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Impact of Self-Efficacy and Outcome Expectations on First-Year 

Engineering Students’ Major Selection 

 

Abstract 

Deciding on a major is one of the critical decisions first-year students make in their 

undergraduate study. Framed in Social Cognitive Career Theory, this work investigates 

differences between measures of self-efficacy and outcome expectations by students intending to 

pursue different engineering majors. Our results show that tinkering self-efficacy, experimental 

self-efficacy, and professional outcome expectations are statistically significantly different for 

students intending to pursue different majors. Students from Biomedical Engineering, Chemical 

& Biomolecular Engineering, Computer Engineering, Computer Science, Electrical Engineering, 

and Mechanical Engineering have different average scores from at least one other group of 

students on at least one construct. Differences by gender are also explored, as well as student 

major changes, confidence in major choice, and the importance of both professional and lifestyle 

outcome expectations. 

 

Introduction 

One of the most important decisions first-year undergraduate students make is choosing their 

major. Many universities offer first-year engineering programs that allow students to pre-select 

into engineering while delaying commitment to a specific engineering major until the conclusion 

of the first-year program. Even institutions that do not offer first-year programs often include a 

common first-year sequence that allow students to switch their engineering major without a 

delay to graduation. Understanding how students make their major selection can allow for 

enhanced advising and fewer major changes after the first year. The research question this work 

will address is: How do self-efficacy and outcome expectations vary among first-year 

engineering students as they prepare to select an engineering major? 

Additionally, there are studies that document student movements throughout their engineering 

careers that show a substantial number of students remain in engineering, but switch their major 

within engineering [1], [2]. The amount of switching can vary based on the engineering program 

attended and whether the institution uses a common, first-year engineering program that allow 

students to freely switch engineering majors with delayed timelines to graduation. These types of 

programs have been found to help retain students in engineering [3] and in their first choice 

engineering major [4]. 

 

Literature Review 

Normally, before students decide to pursue an engineering major, students first must decide that 

they want to major in engineering at large. The factors that attract students to the field of 

engineering have been explored with largely consistent results. Among the most prevalent 

factors for students are their abilities in math and science [5]–[8]. However, some students 



choose to major in engineering because they are aware of the difficulty of transferring into 

engineering after beginning their undergraduate studies [4], [9], [10]. 

The impacts of an engineering degree are also important considerations for many students when 

choosing to major in engineering. Engineering students often discuss their future ability to have 

impacts on society and the ability to address the problems facing the world upon graduation, 

especially among students majoring in civil and environmental engineering [7], [11]. Students 

also consider the availability of career options because some students are more focused on 

“making a career choice than an educational choice” [12]. Salary is also an important 

consideration for students [6], [13] and one of the reasons parents believe engineering is a good 

career choice for their children [5].  

As expected, not all students that begin in engineering remain and graduate with an engineering 

degree. However, engineering has one of the highest rates of persistence at approximately 57% 

[10]. Despite the higher rate of persistence, recruitment is a considerable issue for engineering. 

Of all engineering students in their eighth semester, 90% began in engineering; this proportion is 

considerably higher than any other group of majors [10]. These statistics are also concerning 

because even though persistence in engineering is high, there can be high fluctuation in the 

number of students graduating with an engineering degree; for example, more students graduated 

with engineering degrees in 1985 than in 2010 [14]. 

Seymour and Hewitt have reported that many students who are capable of earning engineering 

degrees (and other math and science degrees) leave their degree programs [15]. The Persistence 

in Engineering (PIE) survey has been used to help identify some of the differences between 

students who do and do not persist in engineering degrees – sources of motivation, confidence in 

math and science skills, and financial concerns [8]. In that study, more non-persisting students 

were motivated by their family while students who persisted were motivated by a high school 

mentor. Confidence in math and science skills were also a differentiating factor; students who 

persist are more confident in those skills than students who do not persist. While there are some 

differences between these two groups of students, many of the factors in the survey instrument 

were not significantly different for students who did and did not persist in engineering [8]. This 

conclusion is consistent with Seymour and Hewitt’s conclusion that the differences between 

students cannot be identified by “high school preparation, performance scores or effort 

expended” [15]. 

