Impact of Multi-Cultural Dimensions on Multi-Modal Communication in Global Teamwork

Renate Fruchter* and Alicia Townsend**

*Director of Project Based Learning Laboratory (PBL Lab)
Department of Civil and Environmental Engineering, Stanford University
Stanford, CA 94305-4020
fruchter@ce.stanford.edu

**Graduate Student, Learning Design and Technology Program, School of Education
Stanford University, Stanford, CA 94305
lishat@stanford.edu

Introduction

This paper presents an ongoing study that is at the intersection of three thrust areas – culture, information and collaboration technology, and distributed, cross-disciplinary project-based teamwork and learning. The focus is on the relationship between multi-cultural dimensions and communication channels in a rich multi-modal collaboration and information technology environment deployed in a cross-disciplinary, geographically distributed teamwork course organized by the PBL Lab, at Stanford. The study focuses on the cultural dimensions that characterize distributed Architecture, Engineering, Construction (A/E/C) cross-cultural teams work together to design a building using collaborative technologies. We aim to answer several questions.

- What are key cross-cultural dimensions to be considered in distributed teams?
- How do cultural dimensions and differences relate to preferences of communication channels? How does the usage of these tools differ from culture to culture and why?
What are the typical problems that arise when members of different cultures need to work together?
What types of tools and communication channels should be available to collaborate online?

The paper presents a framework and methodology for data collection and analysis of multicultural dimensions and initial observations made during the first phase of this ongoing study.

The Motivation in Practice

“The globalization of economic activity is perhaps the defining trend of our time. It is reshaping not only the grand, macro level aspects of economic life but the personal aspects as well, including where, when, how, and with whom we perform our daily work. At every level, from the personal to the team, corporate, enterprise, and far-flung joint venture, and in every corner of the globe, the new economic order is opening worlds of opportunity by battering down the old barriers and boundaries that divided us from one another and limited our possibilities for interaction, cooperation, and growth.”[1]

The global economy of today does provide a wealth of opportunity. Unfortunately, as the opportunities increase and economies become more interconnected, today’s workforce is being faced with a multitude of new challenges. Global companies create multinational teams. This means that workers must learn how to work in teams with individuals they may never meet in person. They have to build trust [6] share information, juggle time differences, and develop a cultural understanding of themselves and those they are working with. In order to survive an employee of these multinational corporations will first have to learn about their own culture in order to learn how to communicate across cultures. They will also have to be able to utilize the technology available in order facilitate the sharing of information and communication within these cross-cultural, decentralized teams.

There are many books out that give tips and trips on how to get along with people from different cultures such as Roger E. Axtell’s Do’s and Taboos Around the World or Terri Morrison, et al’s Kiss, Bow, or Shake Hands: How to Do Business in 60 Countries. These often categorize these tips into business concerns such as appointments, etiquette, negotiating, entertaining, and practical issues such as time differences and voltage concerns.

In his study Hall explained two key cultural dimensions: Time Value and High and Low Context [2]. Time value refers to how time is regarded within a culture. Is it important to be exactly on time? Or does estimating “that a job will be done by next week” mean that the expected due date should be within a month? High Context societies were defined as those societies in which much of the communication is implicit, personal relationships are of high importance versus a Low Context culture in which explicit verbal communication is highly valued. His fieldwork covered Navajo, Hopi, Spanish-American, European, Middle and Far Eastern societies. Hofstede’s [3] data was drawn from survey results that were held in 1968 and around 1972, from 40 countries, 116,000 questionnaires, and about 50,000 respondents.
who all work for the multinational computer corporation IBM. Hofstede proposed five cultural dimensions by which he categorized these 40 different countries: *Power Distance, Individualism versus Collectivism, Femininity versus Masculinity, Uncertainty Avoidance,* and *Long-Term Orientation.* *Power Distance* is defined as how individuals within a culture interact with superiors and inferiors. *Uncertainty avoidance* measures the extent to which individuals within a society wish to know what the future will be like, while a society that is long term oriented is concerned about the long-term goals of an organization. These studies focused mainly on face-to-face interactions between cultures and did not look at multicultural groups working cooperatively.

