
Paper ID #26462

Implementation of Analog and Digital Communications Transceivers on SDR
Platforms using GNU Radio Companion

Mr. Joshua David Edgcombe, Grand Valley State University

Joshua Edgcombe is a Graduate Student at Grand Valley State University pursuing his Masters of Science
in Engineering in Computer and Electrical Engineering. He has experience with signal processing and
communication systems as well as analog and digital circuit and filter design. He also has a strong
background in software development and has developed software in a variety of environments including
web, native, systems, and embedded.

Dr. Bruce E. Dunne, Grand Valley State University

Bruce E. Dunne received the B.S.E.E. (with honors) and M.S. degrees from the University of Illinois at
Urbana-Champaign in 1985 and 1988, respectively, both in Electrical and Computer Engineering. He
received the Ph.D. degree in Electrical Engineering from the Illinois Institute of Technology, Chicago, in
2003. In the Fall of 2003, he joined the Padnos College of Engineering and Computing, Grand Valley
State University, Grand Rapids, MI, where he is currently a Professor of Engineering. Prior to this ap-
pointment, he held several research and development positions in industry. From 1991 to 2002, he was
a Staff Engineer with Tellabs, Naperville, IL. Additionally, in 1991, he was with AT&T Bell Telephone
Laboratories, Naperville, IL; from 1988 to 1991, he was with R. R. Donnelley & Sons, Lisle, IL; and
from 1985 to 1986, he was with Zenith Electronics, Glenview, IL. His interests include adaptive filtering,
speech enhancement, wireless and wireline communications, and engineering education. Dr. Dunne is a
senior member of the IEEE and a member of Eta Kappa Nu and the ASEE.

c©American Society for Engineering Education, 2019

Implementation of Analog and Digital Communications Transceivers on SDR

Platforms using GNU Radio Companion

Joshua Edgcombe and Bruce E. Dunne

School of Engineering, Grand Valley State University

Abstract

In the recent literature, Software Defined Radio (SDR) has been promoted as a powerful and

low-cost approach to offering laboratory experiments in the field of analog and digital

communications. Furthermore, using the freeware graphical software GNU Radio Companion

(GRC), a wide variety of experiments can be easily and quickly assembled by students on the

SDR hardware. The GRC software includes built-in instrumentation blocks that allow

visualization of the signals at any point in the modulation and/or demodulation process, lending

strong experimental observation to reinforce theoretical concepts. Certain SDR hardware

platforms provide duplex processing, allowing implementation of both the transmitter and

receiver, for short distances.

The advantages of an SDR/GRC approach to offering communication laboratory

experimentation is well described; however, the specific implementation details are less well

documented. While conceptually not overly difficult, there are many non-trivial pitfalls and

obstacles that must be overcome to actualize such communication experimentation, especially

for RF over-air communications. The intent of this paper is to address this knowledge gap and

provide clear implementation details for a turn-key laboratory in a first or second course in

analog and digital communications. To do so, a series of communications experiments are

described, including all processing at both the transmitter and the receiver (including timing

considerations), the interface to external files, the RF interface, and beneficial points to observe

signals in either the time or frequency domain, or as appropriate, constellation plots. The

configuration of the GRC blocks are described along with complete GRC flow graph diagrams

for each modulation format presented. Dealing with issues such as timing alignment are also

discussed.

This paper includes an overview of the use of SDR/GRC in communication laboratory

experimentation as well as a description of the recommended hardware and development

environment. Some general remarks about the development of GRC flow graphs is then followed

by a detailed discussion of transceiver implementation. Particular transceivers discussed include

the analog modulation formats AM and FM and the digital modulation formats FSK and PSK.

The paper concludes with recommendations for additional and more advanced communication

experimentation.