Another of Seymour and Hewitt’s conclusions is that interest in the discipline and the careers 

that follow is “conducive to persistence” [15]. Additionally, for engineering educators to foster a 

learning environment to engage students, the factors that influence major selection are important 

[7]. The work to identify these factors is underway and includes understanding the perceptions 

that students have of the engineering disciplines. Research has shown that first-year engineering 

students consistently identify many important topics that are familiar to all engineering 

disciplines, such as maintenance, research, and processes [16]. Additionally, students ascribed 

mechanical engineering as having the most “options;” this may be due to the marketing of the 

major, its general perception as a “broad discipline,” or the type of work that many mechanical 

engineers perform. This study found that while some perceptions were broadly held, the 



disciplines were perceived differently based on the students’ majors and the institution they 

attended [16]. 

Factors that have been identified as important for major selection include outcomes expectations 

and self-efficacy [17]. These factors are part of Social Cognitive Career Theory [18], [19] and 

represent the anticipated results from completing a task and the confidence in ability to complete 

tasks, respectively. Performance outcomes, a source of self-efficacy, were the most significant 

factor for students in each of the five engineering departments studied. Students intending to 

major in Civil and Environmental Engineering had the highest proportion of responses including 

outcomes expectations which the authors note could be due to the perceived possibility of 

societal impact after graduation [17]. 

Another study has used a single-item measure of confidence in major choice and found 

significant results between that item and students staying in or changing from their intended 

engineering major at admission to their actual, degree-granting major one year later after 

completing a first-year engineering program [20]. While this item was found to be predictive of 

major changes within engineering, it is not predictive of remaining or leaving engineering at 

large [20]. These results were consistent with a previous study that found that students who 

graduated in the same engineering major as they entered had the highest levels of confidence 

[21]. Additionally, among first-year female engineering students, confidence in engineering at 

large and in their choice of engineering major increases over the course of their first semester 

[22]. 

 

Theoretical Framework 

This study was framed using Social Cognitive Career Theory (SCCT), especially the self-

efficacy and outcomes expectations constructs [18], [19]. Even though this theory is named a 

career development theory, the authors note that it also explains academic development. The 

theory seeks to explain the interdependence of people and their environment. In addition to self-

efficacy and outcome expectations, the theory also uses goals as a significant factor with models 

incorporating interests, choice, and performance [18], [19]. 

Self-efficacy is the confidence people have about their perceived ability to complete a task. Upon 

successful completion of a task, self-efficacy generally increases but decreases after an 

unsuccessful attempt. There are four primary sources of self-efficacy: performance 

accomplishments, vicarious experiences, verbal persuasion, and emotional arousal [23]. 

Outcome expectations are the perceived consequences of completing a task, both positive and 

negative. Outcome expectations can be informed by the anticipation of rewards and pride in 

completing the task. Self-efficacy and outcomes expectations can be summarized, respectively, 

with these questions: “Am I capable of completing this task?” and “What will happen if I 

complete this task?” [18], [19]. 

 

 

 



Methods 

Population and Context 

This study was conducted at a large, public, research university in the southeastern United States. 

The target population includes first-year engineering students who enroll in a sequence of 

required, common first-year engineering courses but are admitted to degree-granting majors; the 

institution is categorized as DMa (direct matriculation with required engineering course for all 

majors) by the Chen et al. taxonomy [24]. The required first-year courses allow students to 

switch engineering majors anytime during the first year without delaying graduation. 

The survey instrument was distributed one time, six weeks into the Fall 2019 semester. The 

survey distribution was approximately one week after the college’s primary major exploration 

event. The event allows students to interact with the engineering majors available at the 

university through presentations and informal discussions.  

The sample of the population used in this study is described in Table 1. The sample is 33% 

female while the undergraduate population in the college of engineering, according to the 

university website, is 22% female. The national engineering enrollment in 2018 was 26.3% 

female at the undergraduate level [25]. 

 

Table 1. Summary statistics of the sample in this study by intended engineering major and gender. The table is 

sorted by decreasing totals of intended enrollment. 

