 standard deviation . On the other hand, 

an EAM category‟s center m  or direction d  is mutated in a similar fashion as above.  

Step 3: If evolution has reached the maximum number maxGen of iterations, then calculate the 

performance of the best-Fitness HART network on the test set and report classification accuracy 

and number of categories that this Best-Fitness HART network possesses. If the maximum 

number of iterations has not been reached yet, go to step 2 to evolve one more population.  



 

 

 

III. HART PERFORMANCE 

To examine the performance of HART we performed a number of experiments on real and 

simulated datasets. The collections of simulated and real datasets are depicted in Table 1. The 

legend of Table 1 explains briefly the simulated datasets, while the real datasets were extracted 

from the UCI repository.  

 

In all the experiments conducted with the aforementioned databases we had at our disposal a 

training set (used to design the trained ART network), a validation set (used to optimize the 

trained ART network), and a test set used to assess the performance of the optimized trained ART 

network.  

A.  Parameter Settings 

We used the same default set of parameters used for GFAM to run all the experiments of 

HART with one modification, and the results were excellent. In HART„s case we avoided the 

experimentation (applied to GFAM) to choose good default values for the GA parameters. 

Hence, HART is produced by first initializing a population of 20 trained FAM and EAM 

networks (they were trained with different values of the baseline vigilance parameter and 

different orders of training pattern presentations), and by evolving them for 500 generations. In 

particular, the GA parameters used for the creation of HART were: min

a = 0.1, max

a = 0.75, a

=0.1, sizePop = 20, maxGen = 500, bestNC  = 3,
 minCat = 1, maxCat = 300,

 
)( addCatP  =0.1,

)( delCatP =0.1, )(mutP = 1/Na. HART is the network that attains the highest value of the fitness 

function at generation 500 of the evolutionary process. 

B. Experimental Results and Comparisons of HART with other ART and Genetic ART 

Networks  

After running HART on the datasets in Table 1, we produce the accuracy and size of the 

HART network that attained the highest value of the fitness function at the last generation of the 

evolutionary process. Table 2 lists the accuracy and the size of this HART network as well as the 

accuracy and the size of other ART and genetic ART architectures for the same dataset. 

In Table 2 we are comparing HART‟s performance with the performance of the following 

networks: ssFAM [2],  ssEAM [5], GFAM [3] and GEAM [4]. We chose these networks for a 

reason. Each one of these ART networks at the time of their introduction into the literature 

emphasized that they were addressing the category proliferation problem in ART. More details 

about the specifics of each one of these networks can be found in their associated references. For 

the purposes of this paper it suffices to know that ssEAM covers the space of the input patterns 

with ellipsoids. Furthermore ssFAM, and ssEAM allow a category (hyper-rectangle or ellipsoid 

or hyper-dimensional) to encode patterns of different labels provided that the plurality label of a 

category exceeds a certain, user-specified, threshold. Finally, GFAM and GEAM use a genetic 

algorithm similar to the one used in this work to evolve FAM and EAM networks respectively. 

In Table 2, the first column is the index of the dataset used in the figures. Column 2 is the  

name of the database that we are experimenting with, while columns 3-7 of Table 2 contain the 

performance of the designated networks. The HART performance reported corresponds to the 

accuracy on the test set and the number of categories created by the FAM/EAM network that 

attained the highest value of the fitness function at the last generation of the evolutionary 

process; this is the case for the GFAM and GEAM as well. For the other ART networks the 

reported performance is the performance of the ART network that achieves the highest value of 



 

 

 

the fitness function amongst the trained ART networks with different network parameter settings 

(e.g., in ssFAM the best network was determined after training more than 20000 different 

ssFAM networks for every single dataset each of which with different values of the choice 

parameter, vigilance parameter, order of pattern presentation, and amount of mixture of labels 

allowed within a category).  

 

 The performance of HART, as it is evidenced by the results in Table 2, is verified by some 

obvious observations. For instance, HART‟s performance on datasets 1-12 (Gaussian datasets of 

known amount of overlap) is nearly optimal; for example the best performance on the G6c-40 

problem (6 class Gaussian dataset of 40% overlap) is a classifier with 6 categories and 60% 

correct classification, and HART is a classifier with 6 categories and 59.83% of correct 

classification. Similarly, in the CINS problem the optimal classifier would require 2 categories 

and attain a 100% correct classification; HART is a 2 category classifier exhibiting a 99.37% of 

correct classification. Finally, all of the real problems reported here, MOD-IRIS, ABALONE and 

PAGE, also gave very good results 94.88%, 64.1% and 95.73% of correct classification 

respectively, by creating 2,3 and 3 categories  respectively only.     