Introduction

Software Defined Radio1,2 (SDR) offers a powerful alternative to conventional communication

system design. In conventional design, specially-built hardware is implemented to perform

communication for a particular, radio-specific modulation scheme, usually over a limited

frequency range. In contrast, SDR systems offer much more flexibility by implementing the

modulation/demodulation functionality in software. Connected to the antenna through an RF

mixer is a high-speed ADC/DAC (for receiver/transmitter, respectively) such that the SDR

processes the communication signals using DSP algorithms implemented in software.

Particularly powerful is the concept of flexibility; if the radio modulation scheme changes, new

DSP software is loaded to perform the necessary processing and no hardware modification is

required. This approach allows for ease of adaptability, shortens development effort and greatly

reduces cost and complexity. Furthermore, mid-range capable SDR systems are highly

affordable.

The most popular tool used for SDR software development is GNU Radio3; a free open-source

program with a large online support community. Typically, GNU Radio serves as the signal

processing engine (executing on the host computer) while the SDR hardware provides the RF

front end and digitization (note that GNU Radio can also run in a simulation mode without any

SDR hardware connected or from recorded data). This software provides the necessary drivers

for communicating with the SDR hardware and host system I/O, as well as signal processing

blocks for encoding, modulation, filtering, packet handling, stream manipulation and other

functions. The software for GNU Radio is written in Python and C++, where Python is the glue

code and C++ performs most of the heavy signal processing. Additional user-generated custom

signal processing blocks can be written in either Python or C++ and added to the signal chain.

Fortunately, GNU Radio is relatively mature; most functions for general signal processing

applications and communications have already been written and optimized, making GNU Radio

highly modular.

Communication system development using GNU Radio is greatly simplified with the use of

GNU Radio Companion (GRC). GRC is the graphical user interface for GNU Radio, where users

place functional blocks into a processing chain known as a flowgraph. Blocks exist for the vast

majority of communication system functions, requiring users to simply configure the block with

a handful of parameters particular to their system. If desired, a user can create a custom graphical

flow block (in either Python or C++); many such blocks are available via the user community

and by default in GRC. Once a flowgraph has been created, the user generates a Python file with

a click of a button in GRC, where the signal processing blocks (written typically in C++) are

connected together, hence, Python is seen as the glue code.

The literature has widely discussed and promoted the advantages of SDR for use in an academic

laboratory setting for instructional purposes. Such papers present an overview of various

experiments and projects4,5,6,7 including discussions of both analog and digital communications

laboratories, at varying levels of detail. Others include aspects of RF over-air full transceiver

implementation8,9.

Despite this large array of reference material, what is missing is a clear presentation of

implementation detail with SDR and GRC. For the educator new to SDR, there is a considerable

learning curve to get a laboratory up and running, particularly for full over-air RF digital

transceiver systems. While aided by the large GRC library of function blocks, there are many

pitfalls that are not easily avoided. The intent of this paper is to address this knowledge gap and

provide clear implementation details for a turn-key laboratory in a first or second course in

analog and digital communications. Flowgraphs for realizing full transceiver RF

implementations of analog systems including AM and FM as well as digital systems including

FSK and PSK are presented. Discussion on how to configure these flowgraphs is also included.

We begin by discussing some preliminaries including a recommended hardware setup and other

details. We then present flowgraphs for analog communications, followed by flowgraphs for

digital communications, along with explanations and a link to a repository containing up to date

versions of the flowgraphs discussed in this paper. We briefly present an assessment survey

regarding student preferences for working with SDR systems. Finally, we conclude with a

summary of our findings and recommendations for other communication experiments.

Preliminaries

Recommended Hardware and Development Environment

There is a wide selection of SDR hardware available, with many good choices for the purposes

presented herein10. Given the requirements of the projects, the recommended choice is the

HackRF One open-source SDR, along with ANT500 antenna11. The HackRF One offers half-

duplex transceiver capability, sampling rates up to 20 MSPS, operating frequency of 1 MHz to 6

GHz, USB powered connection, SMA RF connection with programmable gain, and full

compatibility with GRC. For experimentation when only a receiver is needed, or for simple

analog communication experimentation, use of the very low-cost RTL-SDR (for the receiver

function) is also a good choice. This device offers receive frequency range of 25 MHz to 1.766

GHz, a bandwidth of 2.4 MHz, USB powered connection (thumb-drive) and GRC compatibility.