 Female Male Non-binary No response TOTAL 

Biomedical 026 023 1 01 051 

Mechanical 010 039 0 02 051 

Computer Science 007 026 1 00 034 

Aerospace 007 021 1 01 030 

Chemical 012 015 0 01 028 

Civil 011 012 0 03 026 

Computer 003 013 0 01 017 

Electrical 001 015 0 00 016 

Industrial & Systems 008 006 0 02 016 

Nuclear 006 009 1 00 016 

Materials Science 002 005 0 00 007 

Biosystems 003 001 0 01 005 

Other 006 005 0 00 011 

TOTAL 102 190 4 12 308 
 

Race and ethnicity data were also collected. The sample is 59% White, 11% Asian, 8% Black or 

African American, 4% Hispanic or Latinx, and less than 2% each of Middle Eastern or North 

African and Native Hawaiian or Other Pacific Islander. 10% of students in the sample reported 

two or more racial and / or ethnic identities and 4% did not report their racial and / or ethnic 

identity. The undergraduate population in the college of engineering, according to the university 

website, is 74% White. This difference is the result of survey response rates; actual 

demographics only vary marginally from class-to-class and year-to-year. 



When analysis is performed by intended engineering major, students who selected Biosystems 

Engineering, Materials Science and Engineering, a major outside engineering (Other), or did not 

respond were excluded from analysis due to our inability to draw conclusions based on that 

sample. Similarly, when analysis is performed by gender, students who selected a non-binary 

gender option or who chose not to report their gender were excluded from analysis due to our 

inability to draw conclusions based on that sample.  

 

Survey Instrument 

The survey instrument used in this study uses two existing instruments in addition to some items 

written for this study. The first published instrument [26] is based in SCCT and contains scales 

measuring self-efficacy of choice as well as professional and lifestyle outcome expectations. 

This instrument was originally developed for use with first-year medical school students so 

words and phrases were edited to be consistent with language first-year engineering students 

would expect, as previously described [27]. Choice self-efficacy items ask students about their 

confidence in selecting a major; for example, “How confident are you that you can…choose a 

major that will fit your interests and abilities.” The professional and lifestyle outcome 

expectations items ask students about their perceived outcomes based on the major they are most 

likely to pursue. For example, for professional outcome expectations, students are asked, “How 

much do you expect your choice of major will…allow you to achieve your desired professional 

success” and for lifestyle outcome expectations, students are asked, “How much do you expect 

your choice of major will…allow you to pursue leisure time activities/interests that you like” 

[26]. 

The second published instrument [28] was selected because it expands self-efficacy into four 

factors: general engineering self-efficacy, experimental self-efficacy, tinkering self-efficacy, and 

design self-efficacy. The general engineering self-efficacy items ask students about their 

confidence in engineering coursework; for example, “I can learn the content taught in my 

engineering-related courses.” The experimental, tinkering, and design self-efficacy items ask 

students about their confidence in tasks relevant to those skills. For example, in experimental 

self-efficacy, “I can analyze data resulting from experiments;” for tinkering self-efficacy, “I can 

build machines;” and for design self-efficacy, “I can evaluate a design” [28]. 

In addition to using the self-efficacy and outcome expectations constructs from SCCT, items 

were added to ask respondents if the potential outcomes were important to them as well as how 

much they believe their engineering major will allow for each potential outcome. Additionally, 

students were asked to report their major at admission, their current major, and the major they 

intend to pursue. At the time of the survey, the major at admission was retrospective and 

intended major was prospective. Finally, students were asked a single-item measure of 

confidence in their prospective choice of the major [20].  

 

 



Confirmatory Factor Analysis 

Because the first instrument [26] included in our survey was originally intended for use with 

first-year medical students, a confirmatory factor analysis (CFA) was conducted to confirm that 

the reworded items were appropriate for first-year engineering students. Although it was 

designed for use with engineering students, a CFA was also conducted on the second instrument 

[28] included in our survey to be sure it behaved as expected. These analyses were conducted 

with all students who intend to pursue an engineering major (n = 297) which is approximately 

equal to the minimum suggested sample sizes of 300 [29] and exceeds the minimum 

recommendation for good fit [30]. There are four factors on each scale with the number of items 

included in Table 3; the fourth scale from Rogers, Searle, & Creed instrument, goals, was 

included in the survey instrument, but not used in this study and does not appear in Table 3. The 

goals scale has 6 items.  