The Architecture/Engineering/Construction Education Testbed

The subjects for this study were the students participating in the 8th generation of the Computer Integrated Architecture/Engineering/Construction (A/E/C) 2000/2001 class organized by the PBL Lab at Stanford [7]. M.Sc. students from the three disciplines - Architecture, Engineering and Construction management - work in global A/E/C teams for two quarters to design a building according to the clients specifications. The M.Sc. students are assisted by the undergraduate apprentices and mentored by professionals working in their field of expertise. The A/E/C students are challenged to cross three chasms:

- **Discipline**, i.e., architecture, engineering, construction management.
- **Culture**, the students enrolled in AEC 2001 are from Asia, the United States, Latin America Eastern, and Western Europe. The common language for all was English, but for many English was their second language.
- **Time and Space distribution**, since each of the 12 A/E/C teams was distributed over at least two time zones, e.g., architect at UC Berkeley, structural engineer at Stanford, in the US, construction manager at TU Delft, Netherlands, and apprentice in Kyoto, Japan. The students of the 2000/2001 A/E/C generation came from the following universities: Stanford University, UC Berkeley, Georgia Tech, Kansas University in the US, Bauhaus University, Weimar, Germany, Fachhochschule Aargau and ETH Zurich, Switzerland, and TU Delft in Netherlands, Ljubljana Technical University, Ljubljana, Slovenia, from Europe, and Kyoto Stanford-Japan Center, Kyoto, Japan.

All the students have access to a wide spectrum of information and collaboration technologies that enabled them to work on their project around the clock. The collaboration technologies facilitated synchronous and asynchronous communication and collaboration, as well as information, knowledge, and building models capture, sharing, tracking and re-use. These technologies included: phone, email, MSN instant messenger, NetMeeting, a discussion forum called ThinkTank developed by the PBL Lab at Stanford to support asynchronous communication, RECALL [5] a tool that captures the discourse during brainstorming sessions synchronized with sketching that accompanies such discussions, PBL Shared Project Web Workspaces for each team [7].
Multi-Cultural Dimensions

All the A/E/C students meet face-to-face only once at the beginning of the course in January. It is during this time period that they divide up into cross-disciplinary A/E/C teams they will be working with and learn how to use the collaborative technologies that are available to them. Once they return to their own universities they are dependent upon this technology to communicate and share information and ideas in order to complete their project. The focus of this study was to observe where breakdowns occur within the collaborative process due to cultural differences and how those differences are related to the use of collaboration and information technology. Our hypotheses were that:

- Cultural attitudes about time will be reflected in how participants treat schedules and deadlines.
- Cultural values in relation to how one’s view of superiors or subordinates will be illustrated in what types of technologies participants choose to communicate with those not on a peer level.
- Need for context becomes evident whether or not participants prefer to use technologies. For instance, synchronous videoconferencing communication channel (e.g., NetMeeting), asynchronous Web-based communication channels (e.g., ThinkTank, RECALL developed by the PBL Lab) provide multi-modal forms of communication versus more text-based communications such as email. Context issues will also be illustrated in looking at how much information is shared by the participants. Low context cultures are used to centralized control of information and having limited access to this information.
- For those that English is their second language, asynchronous forms of communication will be preferred over synchronous forms. This would give them more time to compose what they are going to say.
- Cultural views towards individuals versus groups will be revealed in participants’ willingness to share information and thought processes. The importance of collaboration will also be revealed in how the groups decide to manage themselves and how they negotiate any decisions that need to be made.
- Any use of humor could either increase a sense of community within the team or painfully highlight the cultural differences. When and where the humor is used can strongly affect how it is received.

This study focused on five cultural dimensions related to global teamwork: language, information flow, context, power distance, and time value.
• **Language.** English was the common language used throughout the A/E/C project, therefore, many of the participants who had either recently immigrated to the United States or who lived in other countries were forced to communicate in a secondary language.

