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I. INTRODUCTION 
Many undergraduate students in the USA come from a wide variety of backgrounds and 
disciplines and approach the study of computing. Given its importance, it is disappointing to 
realize that the teaching of programming (perhaps, more accurately, the learning of 
programming) is a perennial problem. Experienced instructors are all too familiar with the 
struggles of new students as they attempt to come to terms with this most fundamental area of 
expertise. Many instructors will have seen students choose course options or change degree 
programs to avoid more programming. Most will have faced final-year students approaching a 
project or dissertation determined to avoid undertaking any programming at whatever cost. 
Problem Statement⸺ Much of the existing research in the computing education literature 
focuses on new and exciting ways to teach programming and model student performance to 
customize the learning environment, especially in online programming courses. A few works 
have been dedicated to utilizing machine learning to predict factors that influence student 
success in programming. However, the works: (a) only report result for the 'sweet-spot' factors 
along one or two dimensions (e.g., student educational history⸺ quizzes, assignment, and 
exams; demographic features⸺ sex, age, marital status, state) [1-2], (b) are carried out with 
diverse and fragmented factors using dissimilar machine learners making their results difficult to 
compare [3]. Towards this end, the paper exploits all the attributes (i.e., sixty-seven attributes) 
over ten dimensions (listed in Table 1) using five machine learning algorithms. The Objective of 
the work-in-progress (WIP) is two-fold: (i)To leverage machine learning to identify the factors 
that are the best predictor of an at-risk student(s) in a programming course and (ii) Compare the 
performance of the machine learner(s) ⸺ How early in the course at-risk students can be 
pinpointed. 

II. METHODOLOGY 
The work-in-progress (WIP) lists and details our methodology as a sequence of steps (via a 
study) to tackle the problem statement. Three programming languages listed in Table 2 and the 
data set consisting of 820 first-year students is used for the study. We model our study as a 
classification problem where a change to the attributes listed in Table 1 can fall into one of the 
two classes: Pass (YES) or not Failed (NO). There exist several machine learning techniques that 
can solve this classification problem. However, we use only previous researchers’ techniques for 
similar efforts to make the result(s) comparable. Due to space constraints, the WIP does report 
the initial results obtained from all the machine learners listed in TABLE 4 but only explains the 
working of machine learners that performed the best, i.e., Random Forest. We also choose  
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Random Forests for the studs since (a) Random Forests are based on decision trees and produce 
explainable models. These explainable models are essential in helping understand the student's 
pass and fail phenomena and to find out the important attributes in determining the likelihood of 
student's poor Performance with programming courses in specific and STEM courses in general. 
(b) The Random Forests algorithm outperforms the basic decision tree and other advanced 
machine-learning algorithms in prediction accuracy. (c) Moreover, the Random Forests is more 
resistant to noise in the data. This is a significant advantage.  

TABLE 2. SUMMARY OF STUDIED PROGRAMMING 
LANGUAGES 

TABLE 3. CONFUSION MATRIX 

No. Languages Types Duration Students 
  1 Python Scripting 4 Years 388 
2 Java Object-oriented 3 Years 272 
3 C++ Functional 3 Years 160 

 

 

True 
Class 

Classified As 
PASS FAIL 

PASS a b 
FAIL c d 

 

Measuring Performance of the Prediction Model⸺To measure the accuracy of the prediction 
produced by the Random Forests algorithm, we calculate the overall YES, and NO 
misclassification rates. We desire the lowest overall and per-class misclassification rates. The 
rates are defined using the confusion matrix, shown in Table 3. The YES and NO represents the 
two classes: Failed the Programing Course and Passed the course. “True Class” column 
represents the  

actual number of students pass/failed whereas a, b, c & d under “Classified As” column represent 
arbitrary values of correctly or misclassified instances by predictor (in our case Random Forest) 
against true class. For example, suppose there are 100 instances of an attribute for which student 
failure has been reported (True class: YES). In that case, the classifier may correctly predict 90 
instances (a=90) and may predict ten incorrectly classified instances (b=10) for that class. We 
further explain how we derived the misclassification rate below: ▬YES misclassification rate: It 

TABLE 1. ATTRIBUTES CHARACTERIZING STUDENT SUCCESS IN  PROGRAMMING COURSE(S) 
No. Dimensions Name of the Attributes No. of Attributes 
1 Sociodemographic gender, age, birth year, previous education place, citizen status, hometown 9 

2 Life-Style drink, smoke, play, gym, swim, lazy, travel, current health, hobby, study time, mood, sleep 
time, motivation 14 