 

The performance of HART‟s was compared with the performance of the following networks: 

ssFAM,  ssEAM, GFAM, GEAM, GGAM, ssGAM[6], and safe micro-ARTMAP (Table 2 

shows the results of the first four networks because of the lack of space only, moreover GFAM 

outperformed those networks on the same datasets see [3]).  

According to the results in Table 2, in all instances (except minor exceptions) the accuracy of 

HART (generalization performance) is higher than the accuracy of the other ART network 

(where ART is ssEAM, ssEAM). According to the results in Table 2, in all instances (with no 

exceptions) the size of GGAM is either equal or smaller than the size of the other ART networks 

(where ART is ssEAM, ssEAM), sometimes even by a factor of 15. For example, the PCC of 

HART is 12% better than that of ssFAM for dataset 21 while its size is almost half.  

From a quick look at table 2, it is clear that in the Gaussian databases all of the genetic ART 

modules performed very well with minor differences. On the structure within structure databases 

however, the performance was different. Table 2 shows that GFAM gave better accuracy on 

databases 14, 15, 18 and 21 while GEAM gave better accuracy on databases 13, 16, 17, 19 and 

20. If we investigate further, we find that GFAM gave better accuracy when the problem didn‟t 

have a circle in it, on the other hand, GEAM gave better results on those problems that have 

circles in them, this was the reason behind the development of HART.  

HART performance compares very well to the best of the two on all problems, for example, 

HART gave 99.37% and 99.3% for databases 16 and 17 respectively with only 2 categories in 

each case, this performance is very close to that of GEAM on the same dataset of 99.99% with 2 

categories, on the other hand, HART gave 98.5% accuracy on database 15 with only 7 

categories, while GFAM gave 97.2% with 7 categories. The bottom line is HART performed 

very well on all the datasets described above. 

It is worth pointing out that the better performance of HART is attained with similar time to 

GFAM or GEAM and reduced computations compared with the computations needed by the 

alternate networks (ssEAM, ssEAM, ssGAM, safe micro-ARTMAP[7]) as shown in [4]. 



 

 

 

IV. SUMMARY AND CONCLUSIONS 

HART is a novel approach of mixing different types of ART categories to obtain better 

coverage of the input space. HART used two types of categories, namely: FAM categories and 

EAM categories to enhance its performance.  

HART used genetic algorithms to solve the category proliferation problem in ART. This 

method relies on evolving a population of trained ART networks, and more specifically 

Ellipsoidal ARTMAP (EAM) and Fuzzy ARTMAP (FAM) neural networks. The evolution of 

trained FAM‟s and EAM‟s creates an ART network, referred to as HART.  

In [3,4] we defined a methodology of evolving trained FAM networks, resulting in GFAM. 

This methodology was also applied successfully for the evolution of FAM/EAM networks, 

resulting in HART. In [3,4] we experimented with a number of datasets that helped us identify 

good default parameter settings for the evolution of FAM The same parameters and settings used 

for the evolution of FAM networks (GFAM) were also used for the evolution of FAM and EAM 

networks (HART).  

Experiments with HART indicate that HART is superior to a number of other ART 

techniques (ssEAM, ssEAM, ssGAM, safe micro-ARTMAP) that have been introduced into the 

literature to address the category proliferation problem in ART. More specifically, HART gave a 

better generalization performance (in almost all problems tested) and a smaller size network (in 

all problems tested), compared to these other ART techniques. What is also worth mentioning is 

that HART outperformed those other ART techniques by requiring only a fraction of the 

computations needed by these other networks. 

Based on a simple comparison, HART also outperformed the other genetic ART modules we 

introduced in [3,4] on many databases and gave almost as good results on the rest of the 

databases. 
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Figure 1: A hypothetical diagram shows what might be the difference between using a non-suitable module (a) and using a suitable one (b). 
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Figure 2: HART During the training phase 
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Figure 3: HART During the performance phase 
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Figure 4: HART Chromosome structure 
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Figure 5: Crossover implementation 
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Figure 6: Performance and Size comparison of HART vs GFAM 
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Figure 7:Performance and Size comparison of HART vs GEAM 
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Figure 8: Performance and Size comparison of HART vs GGAM 

 

 