• **Information flow** was defined as how many facts, designs, and other files related to their projects were shared by various team members.

• **Context** was defined in terms of how much explanation was given about the information being shared.

• **Power Distance.** Relationships between apprentices, master students, owners, and mentors provided the data about how various participants handled power distance relationships. How does a more inexperienced participant such as an apprentice interact with a more experienced participant such as a mentor or master student and what form of communication do they choose to use?

• **Time.** Finally, the importance of time was looked at in terms of how timely were student responses to each other and how important were deadlines to various members of the team.

Data Collection and Analysis

Instrumenting the PBL A/E/C learning environment for data collection. For the purpose of this study we have instrumented the PBL A/E/C learning environment to collect both qualitative and quantitative data. One of the “big wins” in the instrumentation approach was to leverage the communication and collaboration tools as non-intrusive quantitative data collection instruments, such as the ThinkTank discussion forum, shared project Web workspace, RECALL, MSN Messenger. Additional instruments offered corroborating data, such as video taping meetings, personal interviews, and on-line surveys.

The PBL information technology infrastructure provides a rich multi-modal communication environment in which teams can choose to collaborate and exchange information. Face-to-face is usually the preferred medium, but since none of the teams were co-located all the teams had to rely upon technology to enable their communication.

Video was one of the main ways of gathering data generated during meetings. We began videotaping from the first day that all participants met and continued to record every group meeting, class, mentor meeting, and presentation. Many of these meetings included group communication via the phone or the use of programs such as NetMeeting with application sharing, and MSN Messenger.
Our presence during the team meetings provided opportunities to interview various participants. As particular patterns became apparent or questions arose, more formal interviews were scheduled.

An online survey was sent out at the beginning of the study to determine the extent to which the participants used information technology before the A/E/C class. They were asked: (1) to approximate how many hours they used a computer and breakdown their time on the computer into personal, business or school use; (2) about what types of computer tools they used and for what purpose; (3) whether they participated in discussion groups, chat online, use email, etc.?

One of the richest sources available of data was the ThinkTank discussion forum. This is an asynchronous communication space (developed by the PBL research group) that was made available to each team via the Internet. Team members can start a conversation topic within the Forum and add messages to that topic. Each team member is then notified through email when a message was posted, and they can then choose to login to the Forum space in order to read or reply to the message. Any relevant files they are working on can also be attached to postings. The teams’ ThinkTank was available for us to read through in their entirety. The discussion forums could be viewed through the same framework that the participants view it or as a large body of data. The information was stored in a database that could be queried for different types of information.

Each team had a shared project Web workspace. This workspace was available for them to share files that they worked on, meeting minutes, agendas and schedules, and organize their work for a group Web page. We could: (1) track and calculate the number and dates of files posted by groups and see what kind of information the team members were conveying; and (2) replay any session that were created and captured using the Recall technology.

Data Analysis

It is important to emphasize that the qualitative and quantitative data collection instruments, i.e., online surveys, one-on-one interviews, video protocol analysis of team meetings and presentations, interactions and documents captured and shared via technologies like ThinkTank, shared project Web workspace, and Recall provided a valuable triangulation mechanism to analyze and interpret the relationship between multi-cultural dimensions and communication channels. Following are some relevant preliminary observations from the qualitative and quantitative data analysis.

A/E/C 2000/2001 generation had a total of 43 participants divided into twelve teams. We classified participants by culture and by discipline or role within the project. Culture was determined by country of origin. This seed sample of 43 participants included 2 Dutch students, 3 German students, 17 students from the United States, 1 student from India, 1 student from Malaysia, 6 students from Switzerland, and 1 student from Slovenia. We
grouped several countries together by region to form larger groups of representation, since there were only one or two students from each country within the region. Therefore, we had 8 students that we classified as East Asian and 4 that were classified as Latin American. There were 6 apprentices, undergraduate students assigned to assist the Masters students. The Masters students were divided into Architects (12), Structural Engineers (12) and Construction Managers (13). Each team was composed of one Architect, one Structural Engineer and one Construction Manager, with half of the teams being assigned Apprentices. Each team had a combination of at least two cultures. They, therefore, had to learn how to cross cultural barriers to work together on their project.