3 Family income level, marital status, number of sibling, support, father education, mother education 6 
4 Peer-related classmates, group study, friends 5 
5 Subject structure, grading, policy, textbook, midterm-grade, assignment, quiz, project, attendance 9 
6 Institutional agent faculty, advisor, staff, teaching experience 5 
7 Social-culture class participation, friends, group player 3 
8 Education high school, GPA,  entrance exam, scholarship, major, previous programming experience 6 
9 Mobility Transportation, travel time to campus, travel time to mall. 3 

10 Learning 
Approach 

action learning, collaborative learning, creative problem solving, independent learning, 
peer-assisted learning, problem-based learning, inquiry-based learning 7 

TABLE 4. PERFORMANCE OF THE PREDICTION MODELS  
Machine Learners Four Weeks Eight Weeks Twelve Weeks 

Perc Rec F-M Perc Rec F-M Perc Rec F-M 
1. C-4.5 0.50 0.90 0.55 0.60 0.58 0.59 0.75 0.72 0.73 
2. Random-Forest 0.80 0.80 0.80 0.95 0.96 0.95 0.98 0.97 0.97 
3. SVM 0.60 0.90 0.72 0.85 0.75 0.80 0.91 0.88 0.89 
4. Liner-Reg 0.50 0.80 0.62 0.70 0.69 0.69 0.75 0.62 0.68 
5. Logistic- Reg 0.60 0.89 0.77 0.75 0.72 0.73 0.80 0.80 0.80 
6. Naïve Bayes 0.61 0.88 0.71 0.80 1.00 0.89 0.92 0.92 0.92 

Average 0.60 0.86 0.69 0.77 0.78 0.77 0.85 0.81 0.83 
 

      FIGURE 1. TOP ATTRIBUTES 
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is defined as: b/(a+b); ▬NO misclassifications rate: It is defined as: c/(c+d); ▬ Overall 
misclassification rate: This captures the overall performance of the forests for both classes (YES 
and NO). It is defined as: (b+c)/(a+b+c+d). 

III.  INTERMEDIATE AND INITIAL RESULTS  
 The sections report the intermediatory and initials results of applying our methodology on three 
programming languages (Python, Java and C++) listed in Table1. Computer Science students in 
the college took Python and Java. In contrast, C++ is a mandatory course for both Electrical 
Engineering (EE) and Mechanical Engineering (ME) students. The Electrical Engineering, Civil  
 Engineering and Mechanical Engineering students can take Python and Java as elective courses. 
Therefore, many of the students involved in the study took more than one programming course 
during the four years. Table 4 lists the performance of the prediction models using the classical 
Precision, Recall and F-measures metrics. Being WIP, we report our study's high-level 
results/findings as: (i)The RF predicted a student failing a programming course with an overall 
precision of 92 %. (ii) The model identified the 'Assignment’ as the most critical factor in 
determining/predicting student success's likelihood in ALL programming courses. (iii) 
Assignment, Quiz, and Scholarship attributes are deemed most important in 
determining/predicting a student's success in Python, C++ and Java. (iv) Python, Java and C++ 
share the same top three attributes based on their weight (importance), as shown in Figure 1. (v) 
Even the basic learner C-4.5 was able to achieve an accuracy of 0.5 (i.e.,50% ) using the 
historical data spanning over 30 days. We employed the basic C-4.5 as a comparative base for 
our superior machine learners. In contrast, the Random Forest achieved an exception precision 
and recall of 80%. 

IV. CONCLUSIONS AND LIMITATIONS 
The WIP proposes a machine learner to predict the factors that affect the student performance in 
a programming course. More in-depth analysis of the results is required to infer causalities. For 
example, a student doing well with quizzes, in general,  should overall do well in a programming 
course. However, current findings neither synthesize any rules to infer causalities nor help to 
understand the reasoning behind them, i.e., it is apparent a student performing well in a Quiz is 
naturally to perform well in the course. Nevertheless, there were many instances in our study in 
which students did perform initially well in the courses and poorly later. Similarly, many 
students performed well in the quizzes but either did not turn in their assignments (7%) or did 
not score good marks (Grades) for the assignment (15%). Interestingly, students who performed 
poorly on the programming course (78%) did take more than seven hours of daily sleep. 
Therefore, as part of our continuing work, a more detailed study will be conducted to infer the 
casualties and rationale being "WHY" the top attributes identified by the model(s) are the best 
predictor of student performance.  
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