Four indices of fit were computed for the CFA on each instrument. Chi-squared is indicative of a 

good fit when the statistic is smaller and the corresponding p-value is greater than 0.05; this is 

commonly problematic with large samples [31], [32]. The Comparative Fit Index (CFI) is 

indicative of good fit at values of 0.97 and higher with values higher than 0.95 being acceptable 

[32]; however, values higher than 0.90 are sometimes considered acceptable [31]. Root Mean 

Square Error of Approximation (RMSEA) is indicative of good fit at values below 0.05, 

adequate fit between 0.05 and 0.08, mediocre fit between 0.08 and 0.10, and unacceptable above 

0.10 [32]. Finally, Standardized Root Mean Squared Residual (SRMR) indicates a good fit at 

values less than 0.05 and an acceptable fit at values less than 0.10 [31], [32]. 

We also checked internal consistency using Cronbach’s alpha and comparing the values from our 

survey distribution to the values published with the original instruments. 

 

Analysis of Variance and Tukey’s Statistic 

Analysis of Variance (ANOVA) tests are used to determine if there are differences in the mean 

response of a quantitative variable with respect to many groups, divided by different levels of a 

categorial variable. In this work, the mean response variables are the scores on each of the self-

efficacy subscales as well as the outcome expectations scales. The categorical variables most 

frequently used to divide students into groups were the students’ intended engineering majors, 

but gender is also used in some tests. ANOVA tests can be one- or two-way depending on the 

number of different sets of categorial variables used in the test. Most of the tests in this study are 

one-way tests, but two two-way tests are used. 

When data are unbalanced, corrective measures are necessary. Because the data in our study are 

unbalanced, we used a Type III sum of squares on each one-way and two-way ANOVA test. The 

Type III sum of squares tests for significance of each main effect after accounting for any other 

main effects and their interactions, in a two-way ANOVA. The results of a Type III test are the 

significance of a factor after accounting for all other factors [33]. 



The results of an ANOVA test allow for the determination of if a difference exists between any 

groups in the test, but it does not specify which groups are different. Tukey’s statistic [34] allows 

for these differences to be calculated and reported. This statistic will be used as a post-hoc 

analysis to determine which groups of students have differences. 

Results with p-values less than or equal to 0.001 are considered to provide very strong evidence 

of significance; p-values greater than 0.001 and less than or equal to 0.05 are considered to 

provide strong evidence of significance. Results with a p-value greater than 0.05 and less than or 

equal to 0.10 are considered to provide moderate evidence of significance; p-values greater than 

0.10 are considered to provide weak evidence of significance. Post-hoc analyses are reported for 

ANOVA tests that provide at least moderately strong evidence of significance. 

 

Results and Discussion 

Instrument Validation 

To make sure that the items in the Rogers, Creed, and Seale [26] instrument were appropriate for 

use with our population, we conducted a confirmatory factor analysis. The values calculated 

from the CFA on each of the two instruments included in this study are included in Table 2. All 

of the reported values are acceptable for using the instruments and their constructs in this study. 

 

Table 2. Indices of fit for CFA of instruments included in this study. 

Statistic Rogers, Creed, & Searle Mamaril et al. 

Chi-squared, df, p-value 656.1, 269, <0.001 351.9, 113, <0.001 

CFI 0.905 (acceptable) 0.937 (acceptable) 

RMSEA 0.072 (adequate) 0.087 (mediocre) 

SRMR 0.067 (acceptable) 0.045 (good) 
 

Additionally, we computed Cronbach’s alpha values as a measure of internal consistency for 

each of the scales of interest in this study. The alpha values published with the original 

instruments and the values calculated from our population are included in Table 3. All our 

Cronbach’s alpha values are in the good to excellent range and generally agree with values from 

the source papers. 

 

 

Table 3. Comparison of Cronbach's alpha between source papers and this study. 