We collected 236 hours of video. We reviewed in depth about 88 selected hours of video and performed video protocol analysis of about 48 selected hours of video. Based on one-on-one interviews, video protocol analysis of team meetings, logged MSN Messenger chat meetings in the ThinkTank, and meeting observations we identified for instance two interesting relations between the language and use of communication channels: language speed and text vs. voice preference. In the first case, we noticed an adaptation related to language that was a change in the speed that native English speakers spoke. For instance, one of the US students who at the beginning of the project spoke quite quickly slowed down the speech speed considerably to accommodate the rest of the team members using English as a second language during face-to-face meetings and NetMeeting videoconference meetings. Speech speed increased when members of similar language backgrounds talked together, even if they were just speaking in English, Spanish, Chinese, German, etc., because they could understand each other’s accent and grammatical mistakes. In the second case, we observed that in multicultural teams there was often a preference to use MSN Messenger chat vs. voice channels afforded by video conferencing because of the language difficulties that team members had.

Once the participants were halfway through the program we began to analyze the data we collected. One of the key tasks was to analyze the ThinkTank discussion forum. Over a two and a half month period 2255 messages were posted in the ThinkTank. Each of these messages was read through and categorized according to several cultural dimensions that had been identified at the beginning of the study: context, information flow and time. Messages were classified as Context if they expressed the participant’s point of view or explanation related to an issue being discussed or file that had been posted. Messages classified as Information Flow contained factual information, simple file attachments with no explanation or scheduling or coordination information. If a contribution was expressing concerns about time or timely completion of tasks then it was classified as Time. Some of the messages contained multiple types of information, e.g., contextual and time concerns. These were classified in all relevant classes, i.e., information flow, context, time. There were several interactions that did not fall under these classifications. Once all the postings had been classified they were then queried in a variety of ways.
The first set of queries sought to compare the average number of contributions each cultural group posted within the ThinkTank discussion forum. (Figure 1) We then chose to breakdown the data by what discipline or role had made the contribution and then averaged the numbers according to culture. Each discipline displayed different participation habits, so we compared cultural differences within each discipline in order to make some preliminary observations of the participation habits. This was a quantitative indicator how much each culture contributed through the asynchronous communication channel offered by the ThinkTank.

Figure 2 illustrates the initial results of the engineers’ contributions using the ThinkTank asynchronous communication channel by culture. Figure 3 illustrates the engineers’ contributions using the ThinkTank asynchronous communication channel in which the messages are classified by context, information flow, and time dimensions.

For instance, the qualitative and quantitative analysis of video data and ThinkTank archives indicated that the Swiss participants had less than average contributions within each discipline/role in the ThinkTank. This lack of communication through a rich contextual asynchronous channel like the ThinkTank was compensated by face-to-face videoconference meetings. East Asians and Latin Americans also tended to contribute less through the ThinkTank than those participants that were from the United States.

![Contributions by Culture (Average)](image-url)

Figure 1 - Contributions by Culture (Average)
The next set of queries looked at the reply structure within the ThinkTank discussion forum. The forum gave each participant the ability to reply directly to a posted message or add a new message. These replies and the messages they were replying to were filtered out and analyzed according to “who replied to whom” and the length of time between posting and reply. It is important to emphasize that the time stamp of each message in the ThinkTank was based on the absolute time of the ThinkTank database server. Consequently, the local time of the different global participants, i.e., time zone differences, and the difference in time between when the message was sent and when the reply was sent did not influence our analysis. The average number of replies vs. the number of messages replied to were compared across cultures (Figure 4). The objective was to observe:

1. which cultures were more or less likely to reply to a posted messages versus just post a message?
2. which cultures were more or less likely to post and replied to versus simply reply to a posted message?