A promising new platform (not yet experimented with by the authors) is the LimeSDR12, with

competitive features to the HackRF One at a lower price-point.

The recommended development environment is a Linux-based operating system such as Ubuntu

OS13, as Linux-based environments are most compatible with GRC. Flowgraphs are developed

with the GRC application, compiled and downloaded onto the SDR hardware. The hardware

configuration is programmed with the GRC osmocom sink block (for transmission) and the

osmocom source block (for reception). A typical development setup is given below in Figure 1.

Shown in the figure are separate transmit and receive stations, each running GRC and connected

to transmit and receive HackRF One SDRs (note that it is possible to run both transmit and

receive on one computer, with two instances of GRC). Also shown, but unconnected, is a

particular vendor’s version of the RTL-SDR device.

Note that with the wide choice of frequency operation, it is usually possible to select a

communication frequency in an ISM band so as to avoid interference with commercial

broadcasts. Furthermore, if so desired, these devices (in most cases) have a tuning range

compatible with broadcast frequencies, allowing reception of these channels. Finally, given the

comparatively low power of the HackRF One transmitter, use over even commercial bands

would not be significantly disruptive (low power FM commercial band use is permitted).

Complex (Quadrature) Sampling

Complex (or quadrature) sampling is a natural consequence of SDR processing due to the desire

to capture as much bandwidth as possible while being constrained by the device’s sampling

hardware. Maximizing bandwidth allows for more control for the developer (for example, it

might be advantageous to digitize the entire FM broadcast bandwidth of 20 MHz at once rather

than selectively tuning for individual channels one-by-one).

Figure 1: Laboratory Development Setup

The details of complex sampling are left to the interested reader14, but essentially, complex

sampling provides the user with a frequency band equal to the sampling frequency at a desired

center frequency. That is, assume a center frequency of �� Hz and a sampling frequency of ��

samples per second. SDR complex sampling then provides the developer with a frequency band

described as

 �� − ��
� < � < �� + ��

� Hz. (1)

Here, with complex sampling at �� Hz, �� Hz of signal bandwidth is provided, in seeming

violation of Nyquist sampling theory (Nyquist sampling theory states that �� 2⁄ Hz of bandwidth

is the maximally available bandwidth). This seeming discrepancy is resolved by considering that

the sampled data is no longer real-valued but instead complex-valued, with separate real and

imaginary components. Hence, there are actually two data elements per sample, and with twice

the data, it is possible to obtain �� Hz of signal bandwidth while sampling at �� Hz. Note that

since the time-based data is no longer real-valued, the resulting spectrum is no longer conjugate

symmetric such that the center frequency �� is not a center reflective point. The developer needs

to be cognizant of this fact when processing signals, in particular, when isolating signals and

applying symmetric filters or converting the complex-valued signal into a real-valued (floating-

point format).

Signals used in SDR processing are normally complex in keeping with the above description. For

many analog flowgraphs, the complex sampling is unnecessary and the signal can be converted

to be real-valued (note that “corruption” of the signal band may occur due to the reintroduction

of previously nullified spectral components as discussed above). Alternatively, for many digital

flowgraphs (where in-phase and quadrature signals are processed), the complex sampling is

useful and typically maintained.

The signal format is color-coded onto the flowgraph. Blue colored I/O tabs indicate complex-

valued signals while orange colored I/O tabs indicate real-valued signals.

