Implementing a Histogram Equalization Algorithm in
Reconfigurable Hardware

Stephanie Parker, Undergraduate Student, Steplanleer1987@yahoo.com
J. Kemi Ladeji-Osias, Associate Professor, Jumdae|i-Osias@morgan.edu
Morgan State University, Department of Electricadl &omputer Engineering,
5200 Perring Parkway, Baltimore, MD 21251
Abstract

Dedicated hardware can be used when images ano ardeacquired and processed. In this paper, a
histogram equalization algorithm is written in artheare Description Language for future implemenotati
in reconfigurable hardware. The goal of this prbjet¢o implement a histogram equalization algenith
using VHDL for a real-time processing system onedd®Programmable Gate Array (FPGA). The
histogram equalization algorithm was implemented i@sted using a known 4 x 4 array. The array was
initially coded in MATLAB and then converted to VHDwhich describes the behavior and structure of
electronics systems. The algorithm was later tessany Forward Looking Infrared (FLIR) images. The
simulated speed of the VHDL implementation was 0.602 vs. 0.053 ms in MATLAB. In conclusion, the
histogram equalization has been successfully impieed in VHDL using Xilinx ISE, MATLAB and
ModelSim.

Introduction

The goal of the External Hazard Detection and Mfiaation task in NASA'’s Integrated Intelligent Bht
Deck Project is to improve the detection of hazalas to terrain, air traffic, and runway obstadigs
integrating data from weather radar, infrared videdight Detection and Ranging (LIDAR) with exisgj
aircraft sensor§ Within this project, our laboratory has focusextioe use of dedicated Field
Programmable Gate Array (FPGA) hardware for contmrtally intensive algorithms. When images and
video are acquired, some manipulation and procgssimst occur before they are displayed. In order to
maintain real-time feedback to the pilot, dedicdtatdware can be used instead of software solutions

This article evaluates a design method for a liead-processing system based on Field Programmadike G
Array (FPGA) and Digital Signal Processing (DSP)sture. To this end, a histogram equalization
algorithm is implemented in reconfigurable hardw&tstogram equalization is a technique that aions t
create an image with equally distributed brightressls over the entire brightness scal€he software
tools that will be used are Matrix Laboratory (MAAB), Xilinx ISE, and Mentor Graphics ModelSim.
MATLAB provides the ability to write the algorithm a high-level programming language with built-in
visualization tools. Xilinx ISE and ModelSim alldar the algorithm to be written in hardware before
downloading to a device. The value of this rese&¢hat hardware has a faster time in processing a
image.

Section Il of the paper will provide a backgroumdhostogram equalization and reconfigurable hardwar
Sections Il will present the methodology, whilecsen 1V will display and discuss the results. Timal
two sections of the paper will provide the conadasand future work.

Background

Image pre-processing aims to improve image dasuppressing unwilling distortions or enhancing some
image features important for further processin§omputers perceive images stored in arrays, while
computer vision tries to duplicate the images weaéws see. Digital images have a fixed number of-gra
levels, based on the number of bits chosen, segpalg transformations are easy to realize both in
hardware and software. Gray-scale transformatibasge the brightness of the pixels in the imagecared
algorithm that achieves this transformation isdasam equalizatioh Figure 1, illustrates the steps in
image processing systems applied to histogram eqtiah. First, the image loader is where the imiage
specified from either a camera or a file on the Pli&n it goes through the image processing block an
inside the block, the image goes through five sbegiere the system outputs the equalized histogifaime
original image. Once the equalized image is outpathe camera, a display or one can save it tie afi

the PC.

Image Loader — Image Processing | ——>| Output Equalized Histogram
of Original Image

Create and initialize Scan every pixel and Form the cumulative
histogram array increment count image histogram

:

Compute transform

Rescan the image and
write an output image
with gray-levels

Figure 1. Stepsin Image Processing System

A. Histogram Equalization Algorithm

Digital images are represented as two dimensioral prrays. Each pixel indicates the brightnessabor

of the image at a given point. Histogram equalaratireates an image with equally distributed brighs
levels over the whole brightness scal&he MATLAB high-performance language for techhica
computing integrates computation, visualizatiord programming, and permits algorithms to be exetute
and simulated. MATLAB has syntax similar to manggnamming languages, therefore allowing one to
create a code parallel to the algorithm detailefidnka’. In MATLAB, if a small set of data is used to test
an algorithm, results can be extended to a largfenfsdata set. Although, MATLAB has a histogram
equalization function (histeq) we chose to impletrika algorithm using loops and lower-levels comdsan
for portability to VHDL.