The preliminary observations indicate timeliness of information sharing, responsiveness, and level of engagement in the teamwork. From this preliminary data we observed for instance
that participants were more likely to post messages that were replied to rather than reply to others’ messages. These numbers show which participants participated in the ThinkTank discussion forum as if it were an ongoing discussion by replying to what had been posted.

Figure 4 – Average Number of Messages Posted Compared to Average Number of Replies

The average length of time and median length of time it took for messages to be replied to was compared across cultures. (See Figure 5) This metric provides a method to observe which cultures take the longest or shortest times to reply to posted messages, i.e., responsiveness. The average and median are both given since in many cases the difference between the average and median was significant. The high average versus lower median values show that they usually took shorter amounts of time to reply to messages but that on a few occasions they took quite a long time.

Figure 5 – Time to Reply to Posted Messages

For instance, the Slovenian participant had both the shortest average time and median time; therefore, he was most likely to reply quickly to any posted messages. The Dutch had the longest average time and median time therefore, they were most likely to take a longer time to reply. The average time to reply overall was 17.5 hours compared to a median reply time of 6 hours. This is important to note since these teams had only a couple of months to complete 1 redesign and 2 alternate designs of their assigned buildings. It is interesting to compare the average time to reply, i.e., 17.5 hours, with the standard reply time in the construction
industry today that ranges between a couple of days to weeks. On the other hand, the same average time to reply was considered to be a long wait time, since the students developed new teamwork habits and expectations set by communication technologies like MSN Messenger that is an almost “always on” technology that sets the reply time expectation almost equal to instant reply time. The online survey was then analyzed for average computer use before they began participating in the program. (See Figure 6) This data was compared with the amount of computer and communication technology usage of each group during the A/E/C class.

The survey was then used to determine the percentage of individuals within each cultural group that had used either a discussion group or a chat program before they started the program. (See Figure 7) This data was compared to data from the ThinkTank discussion forum in order to help clarify reasons for lack of participation in the ThinkTank discussion forum. We compared these previous habits of use to habits adopted during the A/E/C program.
The final source of quantitative information was the shared project Web workspace. An examination of use revealed that most of the files were posted before the weekly project milestones, meetings, and dead lines, e.g., team meetings with the owner, project review meetings, general mentor meetings, and presentations.

Summary

Preliminary analysis of the quantitative and qualitative data suggests several interesting observations, such as, the general adoption of a new technology not originally made available to all participants, the adaptation in speech patterns and technology use due to differences in languages of origin, the visible lack of participation in particular technological mediums from particular cultural groups, and the compensation of communication by the use of a preferred subset of communication channels. It is important to emphasize that these are observations resulting from the first phase of this on-going study and are based on the specific set of 43 students distributed over the three specific A/E/C disciplines and subset of cultural backgrounds.

O’Hara-Devereaux and Johansen [1] suggest that when at least two cultures get together and collaborate successfully a “Third Way” is found in which the team members find a way to balance out their cultural differences that works for them as a multicultural team. The following illustrate “Third Ways” observed in this preliminary study.

An interesting observation was the wide use of MSN Messenger among the groups. This was not a technology that was overtly provided for them. It is a medium of communication available to the general public, as long as they have a hotmail email account, and was only being used by a few of the participants at the start of the program. Eventually, all the groups began to use it to communicate on a regular basis. Many of them preferred it over video/audio forms of communication such as NetMeeting. Those groups that used it the most were usually those groups that had members for whom English was a second language. When asked why they preferred to use it over audio communication they explained that it was often difficult to understand what someone else was saying especially when they were using the Internet to transport the audio signal. We thought that the added burden of having to type in order to communicate would slow them down, but upon observation, it seemed that they could type much faster than they could communicate via audio because of the time taken up to clarify what had been said. This use of MSN Messenger also provided them with the opportunity of recording all that had been discussed, since it could be saved as a chat transcript. A combination of MSN Messenger for discussion, whiteboard and sharing of documents via NetMeeting was the preferred method of holding group meetings. Many of these meetings took place on an impromptu basis since they could simply find each other online anytime they were working and hooked up to the Internet via MSN Messenger.
An adaptation that we noticed, related to language was a change in the speed that native English speakers spoke. One of the US students who at the beginning of the project spoke quite quickly slowed down the speech speed considerably to accommodate the rest of the team members using English as a second language. Speech speed increased when members of similar language backgrounds talked together, even if they were just speaking in English, Spanish, Chinese, German, etc., because they could understand each other’s accent and grammatical mistakes.