Synchronization

The HackRF One includes easily accessible SMA connections to perform frequency

synchronization, known as CLKIN and CLKOUT. As a lower-cost device, the HackRF One

apparently does not have a temperature compensated frequency synthesizer, and frequency drift

is possible over the course of operation, which is potentially problematic for certain digital

modulation schemes. One solution is to frequency lock the transmitting and receiving HackRF

One devices together by either connecting CLKOUT of one device to CLKIN of the other or

using an external 10 MHz square-wave source connected to both CLKIN ports. For the

experiments described in this paper, it was found that using GRC software signal processing

alignment blocks was sufficient to maintain frequency synchronization.

Analog Communications

Broadcast AM Transmitter

The HackRF One SDR is used as the AM transmitter, set to operate in the ISM-band near 900

MHz. The flowgraph for the AM transmitter is given below in Figure 2. Note that the format is

broadcast AM (includes the carrier). In Figure 2, a CD-rate wave audio signal on the computer’s

hard drive is chosen as the message (aka information) signal (note that “repeat” is checked).

Following a low pass filter option to limit the bandwidth, a DC offset (via the “constant source”

block) is added to the information signal (controlled by a “range” block) to eventually represent

the carrier in the transmitted signal. The actual value is left as a variable in the QT GUI Block to

allow for adjustment of the modulation depth. Note that interpolation is performed to properly

increase the sampling rates. These signals are real-valued; however, the SDR is only configured

for RF transmission (and reception) of complex-valued signals, and it is therefore necessary to

convert the signal to the complex domain.

An osmocom sink block creates the interface to the RF hardware and antenna. For short

distances (as used in the lab), RF gains can be set moderately – in this case, only the RF gain of

20 dB is employed. A channel should be chosen in the range of 902 MHz to 928 MHz (ISM

band) – let 906 MHz be chosen for this particular experiment.

Figure 2: AM Transmitter

Included in the AM transmitter of Figure 2 are time-based and frequency based plots of the

signal at points in the processing chain. Shown below in Figure 3 in the top plot are segments of

the original message signal (blue) as well as the AM modulated waveform (red). The bottom part

half of Figure 3 shows the frequency content of the AM signal, with the carrier and message

signal sidebands, centered about 350 kHz.

Figure 3: AM Transmitter Signals

Broadcast AM Receiver

A second HackRF One device is programmed as the AM receiver. The demodulation is

performed as a simple envelope detector, as is generally done for broadcast AM and is shown

below in Figure 4.

As noted earlier, the natural format for SDR processing is complex-valued signals. In this case,

to apply the envelope detector, a conversion from complex to real-valued signals was explicitly

employed (alternatively, this conversion is an option for the osmocom block). Because we are in

a controlled environment where the transmit signal is known to be symmetric and real (we are

generating the AM signal), the conversion will not introduce unintended reflected spectral

components (as can happen with capturing a more general spectrum).

Figure 4: AM Receiver

In Figure 4, the AM signal is centered about 350 kHz, and the BPF isolates this signal. The

“Rail” block is used to half-wave rectify the RF signal, which is then processed by a LPF to

leave the envelope, which contains the message signal, along with significant decimation to

lower the overall rate. Following signal level normalization, the DC bias is removed and the

signal audio is played back to the user.

FM Transmitter

For FM transmission (show below in Figure 5), it was decided to use a frequency in the FM

commercial band, as this allowed easy conversion to connecting to broadcast FM. As long as the

power is kept low (as is true with the HackRF One), use of the FM band is allowed.

The FM transmitter flowgraph builds the composite FM signal, starting with a stereo signal at 48

kHz, utilizing a LPF to limit the frequency content to below 15 kHz. This LPF is followed by

pre-emphasis filtering on both L and R channels. The sum � + and difference � − signals

are then formed, with the later DSB-SC AM modulated by a doubled 19 kHz (i.e., 38 kHz) pilot

tone, with all three signals summed into one 53 kHz band. This composite signal is then

frequency modulated (note that the WBFM GRC block is not used – unfortunately, this block

includes low pass filtering which negates the use of the composite signal, instead performed by

the Frequency Mod block) after being interpolated to a rate that will support the wider FM

signal. This signal is then sent to the osmocom source, operating (in this case) at 95.7 MHz.