Source Paper Scale† 
Number of 

Items 

Alpha from 

Source 

Alpha from     

This Study 

Rogers, Creed,  

& Searle 

Choice SE 7 0.86 0.91 

Professional OE 8 0.84 0.82 

Lifestyle OE 4 0.89 0.88 

Mamaril et al. 

General Engr SE 5 0.89 0.91 

Experimental SE 4 0.79 0.90 

Tinkering SE 4 0.87 0.89 

Design SE 4 0.90 0.94 
† Abbreviations: SE = self-efficacy; OE = outcome expectations 



Choice Self-Efficacy and Student Major Changes 

Students’ self-reported majors at admission (Figure 1, left column), six weeks into the Fall 

semester (Figure 1, center column), and the major they are most likely to pursue (Figure 1, right 

column) were analyzed to visualize trends in student majors. Over 71% of all students indicated 

their major was and would be the same at each of the three time points (n = 219), but there are 

still many students who indicate a change in major or a planned change in major (n = 89). 

Confidence in the choice of an engineering major has previously been found to be a significant 

predictor of whether a student matriculates into that engineering major [20], [21]. While all the 

data was collected using one survey distribution and is cross-sectional, students who report the 

same engineering major for each time point (no previous change and no intended change) have a 

higher choice self-efficacy of 3.96 on a 5-point scale, on average. Students who have changed 

and / or intend to change their major have an average choice self-efficacy of 3.71. This result is 

similar to the results with the single-item measure of confidence in their intended major choice. 

Students who report the same engineering major for each time point have a higher confidence in 

their choice of the major of 7.67 on a 10-point scale, while students who have had a change and / 

or intend to make a change of major have a confidence in their choice of 6.87. Using Welch’s t-

tests, there is very strong evidence that both differences are significantly different (p < 0.001). 

  
Figure 1. A Sankey diagram representing students’ reported majors at admission (left column), six weeks into the 

fall semester (center column), and the majors they are most likely to pursue (right column). Lines indicate changes 

to new majors; line thickness represents the number of students following a path. The diagram is sorted by 

decreasing totals of intended major (right column). 



Self-Efficacy and Major Selection 

Five different measures of self-efficacy were investigated to determine if any differences existed 

between students grouped by the engineering major they were most likely going to pursue. 

Group means are shown in Table 4. Performing an analysis of variance (ANOVA) test in R [35], 

there is strong evidence that both experimental self-efficacy [F(9, 270) = 2.51, p = 0.009] and 

tinkering self-efficacy [F(9, 270) = 3.30, p = 0.019] are statistically significantly different among 

students intending to pursue different engineering majors. None of the other three subscales were 

near any commonly accepted level of significance (p ≥ 0.252). 

Post-hoc analysis was then conducted using Tukey’s test [34] to determine the individual 

differences between the engineering majors. There is strong evidence that students in Electrical 

Engineering (EE) have significantly higher experimental self-efficacy than students in both 

Computer Science (CS) (p = 0.023) and Biomedical Engineering (BME) (p = 0.046). There is 

moderately strong evidence that students in Mechanical Engineering (ME) have significantly 

higher tinkering self-efficacy than students in both BME (p = 0.052) and CS (p = 0.053). 

Computer Science, while not always included in colleges of engineering, is included at the 

institution being studied. The differences found here between CS and two engineering majors 

may speak to some of the reasons why CS is sometimes organized differently. Additionally, the 

tinkering self-efficacy differences stand out between ME and BME because while ME is male 

dominated, BME enrolls the highest proportion of female students in the college and approaches 

gender parity (female enrollment was 46% in Fall 2019). ME and BME are also hosted in the 

same department and have a considerable overlap of content and coursework until the senior year 

of study. 

 

Table 4. Average score for each self-efficacy construct by major students are intending to pursue. 