Another interesting trend was the lack of contributions to the ThinkTank discussion forum on the part of some cultures, e.g., Swiss participants. As a group they had the least number of contributions of all types to the ThinkTank discussion forum. According to past studies such as Edward Halls on High Context vs. Low Context cultures, the Swiss should have had just as many contributions to the Discussion Forum as the US. They are considered a Low Context culture, meaning that they are more likely to give verbal, explicit explanations. They value a person’s ability to be forthright. A High context culture such as China, Japan, or Korea assumes more shared knowledge and is actually put off by explicit explanations. Conversely, a high context culture is more likely to share all information in the first place. They would make sure that all files are available for all to access. The Swiss however, did not use the ThinkTank discussion forum as a place to explain their ideas or rationale as much as other groups did. They reported above average usage of technology before they started. Consequently, their lack of usage could not be linked to lack of experience with the technology.

Another observation related to context is that even though many of the Asian cultures are considered high context and therefore, would prefer to set up more personal relationships that video conferencing affords most of the teams that included Asian participants preferred to MSN chat. Their reason for using MSN chat was often because of the language difficulties that they were having.

Time was analyzed in terms of how important it seemed to certain groups versus how quickly they tended to reply to messages. For example, the East Asians rarely mentioned concerns about deadlines or meetings within the discussion forum, yet their median score in terms of how long it took them to reply to messages was quite low. The Dutch Architects, on the other hand, expressed concerns about time more than most other cultural groups within the discipline, yet the Dutch scored high in their median time to reply to posted messages.

Power Distance observations were gathered more through observations and interviews. Some observations show that the East Asian participants were hesitant to contact their mentors. The Swiss participants behaved as if there was a large distance between themselves and their professors. The Swiss mentors were quiet during the general mentor meeting, questioning and probing students’ solutions less than the US mentors.
Overall, we observed that it was important to offer a wide spectrum of communication and collaboration technologies and channels to enable each participant to identify and use the subset that best matched their cultural habits and communication preferences. We observed an interesting process of compensation through the use of diverse combinations of synchronous and asynchronous communication channels.

Further analysis of the data will be performed and continuous validation of the methodology and dimensions is planned for the coming A/E/C generations. One of the ultimate goals of this study is to develop a set of guidelines to accelerate the awareness of global team members to multi-cultural aspects and communication channel preferences in a rich multi-modal communication environment.

Acknowledgement
This study was partially sponsored by the Project Based Learning Laboratory, Department of Civil and Environmental Engineering, at Stanford University.

References

1. M. O’Hara-Devereaux and R. Johansen, GlobalWork, Bridging Distance, Culture, and Time; Jossey-Bass Publishers; San Francisco; 1994
Renate Fruchter. Dr. Renate Fruchter is the director of the Project Based Learning Laboratory (PBL Lab) in the Department of Civil and Environmental Engineering, at Stanford. Her research group develops collaboration technologies for multidisciplinary, geographically distributed teamwork, and e-Learning. She is interested in R&D and larger scale deployment of collaboration technologies that include Web-based team building, project memory, and corporate memory, and mobile solutions for global teamwork and e-Learning. She is the leader and developer of the innovative "Computer Integrated A/E/C" course launched in 1993 and currently offered in a global setting including universities in US, Japan and Europe.

Alicia Townsend. Alicia Townsend is a graduate student in the Learning, Design, and Technology (LDT) Program, in the School of Education, at Stanford University. She is doing her LDT internship in the PBL Lab and brings a strong background in ethnographic studies.