B. Reconfigurable Hardware

A FPGA is a programmable semi-conductor devicedHaws source code or other logic functions to be
programmed in hardware description languages (HBIspecify how the chip will work Figure 2
illustrates the steps for designing with Xilinx ISEhese include design entry, synthesis, implentiemta
device program and verification. These steps widuge the necessary process to get the code tGA.FP
Xilinx ISE and ModelSim provide support for desigmtry using VHSIC Hardware Description Language
(VHDL). VHSIC is an acronym for Very High Speeddgtated Circuit. VHDL can describe the behavior
and structure of electronic systems, but is pddityisuited as a language to describe the strecod
behavior of digital electronic hardware designshsas FPGAS.

Designs created using VHDL in Xilinx ISE allows tbede to be synthesized and downloaded to the
FPGA. In addition, VHDL types, functions, packagas be defined if they will be needed. ModelSim
providessa comprehensive simulation and debug emvient for complex FPGA designs and is accessible
form ISE”.

Design = Dasign Verification
Entry
Behavioral
Simulation
Dasign [l
Synthesis

Functional
Simulation

Design Static Timing
Implemantation Analysis
Back Timing
l Annolation Simulation
Xilinx Device In-GCircuit
Programming Verification

Figure 2. FPGA design flow chart [6]

M ethodology

The outputs for each stage of the histogram ecptadiz algorithm were derived for a 4x4 array. The
algorithm was then implemented in MATLAB and vediusing the 4x4 array and one Graphics
Interchange Format (GIF) image from a previousftegit simulation. The algorithm was then coded in
VHDL and tested using the 4x4 matrix.

A. Algorithm

The first step is to establish the histogram ega#bn algorithm that will be used. There are Steps to
perform histogram equalization as described by §4nk

(1) For an NxM image of G gray-levels (often 256ate an array H of length G initialized with Owes.

(2) Form the image histogram: Scan every pixeliancement the relevant number of H—if pixel p has
intensity gp, perform

H[gp] = H[gp] +1 (1)
(3) Form the cumulative image histogram Hc:

Hd[o] = H|[0]
Hc[p] = H[p-1]+ H[p], p...2t0G @)
(4) Set

_ G-1,
T[p] = round(w Hc[p]j 3)

(5) Rescan the image and write an output image gvdly-levels gq, setting
9q = T(gp] (4)
B. Codingin MATLAB and VHDL

First, the values M, N, and G are defined usingdtk test matrix. The data values in Table 1 afsned

as the 4x4 array with four gray-levels. In ste@d 2 the array H of the length four is initializedh

zeros. Afor loop is used to execute the code and loop back whépikg the increment index variable. In
MATLAB an array index goes from one to G, thereftire algorithm is modified by adding one to gp. For
step 3, a 4x1 array is defined with values of zerz$1] is assigned the value of the first elemart.
Anotherfor loop is applied, but this time the loop is indexed framo to G. In step 4 a mathematical
expression for T[p] is executed in tfee loop. In Step 5 the image is rescanned and the piadsgned

the new value using T.

Once the code had the same results as the handat@los, then the algorithm was applied to an
aeronautical image by using thmwrite andimread functions to import and export the Forward Looking
Infrared (FLIR) image.

The code written in MATLAB was used as a templatevtite the VHDL code. Xilinx ISE has a template
of a VHDL module that can be customized with theuits, outputs, and the process needed for histogram
equalization. In VHDL, the array attributes weredi$o create thir loops to meet requirements for
synthesis. In addition, a package was written fondehe array type for the test image. The pixelthe
image array were defined as a constant.

There are some differences between the two prognagiienguages that needed to be established. For
example, in MATLAB, an array index goes from onézoln VHDL the array index ranges from 0 to G-1
as in the original algorithm. VHDL, is a type dnvianguage and the type for each variable must be
defined. VHDL defines signals which are updatededéntly from variables. MATLAB allows the code for
Step 4 to be written in one equation. On the ofi@ad, in VHDL, equation (3) has to be implemented
using several sub steps.

VHDL does not support division. Therefore, rathiaart using a division operator, a shift right opierat
was used. The shift right function required tha¢gers were converted to unsigned numbers firgth Ea
time an array is shifted right, it is equivalentdivide by two. Thus, the N & M must be multiplesteo;

otherwise, a divider must be designed. Once the sgdtax compiled successfully, it was simulated fo
100 ns, then the code’s output was verified withlthnd calculations and output from MATLAB.