 
Choice† 

General 

Engineering 
Experimental Tinkering Design 

Aerospace 3.93 4.25 4.48 4.00 4.09 

Biomedical 3.77 4.11 4.032 3.783 3.69 

Biosystems 3.66 3.60 4.45 4.60 4.45 

Chemical 4.07 4.44 4.63 4.12 4.10 

Civil 3.88 4.24 4.18 3.96 4.24 

Computer 3.59 3.92 4.10 4.60 3.99 

Computer Science 3.82 4.17 3.901 3.694 3.74 

Electrical 4.04 4.49 4.981,2 4.53 4.27 

Industrial & Systems 4.01 4.49 4.52 3.88 4.42 

Materials Science 3.92 4.11 4.39 4.50 4.43 

Mechanical 3.93 4.27 4.40 4.563,4 4.06 

Nuclear 4.09 4.49 4.52 4.19 4.47 
 †  Choice self-efficacy was measured using a 5-point scale; all others are 6-point scales. 
1,2  Students intending to major in Electrical Engineering have significantly higher experimental self-efficacy than 

students in both Computer Science and Biomedical Engineering. 
3,4  Students intending to major in Mechanical Engineering have significantly higher tinkering self-efficacy than 

students in both Biomedical Engineering Computer Science. 



Self-Efficacy and Gender 

The five measures of self-efficacy were also investigated to determine if any differences existed 

between students grouped by gender. Group means are shown in Table 5. In this analysis, 

students who chose not to report their gender or selected a non-binary option were excluded, as 

explained previously. An ANOVA test provides strong evidence of significant differences 

between the two genders studied with respect to general engineering self-efficacy [F(1, 289) = 

7.09, p = 0.008] and tinkering self-efficacy [F(1, 286) = 11.32, p = 0.001]; it also provides 

moderately strong evidence of a difference in design self-efficacy [F(1, 285) = 3.27, p = 0.072]. 

In all cases, males have the higher self-efficacy. 

 

Table 5. Average score for each self-efficacy construct by gender. 

 
Choice† 

General 

Engineering 
Experimental Tinkering Design 

Female 3.87 4.02* 4.17 3.77* 3.85* 

Male 3.91 4.34* 4.37 4.28* 4.12* 
 † Choice self-efficacy was measured using a 5-point scale; all others are 6-point scales. 
 * Males have significantly higher general engineering, tinkering, and design self-efficacies than females. 

Because tinkering self-efficacy was significantly 

different by both intended engineering major and 

gender, follow-up two-way ANOVA tests of 

intended major and gender were conducted including 

only students intending to pursue ME or BME and 

ME or CS majors (the identified differences from the 

Tukey’s test) and who also identified as female or 

male. For ME and BME students, tinkering self-

efficacy is strongly associated with both intended 

engineering major [F(1, 91) = 10.78, p = 0.002] and 

gender [F(1, 91) = 2.91, p = 0.092]; however, there 

is strong evidence of an interaction of intended 

engineering major and gender [F(1, 91) = 3.96, p = 

0.050], which indicates that the relationship 

between intended engineering major and tinkering 

self-efficacy depends on gender. Because this 

interaction effect is significant, it is difficult to interpret the effects of gender and intended 

engineering major independently. An interaction plot is shown in Figure 2. This interaction 

illustrates that females and males who intend to major in ME have similar tinkering self-efficacy, 

but males who intended to major in BME have higher tinkering self-efficacy than females who 

intend to major in BME. 

In the two-way ANOVA test with ME and CS students, tinkering self-efficacy is only strongly 

associated with their intended engineering major [F(1, 74) = 11.76, p < 0.001]. There is not 

strong evidence that gender [F(1, 74) = 1.76, p = 0.189] nor the interaction of gender and 

intended engineering major are significant [F(1, 74) = 2.31, p = 0.133]. This result means that we 

Figure 2. Interaction of intended engineering major 

and gender on tinkering self-efficacy. The chart 

illustrates that while males and females in ME have 

similar tinkering self-efficacy, BME females have a 

lower tinkering self-efficacy than BME males. 
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have very strong evidence that there is a difference in tinkering self-efficacy by the intended 

engineering major of ME and CS students. 

