
Paper ID #36052

Identifying Factors that Enable Pinpointing At-Risk Students in a
Programming Course

Dr. Haroon Malik, Marshall University

Dr. Malik is an Associate Professor at the Department of Computer Sciences and Electrical Engineering,
Marshall University, WV, USA.

Dr. David A Dampier, Marshall University

Dr. Dave Dampier is Interim Dean of the College of Engineering and Computer Sciences and Professor in
the Department of Computer Sciences and Electrical Engineering at Marshall University. In that position,
he serves as the university lead for engineering and computer sciences. Prior to joining Marshall, Dr.
Dampier served as Professor and Chair of the Department of Information Systems and Cyber Security
at U.T. San Antonio, and Director of the Distributed Analytics and Security Institute at Mississippi State
University. Prior to joining MSU, Dr. Dampier spent 20 years active duty as an Army Automation Officer.
He has a B.S. Degree in Mathematics from the University of Texas at El Paso, and M.S. and Ph.D. degrees
in Computer Science from the Naval Postgraduate School. His research interests are in Cyber Security,
Digital Forensics and Software Engineering.

c©American Society for Engineering Education, 2022

Proceedings of the 2022 ASEE North Central Section Conference
Copyright © 2022, American Society for Engineering Education 1

Identifying Factors that Enable Pinpointing At-Risk Students in a
Programming Course

Haroon Malik, David A. Dampier
College of Engineering and Computer Sciences

Marshall University
Huntington, WV 25755

Email: malikh@marshall.edu; dampierd@marshall.edu

I. INTRODUCTION
Many undergraduate students in the USA come from a wide variety of backgrounds and
disciplines and approach the study of computing. Given its importance, it is disappointing to
realize that the teaching of programming (perhaps, more accurately, the learning of
programming) is a perennial problem. Experienced instructors are all too familiar with the
struggles of new students as they attempt to come to terms with this most fundamental area of
expertise. Many instructors will have seen students choose course options or change degree
programs to avoid more programming. Most will have faced final-year students approaching a
project or dissertation determined to avoid undertaking any programming at whatever cost.
Problem Statement⸺ Much of the existing research in the computing education literature
focuses on new and exciting ways to teach programming and model student performance to
customize the learning environment, especially in online programming courses. A few works
have been dedicated to utilizing machine learning to predict factors that influence student
success in programming. However, the works: (a) only report result for the 'sweet-spot' factors
along one or two dimensions (e.g., student educational history⸺ quizzes, assignment, and
exams; demographic features⸺ sex, age, marital status, state) [1-2], (b) are carried out with
diverse and fragmented factors using dissimilar machine learners making their results difficult to
compare [3]. Towards this end, the paper exploits all the attributes (i.e., sixty-seven attributes)
over ten dimensions (listed in Table 1) using five machine learning algorithms. The Objective of
the work-in-progress (WIP) is two-fold: (i)To leverage machine learning to identify the factors
that are the best predictor of an at-risk student(s) in a programming course and (ii) Compare the
performance of the machine learner(s) ⸺ How early in the course at-risk students can be
pinpointed.

II. METHODOLOGY
The work-in-progress (WIP) lists and details our methodology as a sequence of steps (via a
study) to tackle the problem statement. Three programming languages listed in Table 2 and the
data set consisting of 820 first-year students is used for the study. We model our study as a
classification problem where a change to the attributes listed in Table 1 can fall into one of the
two classes: Pass (YES) or not Failed (NO). There exist several machine learning techniques that
can solve this classification problem. However, we use only previous researchers’ techniques for
similar efforts to make the result(s) comparable. Due to space constraints, the WIP does report
the initial results obtained from all the machine learners listed in TABLE 4 but only explains the
working of machine learners that performed the best, i.e., Random Forest. We also choose

mailto:malikh@marshall.edu
mailto:dampierd@marshall.edu

2

Random Forests for the studs since (a) Random Forests are based on decision trees and produce
explainable models. These explainable models are essential in helping understand the student's
pass and fail phenomena and to find out the important attributes in determining the likelihood of
student's poor Performance with programming courses in specific and STEM courses in general.
(b) The Random Forests algorithm outperforms the basic decision tree and other advanced
machine-learning algorithms in prediction accuracy. (c) Moreover, the Random Forests is more
resistant to noise in the data. This is a significant advantage.

TABLE 2. SUMMARY OF STUDIED PROGRAMMING
LANGUAGES

TABLE 3. CONFUSION MATRIX

No. Languages Types Duration Students
 1 Python Scripting 4 Years 388
2 Java Object-oriented 3 Years 272
3 C++ Functional 3 Years 160

True
Class

Classified As
PASS FAIL

PASS a b
FAIL c d

Measuring Performance of the Prediction Model⸺To measure the accuracy of the prediction
produced by the Random Forests algorithm, we calculate the overall YES, and NO
misclassification rates. We desire the lowest overall and per-class misclassification rates. The
rates are defined using the confusion matrix, shown in Table 3. The YES and NO represents the
two classes: Failed the Programing Course and Passed the course. “True Class” column
represents the

actual number of students pass/failed whereas a, b, c & d under “Classified As” column represent
arbitrary values of correctly or misclassified instances by predictor (in our case Random Forest)
against true class. For example, suppose there are 100 instances of an attribute for which student
failure has been reported (True class: YES). In that case, the classifier may correctly predict 90
instances (a=90) and may predict ten incorrectly classified instances (b=10) for that class. We
further explain how we derived the misclassification rate below: ▬YES misclassification rate: It