Tablel: Original data, H (4x4 array)
1 2 3

1
1 2 2 1
3 3 1 3
2 3 1 2

Results

Hand calculations were established to make suredtie gave us the correct values for each statjeof
algorithm. The column represents the array indekle 2 (a) shows the values for each array index f
step #2. The results from step #3 of the hand tatlons are displayed in (b). Table 5 illustrates values
of an image with gray-levels.

Table 2: Results of Calculationsfor 4x4 array
(a) Histogram, H[gp] (step #2)
L 4 | 2 | 5 [5 |

(b) Cumulative Histogram, Hc[p] (step #3)
| 4 | 6 | 11 | 16 |

(c) Transformation Matrix, T[p] (step #4)
L2 [12 | 2 [3 |

(d) New image, gp (step #5)
1 2

NWF,W

NWkFF

2 2
3 1
3 1

After implementation two data sets were used téuawa the algorithm in MATLAB. The algorithm was
first verified with the 4x4 matrix and hand caldidas and the same result was obtained. Using FLIR
images, the equalized image and the new histograra egompared to the original image. Figure 3 digpla
the original aeronautical and histogram equaliratiage. Figure 4 displays the frequency vs. intgd
the original image and histogram equalization imddp result in (b) illustrates an increase in the
frequency between intensities of 50 and 250. Therplpresents the graphical characteristic of rtiegies

in Figure 3. The algorithm was executed in 0.053 ms

Upon successful implementation in MATLAB, the net¢p was to evaluate the algorithm in VHDL.
Although the results for H and Hc[p] were validwas incorrect in VHDL. Table (2a) displays the
incorrect values computed for T[p] after the fuantivas implemented in the code. A second array was
then used to test the code. Table 4 displays thesaf the second condition, a 4x4 array, whick wa

designed to test the code for successful execuliagle 5 are the hand calculations for the secehdfs
data.Shift right (shr) function was used to implement division @per. Shifting right is dividing by two. A
if statement was implemented to execute the rounding in Stef\#dording to the least significant bit, the
code will either shift right or shift right and adde to the binary number as illustrated in Fidur®nce
the code was finish and had the right syntax, thercorrect values for T[p] shown in Table 5¢ wire
same as the hand calculation. Table 5d displaysdtues of the equalized image. The algorithm was
executed in 0.020 ms.

Figure 3. Histogram equalization: (a) original image; (bualized image.

Original
T

14000

12000 -

10000 -

8000 -

Frequency

6000

4000 -

2000

I I I
0 50 100 150 200 250 300
Intensity

(@)

Equalizer
14000 T

12000 -

10000 -

8000 -

Frequency

6000 -

4000 -

2000 -

ok

0 50 100 150 200 250 300
Intensity

(b)

Figure 4. Histogram equalization: (a) original histogratmy ¢qualized histogram

-

| +1(ADD ONE) |

Figureb. If statement flow chart for Rounding

Table 3: VHDL histogram equalization algorithm results
() T[p] (step #4)

Lo [1 | 2 | 38 |
(b) gp (step #5)
0 1 2 3
0 2 2 0
3 3 1 3
2 3 0 2

Table 4: Second Condition (4x4 array) for testing
1 2 3

NW|O|Oo

0 0 0
3 1 3
3 0 2

Table5: Results of Calculationsfor Second Condition

(a) Histogram, H[p] (Step # 2)
. 6 | 2 | 3 | 5 |

(b) Cumulative Histogram, Hc[p] (step #3)
| 6 | 8 | 11 | 16 |

(c) Transformation Matrix, T[p] (step #4)
L+ [1] 2 [3 |

(d) New image, gp (step #5)
1 2 3

1
1
3

1 1 1
3 1 3
2 3 1 2

(¢

Conclusion

The histogram equalization algorithm has been implged in Xilinx ISE, MATLAB and ModelSim. In
addition, preliminary synthesis has occurred. gsirsmall set data allowed us to write the necgssar
modification of division and rounding, the codevaié able to perform as designed. The image dirmessi
must be a power of two. The code that has beemewris a generic code that can be used to hangle an
dimensions that the user wants to utilize.

Future Research

The histogram equalization algorithm is executiagectly. The next steps will follow the FPGA desig
flow chart. The steps to complete this researcli{Brdesign synthesis, (2) design implementatiash (&)
Xilinx device programming. Once the code is sudtdlysdownloaded on the FPGA, the next phase is to
work with median filter and thresholding algorithmdter successfully implementing the algorithms in
VHDL, the code will go through the rest of the FP@ésign flow chart to be programmed to a FPGA.
Acknowledgement

This work was supported by the Chesapeake Infoom&ased Aeronautics Consortium (CIBAC) at
Morgan State University.