Figure 5: FM Transmitter

Shown in Figure 6 are plots of the FM spectrum. In the top plot, the modulated FM signal

spectrum is shown. In the second graph in the plot, the composite FM spectrum is shown, where

it is possible to identify all three components: � + , � − and the pilot tone.

Figure 6: FM Transmitted Signal and Composite Signal

FM Receiver

Shown in Figure 7 is the FM receiver. Note that this receiver is intentionally off-tuned by 1

MHz, and then mixed and filtered back to DC. This was done to correct for spurious content

present at DC if direct tuning was employed. Following FM demodulation with the WBFM

Receive block, the composite FM signal is disassembled. Note that the recovery of the pilot tone

includes a squaring and BPF operation to double its frequency; this tone is used to DSB-SC AM

demodulate the � − signal. � − is combined with � + to obtain the separated stereo

signals L and R, which are then deemphasized. The resulting stereo audio is then played back,

this time at 32 kHz, in keeping with the filtering done at the transmitter.

Figure 7: FM Receiver

Digital Communications

Digital communications with SDR/GRC has proven more challenging as compared to analog

communications. The main challenges include:

• Picking the optimal sampling time in the oversampled data stream;

• Identifying the start and stop of a message (beginning and end in a stream);

• Dealing with symbol ambiguity

The implementation of the digital communications flowgraphs used in this paper were highly

suggested by the publically available works of other researchers. In particular, examples of GRC

packetization15 were quite useful. Additionally, numerous example flowgraphs illustrating

methods to perform constellation encoding and decoding, clock and phase recovery, and matched

filter implementation were likewise suggested and employed16.

To address the digital communications challenges, there were several key blocks that found their

way into many of the GRC flowgraphs. These include:

• Costas loop: used to phase align the input;

• Clock recovery MM: Mueller/Muller clock recovery to adaptive pick the optimal

sampling instant;

• Constellation decoder: using a constellation defined in the constellation object block,

maps complex input samples to the nearest symbol;

• Protocol Formatter: using a protocol format specified in a format object, a header is

generated for the tagged stream supplied at the blocks input;

• Correlate Access Code – Tag Stream: determines the beginning of a packet based on a

predetermined (user specified) access code and creates a tagged stream of data bits;

• Tagged Stream to PDU: Constructs a Protocol Data Unit (PDU) asynchronous message

out of the received packet;

• Vector source: a utility to provide a repeating message along with a preamble.

All digital communication schemes were designed and tested using two HackRF One SDRs

attached to separate computers, communicating over a short RF link.

FSK Transmitter

For FSK transmission (shown below in Figure 8), 4-FSK was used as an introductory

implementation. The 4-FSK transmitter repeatedly transmits the message defined in the variable

“msg_bytes”. A Vector Source block includes the text message that functions as the payload for

the packet.

The payload stream must first must be converted to a tagged stream. Converting a stream to a

tagged stream associates key-value pairs of metadata with the supplied stream of data, where

generally this includes the data length as a minimum. A tagged stream is necessary in this case

for GNU Radio to handle the packetization process using pre-created blocks. The resulting

tagged stream is passed through the protocol formatter block to generate a packet header to be

associated with the data packet. The header is then prepended to the data packet by the “Tagged

Stream Mux” block, which requires the name of the key for packet length. The full data packet is

then split into two-bit “nibbles” via the “Repack Bits” block and gray-coded by the “Chunks to

Symbols” block. Following centering the sample values about zero, these symbols are supplied

to a VCO which generates a frequency proportional to that symbol’s value. Supplying the output

of the VCO to the SDR mixes the generated frequency with the configured intermediate

frequency of the SDR. The 4 MHz sampling rate with 100 samples per symbol indicates that we

have a 40 ksps or 80 kbps data rate. The resulting FSK signal is transmitted about 912 MHz,

within the ISM band.