 

Outcome Expectations and Major Selection 

Two measures of outcome expectations were also investigated. Group means are shown in Table 

6. An ANOVA test provided moderately strong evidence of significant differences in 

professional outcome expectations [F(9, 261) = 1.67, p = 0.098] between students grouped by 

their intended engineering major. Tukey’s test provides strong evidence that students in 

Chemical & Biomolecular Engineering (CBE) have significantly higher professional outcome 

expectations than students in Computer Engineering (CPE) (p = 0.030). ANOVA results also 

provided only weak evidence that lifestyle outcome expectations vary by intended engineering 

major [F(9, 268) = 1.59, p = 0.117]. 

One potential explanation for this difference could also be associated with gender because CBE 

enrolls the second highest proportion of females in engineering at 39%, while CPE trails at 11%. 

However, there is not strong evidence of a significant difference between professional outcome 

expectations when students are grouped by gender [F(1, 284) = 2.19, p = 0.140]. There is also 

not strong evidence of a significant difference between lifestyle outcome expectations when 

students are grouped by gender [F(1, 288) = 0.42, p = 0.518]. 

Students were also asked if each of the outcome expectations items were “very important” or 

“not very important” to them. The average importance of all outcome expectations was 0.90, 

where “not very important” was coded as 0 and “very important” was coded as 1. There is no 

difference in importance when dividing the outcome expectations into their respective subscales; 

professional outcomes have an average importance of 0.90 and lifestyle outcomes have an 

average importance of 0.91. 

 

Table 6. Average score for each outcome expectation scale by major students are intending to pursue. 

 Outcome Expectations, 

Professional 

Outcome Expectations, 

Lifestyle 

Aerospace 4.34 3.85 

Biomedical 4.16 3.91 

Biosystems 3.91 3.13 

Chemical 4.46* 3.61 

Civil 4.24 4.06 

Computer 3.91* 3.47 

Computer Science 4.19 4.13 

Electrical 4.30 3.88 

Industrial & Systems 4.23 3.62 

Materials Science 4.54 3.96 

Mechanical 4.32 3.90 

Nuclear 4.25 4.05 
 * Students intending to major in Chemical and Biomolecular Engineering have significantly higher professional 

outcome expectations than students in Computer Engineering. 



Conclusions 

One of the first major decisions first-year students make is what major they are going to pursue. 

The students studied here had already matriculated into degree-granting engineering majors but 

reserve the flexibility to switch engineering majors during their first year of study without delays 

to graduation. With this flexibility, which is also shared with many institutions that employ a 

common first-year engineering program, it is helpful to understand what factors may 

differentiate students who intend to major in the different engineering disciplines. Our work 

found that tinkering self-efficacy, experimental self-efficacy, and professional outcome 

expectations are among the factors that differ between students.  

Specifically, students in Electrical Engineering have higher experimental self-efficacy than 

students in both Computer Science and Biomedical Engineering. Students in Mechanical 

Engineering have higher tinkering self-efficacy than students in both Biomedical Engineering 

and Computer Science. Male students also report higher general engineering, tinkering, and 

design self-efficacies than female students. Finally, students in Chemical & Biomolecular 

Engineering have higher professional outcome expectations than students in Computer 

Engineering.  

While limited, this data could be used to help enhance advising sessions for students who are 

undecided on their engineering major. Understanding students’ self-efficacies and outcome 

expectations should allow for enhanced advising because students will be able to learn if and to 

what extent certain desired outcomes are available in common positions obtained by graduates in 

their intended major. Additionally, misconceptions about potential outcomes or tasks required by 

the major could be corrected by academic departments so that students can make more informed 

decisions about their major selection. Finally, future work in this area could be used for 

enrollment management purposes, especially for institutions with first-year engineering 

programs. 

 

Limitations 

These finding are subject to some limitations. The data was collected from a single institution 

that utilizes direct matriculation with common coursework (DMa) which may limit 

generalizability to other institution types. The survey instrument was only distributed one time 

and therefore asked students about their major at admission retrospectively and about their 

intended engineering major prospectively, resulting in cross-sectional data. The survey was 

distributed approximately six weeks into the fall semester. While this time is after the college’s 

primary major exploration event, there could still be changes to students’ intended engineering 

majors. Follow-up studies would ideally include multiple surveys to gauge students’ intended 

majors throughout the first year. Finally, many factors contribute to major selection, the 

constructs studied here are a subset of them.  
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