TABLE 1. ATTRIBUTES CHARACTERIZING STUDENT SUCCESS IN PROGRAMMING COURSE(S)
No. Dimensions Name of the Attributes No. of Attributes
1 Sociodemographic gender, age, birth year, previous education place, citizen status, hometown 9

2 Life-Style drink, smoke, play, gym, swim, lazy, travel, current health, hobby, study time, mood, sleep
time, motivation 14

3 Family income level, marital status, number of sibling, support, father education, mother education 6
4 Peer-related classmates, group study, friends 5
5 Subject structure, grading, policy, textbook, midterm-grade, assignment, quiz, project, attendance 9
6 Institutional agent faculty, advisor, staff, teaching experience 5
7 Social-culture class participation, friends, group player 3
8 Education high school, GPA, entrance exam, scholarship, major, previous programming experience 6
9 Mobility Transportation, travel time to campus, travel time to mall. 3

10 Learning
Approach

action learning, collaborative learning, creative problem solving, independent learning,
peer-assisted learning, problem-based learning, inquiry-based learning 7

TABLE 4. PERFORMANCE OF THE PREDICTION MODELS
Machine Learners Four Weeks Eight Weeks Twelve Weeks

Perc Rec F-M Perc Rec F-M Perc Rec F-M
1. C-4.5 0.50 0.90 0.55 0.60 0.58 0.59 0.75 0.72 0.73
2. Random-Forest 0.80 0.80 0.80 0.95 0.96 0.95 0.98 0.97 0.97
3. SVM 0.60 0.90 0.72 0.85 0.75 0.80 0.91 0.88 0.89
4. Liner-Reg 0.50 0.80 0.62 0.70 0.69 0.69 0.75 0.62 0.68
5. Logistic- Reg 0.60 0.89 0.77 0.75 0.72 0.73 0.80 0.80 0.80
6. Naïve Bayes 0.61 0.88 0.71 0.80 1.00 0.89 0.92 0.92 0.92

Average 0.60 0.86 0.69 0.77 0.78 0.77 0.85 0.81 0.83

 FIGURE 1. TOP ATTRIBUTES

0

20

40

60

80

100

Assignment Quiz Scholarship Group
Study

Sleep Time

A
ttr

ib
ut

e
 W

ei
gh

t

Python Java C++

3

is defined as: b/(a+b); ▬NO misclassifications rate: It is defined as: c/(c+d); ▬ Overall
misclassification rate: This captures the overall performance of the forests for both classes (YES
and NO). It is defined as: (b+c)/(a+b+c+d).

III. INTERMEDIATE AND INITIAL RESULTS
 The sections report the intermediatory and initials results of applying our methodology on three
programming languages (Python, Java and C++) listed in Table1. Computer Science students in
the college took Python and Java. In contrast, C++ is a mandatory course for both Electrical
Engineering (EE) and Mechanical Engineering (ME) students. The Electrical Engineering, Civil
 Engineering and Mechanical Engineering students can take Python and Java as elective courses.
Therefore, many of the students involved in the study took more than one programming course
during the four years. Table 4 lists the performance of the prediction models using the classical
Precision, Recall and F-measures metrics. Being WIP, we report our study's high-level
results/findings as: (i)The RF predicted a student failing a programming course with an overall
precision of 92 %. (ii) The model identified the 'Assignment’ as the most critical factor in
determining/predicting student success's likelihood in ALL programming courses. (iii)
Assignment, Quiz, and Scholarship attributes are deemed most important in
determining/predicting a student's success in Python, C++ and Java. (iv) Python, Java and C++
share the same top three attributes based on their weight (importance), as shown in Figure 1. (v)
Even the basic learner C-4.5 was able to achieve an accuracy of 0.5 (i.e.,50%) using the
historical data spanning over 30 days. We employed the basic C-4.5 as a comparative base for
our superior machine learners. In contrast, the Random Forest achieved an exception precision
and recall of 80%.

IV. CONCLUSIONS AND LIMITATIONS
The WIP proposes a machine learner to predict the factors that affect the student performance in
a programming course. More in-depth analysis of the results is required to infer causalities. For
example, a student doing well with quizzes, in general, should overall do well in a programming
course. However, current findings neither synthesize any rules to infer causalities nor help to
understand the reasoning behind them, i.e., it is apparent a student performing well in a Quiz is
naturally to perform well in the course. Nevertheless, there were many instances in our study in
which students did perform initially well in the courses and poorly later. Similarly, many
students performed well in the quizzes but either did not turn in their assignments (7%) or did
not score good marks (Grades) for the assignment (15%). Interestingly, students who performed
poorly on the programming course (78%) did take more than seven hours of daily sleep.
Therefore, as part of our continuing work, a more detailed study will be conducted to infer the
casualties and rationale being "WHY" the top attributes identified by the model(s) are the best
predictor of student performance.

REFERENCES
[1]. T. Jenkins, “On the Difficulty of Learning to Program,” Proceedings of the 3rd Annual Conference of the LTSN Centre for Information and

Computer Sciences, Loughborough, UK, pp. 53-58, 2002.
[2]. Wiedenbeck S, LaBelle D, Kain V N R, “Factors Affecting Course Outcomes in Introductory Programming,” Proceedings of the 16th

Workshop on Psychology of Programming, pp. 97-109, 2004.
[3]. Hu Xiaohui, “Improving teaching in Computer Programming by adopting student-centred learning strategies”, The China Papers, pp. 47 –

48, November, 2009

	I. INTRODUCTION
	II. METHODOLOGY
	III. INTERMEDIATE AND INITIAL RESULTS
	IV. CONCLUSIONS AND LIMITATIONS
	References