Figure 8: 4-FSK Transmitter

FSK Receiver

Shown below in Figure 9 is the receiver for the 4-FSK system. The 4-FSK receiver reads in the

samples received by the SDR and performs packet detection. When a packet is detected the

payload of the packet is written to the socket specified in the PDU Socket block. In order to view

this data, a simple utility like “nc” on Linux can be used.

The received FSK signal is first passed through the “Quadrature Demod” block which returns a

sample value representing the predominant frequency in the current sample set. The Quadrature

Demod block behaves in a manner that can be conceptualized as the inverse of a VCO in this

case. The sample value associated with the peak frequency is generally scaled by some gain

value. An appropriate gain value can be calculated using:

 ���� � ��
����∆

� �
 , (2)

where �∆ is the frequency deviation of the FSK signal.

The high frequency content of the Quadrature Demod block output is then filtered out using a

low pass filter to increase symbol detection accuracy. The low pass filter increases the symbol

detection accuracy by supplying the clock recovery block a smoother signal with mostly low

frequency content. This increases the clock recovery block’s ability to better select appropriate

samples. The output of the Quadrature Demod block is 4-PAM. The blocks following the low

pass filter (preceding the “Clock Recovery MM” block) use the constellation detection

capabilities of GRC to identify the symbol being transmitted. The Clock Recovery MM block is

then used to select the appropriately timed sample to represent the symbol. The symbol is then

translated to its representative bits using the “Unpack K Bits” block.

The bits are passed through the “Correlation Access Code – Tag Stream” block that detects the

user-defined predetermined header access code and associates a packet length tag with the

stream for the duration of the number of message bytes specified in the header. The data stream

is then packed into full bytes and converted to a PDU. Empty PDUs are filtered out and the PDU

is broadcast using a network socket on the local machine. To view the output of the socket, the

network connect (nc) command line utility available in most Linux distributions can be used.

Figure 9: 4-FSK Receiver

Shown below in Figure 10 is the received spectrum of the 4-FSK receiver. Clearly visible in the

plot are the four frequencies associated with the FSK system (note: complex spectrum).

Figure 10: FSK Received Spectrum

PSK Transmitter

Given in Figure 11 is the flowgraph for the 4-PSK transmitter. The PSK implementation uses a

constellation with points �0,1,2,3� at �1 − , 1 + , −1 + , −1 − �. The combination of the real

and imaginary values leverages the way that the SDR encodes data by mixing the supplied

values with the device’s configurable intermediate frequency. The real part of the sample value

supplied to the SDR will be mixed with a sinusoidal signal that is phase shifted from the

imaginary part’s mixing signal by 90 degrees. The two independent sinusoidal signals are then

summed prior to the RF interface.

Similar to the FSK system, the source for the payload of the packet is a “Vector Source” block

which contains a text message (again, the variable denoted “msg_bytes”). The source stream is

then converted to a tagged stream using the “Stream to Tagged Stream” block that specifies the

key to be used for the packet length. The tagged stream is then passed through the “Protocol

Formatter” block to generate a packet header. The header is prepended to the data packet in the

“Tagged Stream Mux” block. The samples are then split into two-bit “nibbles” via the “Repack

Bits” block, and then converted to their complex representation in the “Chunks to Symbols”

block. A “Burst Shaper” block is used to add space between the messages being sent and to keep

sending alternating “dummy” symbols to maintain phase alignment. The symbols are then passed

through a root raised cosine matched filter to increase the SNR and minimize ISI at the receiver.

The 4 MHz sampling rate with 4 samples per symbol implies a 1 Msps or 2 Mbps data rate. The

resulting PSK signal is then transmitted at 918 MHz, within the ISM band.