Tables 
Table 1: Databases used in the GFAM experiments, where G*c_** represent a Gaussian dataset with * classes and ** overlap, 16-24 represent a 

shape within a shape dataset where Ci is a circle and Sq is a square;  in the last two datasets WN means with noise (10%) 

 
Database Name 

# 
Numerical 

Attributes 

# Classes  
% Major 

Class  

Expected 

Accuracy  

1 G2c-05 2 2 1/2 0.95 

2 G2c-15 2 2 1/2 0.85 

3 G2c-25 2 2 1/2 0.75 

4 G2c-40 2 2 1/2 0.6 

5 G4c-05 2 4 1/4 0.95 

6 G4c-15 2 4 1/4 0.85 

7 G4c-25 2 4 1/4 0.75 

8 G4c-40 2 4 1/4 0.6 

9 G6c-05 2 6 1/6 0.95 

10 G6c-15 2 6 1/6 0.85 

11 G6c-25 2 6 1/6 0.75 

12 G6c-40 2 6 1/6 0.6 

13 MOD-IRIS 2 2 1/2 0.95 

14 ABALONE 7 3 1/3 0.6 

15 PAGE 10 5 0.832 0.95 

16 4Ci/Sq 2 5 0.2 1 

17 4Sq/Sq 2 5 0.2 1 

HHAARRTT  HHAARRTT  

HHAARRTT  HHAARRTT  



 

 

 

18 7Sq 2 7 1/7 1 

19 1Ci/Sq 2 2 0.5 1 

20 1Ci/Sq/0.3:0.7 2 2 0.7 1 

20 5Ci/Sq 2 6 1/6 1 

21 2Ci/Sq/5:25:70 2 3 0.7 1 

22 2Ci/Sq/20:30:50 2 3 0.5 1 

23 7SqWN 2 6 1/7 0.9 

24 5Ci/SqWN 2 6 1//6 0.9 

 
Table 2: HART performance and size compared to other genetic ART architectures (ss is the Semi-Supervised version) 

# 
Database 

Name 

 
HART 

 

ssFAM ssEAM GFAM GEAM 

1 G2c-05 95.2 2 94.90 2 94.94 2 95.36 2 95 2 

2 G2c-15 85.22 2 84.80 3 85.20 2 85.30 2 85.12 2 

3 G2c-25 75.16 2 74.60 2 74.50 2 75.08 2 74.74 2 

4 G2c-40 61.24 2 61.34 3 60.98 2 61.38 2 61.6 2 

5 G4c-05 94.9 4 94.10 7 94.14 4 95.02 4 94.8 4 

6 G4c-15 84.6 4 81.40 11 83.20 4 84.46 4 84.22 4 

7 G4c-25 75.18 4 70.80 9 72.72 4 75.20 4 73.7 4 

8 G4c-40 59.96 4 58.48 14 55.62 13 60.60 4 59.5 4 

9 G6c-05 94.7 6 91.42 11 93.80 7 94.68 6 94.12 6 

10 G6c-15 84.85 6 81.11 7 81.80 6 84.71 6 84.03 6 

11 G6c-25 73.90 6 69.62 15 71.10 7 73.90 6 73.04 6 

12 G6c-40 59.83 6 56.35 17 54.21 17 59.19 6 59.35 6 

13 4Ci/Sq 98.16 7 87.23 18 94.68 5 96.32 8 97.4 7 

14 4Sq/Sq 97.9 8 97.24 13 88.89 5 97.12 9 92.76 6 

15 7Sq 98.5 7 97.26 16 88.5 19 97.2 7 93.46 13 

16 1Ci/Sq 99.37 2 92.97 8 97.02 8 97.2 8 99.9 2 

17 
1Ci/Sq/ 

0.3:0.7 
99.3 2 93.21 8 97.13 8 97.8 8 99.9 2 

18 5Ci/Sq 88.87 30 81.95 52 78.68 87 92 50 83.03 13 

19 
2Ci/Sq/ 

20:30:50 
99.2 3 90.24 12 97.01 3 97.87 3 96.86 3 

20 7SqWN 89.3 7 80.15 24 75.23 32 87.3 7 90.82 10 

21 5Ci/SqWN 80.67 30 68.39 57 69.2 136 81.97 50 81 50 

22 MOD-IRIS 94.88 2 93.41 8 94.54 2 95.31 2 94.81 2 

23 ABALONE 64.1 3 59.52 6 56.80 7 58.73 2 61.00 3 

24 PAGE 95.73 3 90.63 3 89.54 3 95.59 3 94.12 3 

 