Figure 11: 4-PSK Transmitter

PSK Receiver

The PSK receiver flowgraph is given in Figure 12. The signal is first passed through a root raised

cosine matched filter to match the processing done at the transmitter. The signal is phase aligned

using a 4th order Costas loop and decoded using GRC’s constellation decoder block with a QPSK

constellation defined using the “Constellation Object” block. The stream is then passed through a

“Clock Recovery MM” block to select an appropriately representative sample from the stream.

The symbol is then unpacked into its representative bits and run through packet detector,

repacked into bytes, and converted to a PDU (which behaves identically to the 4-FSK receiver)

to make the received packets payload available on a localhost network socket.

Figure 12: 4-PSK Receiver

Digital Communications Performance

The performance of both of the digital modulation communication schemes described above is

marginal and substandard. Constellation diagrams indicate higher than expected noise corruption

and other impairments. As implemented, performance was insufficient to allow large payload

data transfers. Therefore, only short strings of text were used for testing. As observed,

packetization works well, but payload corruption occurs due to noise in the system that leads to

the undesirable performance. The performance of the digital systems could likely be improved

with additional noise reduction techniques and the integration of error checking within the

packetization process. Increased signal levels may also help to improve performance.

Assessment

In the most recent offering of the course EGR 415 Communication Systems at Grand Valley

State University, students were anonymously surveyed in order to obtain their opinions on the

use of SDR as a platform for the instruction of analog and digital communications material. Each

question allowed for free-form comments. The following questions were asked of the students

(the enrollment was limited to 10 students in the Fall 2018 offering; all students responded to the

survey):

Q1: The laboratory component of this course helps me to grasp the theoretical concepts

presented in lecture.

Q2: Real-time signal modulation/demodulation is preferred to off-line simulation

Q3: The SDR/GRC approach combines the best of both worlds: block-based system design

with real-time transmission of radio signals.

Q4: Development of labs and projects using the SDR/GRC approach is as straightforward as

doing so in a simulation environment such as MATLAB/Simulink.

Q5: The possibilities of what I can develop with the SDR/GRC approach seem significantly

more numerous as compared to using MATLAB/Simulink.

The results of the first three questions (mean and standard deviation) are displayed below in Figure

13 (key: 5: strongly agree; 4: agree; 3: neutral; 2: disagree; 1: strongly disagree).

The survey results indicate that students clearly appreciate the laboratory component of the

course to aid them in their understanding of the theoretical material. The students also preferred

the transmission and reception of “real” signals over the RF interface to those generated in

simulation, and agreed that the SDR/GRC approach was a good way to achieve this goal.

Students were less in agreement that GRC was as easy to use as MATLAB/Simulink, seemingly

mostly due to the fact that the GRC documentation is highly incomplete. Finally, students did

seem to think that the SDR/GRC approach is quite powerful, even compared to

MATLAB/Simulink. These rating are supported by the selection of student comments presented

below.

Figure 13: Student Survey Results Summary

Each question solicited student comments. A selection of insightful comments is given below:

1. GRC flowgraphs are difficult to debug. Something doesn’t work and it is very difficult to

find your error.

2. Some of the public-domain materials for SDR/GRC are very exciting. These go beyond

the course material, but we now have the pre-requisites to do our own investigation.

3. SDRs are amazing powerful and versatile!

Conclusion

The point of this paper was to attempt to provide an educator a very strong starting point for

delivering SDR-based laboratories in a first or second semester analog and digital

communications course. For a few hundred dollars per workstation, students are quickly able to

develop sophisticated communication systems. Students seem to greatly appreciate this very

powerful approach to delivering communication laboratory experimentation.

The flowgraphs presented consider the more difficult case of actual RF over-air communication

(as opposed to simulating transceiver operation in a single flowgraph). To that end, flowgraphs

for analog communications (AM, FM) and digital communications (4-FSK, 4-PSK) were

presented, along with explanations that should significantly help the motivated educator get

started.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Q1 Q2 Q3 Q4 Q5

Mean Std-dev

While this paper gives a good start, there is plenty of opportunity to expand on the materials

given. The actual crafting of laboratories for students (what they should develop, what they

should measure) need to be developed as appropriate for the instructor teaching the course.

Unfortunately, in both the analog and digital communication cases, over-the-air performance was

found to be less than perfect. This was especially true for the digital modulation experiments.

The exact remedy for this substandard performance remains an active area of investigation for

the authors. However, that being said, the overall approach is still very satisfying for academic

laboratory instruction, and the subpar performance demonstrates the challenges faced in the

design of communication systems. Students get to see first-hand how the impairments impact

quality.

Beyond improvements to current methods, other modulation schemes need to be considered –

plans for future work include flowgraphs for higher M-ary levels and other modulation formats

including ASK and QAM. Following these relatively straightforward implementations,

flowgraphs to implement OFDM and DSSS are possible.

Bibliography

1. Bard, J. & Kovarik, V., “Software Defined Radio: The Software Communications Architecture,” Wiley Series in

Software Radio, 2007.

2. Reed, J., “Software Radio: A Modern Approach to Radio Engineering,” Prentice Hall, 2005.

3. URL: www.gnuradio.org last visited January 31, 2019.

4. Mao, S., & Huang, Y., & Li, Y. (2014, June), On Developing a Software Defined Radio Laboratory Course for

Undergraduate Wireless Engineering Curriculum Paper presented at 2014 ASEE Annual Conference,

Indianapolis, Indiana. https://peer.asee.org/22880

5. Wu, Z., & Wang, B., & Cheng, C., & Cao, D., & Yaseen, A. (2014, June), Software Defined Radio Laboratory

Platform for Enhancing Undergraduate Communication and Networking Curricula Paper presented at 2014

ASEE Annual Conference, Indianapolis, Indiana. https://peer.asee.org/23023

6. Wyglinski, A. M., & Cullen, D. J. (2011, June), Digital Communication Systems Education via Software-

Defined Radio Experimentation Paper presented at 2011 ASEE Annual Conference & Exposition, Vancouver,

BC. https://peer.asee.org/17783

7. Cao, D., & Wu, Z., & Wang, B., & Cheng, C. (2018, June), Undergraduate Research: Adaptation and

Evaluation of Software-defined Radio-based Laboratories Paper presented at 2018 ASEE Annual Conference &

Exposition , Salt Lake City, Utah. https://peer.asee.org/31170

8. Zhang, Z., & Wu, Z., & Wang, B., & Cheng, C., & Cao, D. (2016, June), Software Defined Radio-based

General Modulation/Demodulation Platform for Enhancing Undergraduate Communication and Networking

Curricula Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana.

https://peer.asee.org/25833

9. Gandhi Raja, R., Ranjini Ramb, & Soman, K.P. (2011, December), Analog and Digital Modulation Toolkit for

Software Defined Radio Paper presented at 2011 International Conference on Communication Technology and

System Design, Coimbatore, India.

10. VonEhr, K., & Neuson, W., & Dunne, B. E. (2016, June), Software Defined Radio: Choosing the Right System

for Your Communications Course Paper presented at 2016 ASEE Annual Conference & Exposition, New

Orleans, Louisiana. https://peer.asee.org/25838

11. URL: https://greatscottgadgets.com/hackrf/ last visited January 31, 2019.

12. URL: https://limemicro.com/products/boards/limesdr-mini/ last visited April 21, 2019.

13. URL: https://www.ubuntu.com/ last visited January 31, 2019.

14. Dunne, B.E. (2019 March), The What, How and Why of Complex Sampling for SDR Transceivers Paper

presented at 2019 ASEE North Central Section Conference, Grand Rapids, Michigan.

15. URL: http://aaronscher.com/ last visited April 26, 2019.

16. Mathys, P. (2016 September), Motivating Undergraduate Communication Theory Using GNU Radio Paper

presented at 2016 6th GNU Radio Conference, Boulder, Colorado.