Reference

1 S.D. Young, S. Kakarlapudi, and M. Uijt de Yout#y Shadow Detection and Extraction Algorithm UgiDigital Elevation models and X-band
Weather Radar Measurementsit. J. Remote Sensing, 26(8): 1531-1549, 2005.

2 Sonka Milan, Image Processing Analysis, and Meckision, 1999, California: Brooks/Cole Publishi@ompany

3 Field Programmable Gate Array, http://en.wikipeatg/wiki/FPGA (Accessed 7/22/2009)

4 What is VHDL?
http://74.125.47.132/search?q=cache:MIxxUJ50Y EJ:wdewlos.com/knowhow/vhdl_designers_guide/what_igl/vwhat+is+VHDL%3F&cd=1&hl=en&ct=
clnk&gl=usé&client=firefox-a (Accessed 7/23/2009)

5 What is ModelSim?

http://74.125.47.132/search?g=cache:r6 WIJWwmnOCad-wwedel.com/+what+is+ModelSim%3F&cd=3&hl=en&ct=cBaffi=us&client=firefox-a (Accessed
7/23/2009)

6 FPGA Design Flow Overview file:///C:/Xilinx/daggenglish/help/iseguide/whnjs.htm (Accessed 7/20920

Appendix

MATLAB CODE:

%Create an array H of length G initialized withd&ues
clear

tic

%initialze values for M, N and G

M=4; N=4; G = 4;

X = zeros(M,N);
X=[0123;0220;3313;2302];

%Scan every pixel and increment the relevant mermbier- if pixel p has
%intensity gp, perform
H = zeros (1,G)%1x4 array

fori=1.M
forj=1:N
gp = X(i.);

Temp = H(gp+1)+1; % Adjust gp to go from 1 to G, not 0 to G-1
H(gp+1) = Temp;

end

end

%Form the cumulative image histogram Hc:
Hc = zeros (1,G);
Hc(1) = H(1);
forp=2:G
A =Hc(p - 1) + H(p);
He(p) = A
end

%Set

T = zeros (1,G);

forp=1.G
A = round(((G-1)/(N*M)).*Hc(p));
T(p) = A;

end

%Rescan the image and write an output image wék-tpvels gq
T1 = zeros (M,N);
fori=1:M
forj=1:N
gp = X(i.j);
Temp = T(gp+1); % Adjust gp to go from 1 to G, not O to G-1

T1(i,)) = Temp;

end
end
toc
% Display output after computation is complete
H
Hc
T
T1

VHDL CODE:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
--use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.numeric_std.ALL;
use work.hist_pkg.ALL;
---- Uncomment the following library declarationiiifstantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity histo_two is
port(--M: in integer;
--N: in integer;
--G: in integer;
--h1: out h_vector);
T_eq: out hist_array);
end histo_two;
architecture Behavioral of histo_two is

--values within X

constant my_hist:hist_array:=((0,1,2,3), (0, 02,3, 3, 1, 3), (2, 3, 0, 2));
----array H of length G initialized with O values

--type h_vector is array (0 to 3) of integer;

begin

pO: process

variable h: h_vector:= (0,0,0,0);

variable gp: integer;

variable temp: integer;

variable H_c: h_vector;
variable A: integer;

variable T: h_vector;

variable B: integer;

variable up: integer;

variable dwn: integer;

variable up_u: unsigned(5 downto 0); --unsigreedrray type, so have to define vector
variable dwn_u: unsigned(5 downto 0); --unsigisearay type, so have to define vector
variable div: unsigned(5 downto 0); --unsignedrisy type, so have to define vector
variable div_test: unsigned(5 downto 0); --unsigjis array type, so have to define vector
variable T_eql: hist_array;

begin
-- Scan every pixel and increment the relevant nerobH-- if pixel p has
-- intensity gp, perform
foriin my_hist'left(1) to my_hist'right(1) loop
for jin my_hist'left(2) to my_hist'right(2) loop
gp = my_hist(i,j);

temp:= h(gp) + 1;
h(gp) := temp;
end loop;

end loop;

-- Form the cumulative image histogram Hc:

H_c(0) := H(0);

for p in h'left(1)+1 to h'right(1) loop
A :=H_c(p-1) + H(p);

H_c(p) = A;

end loop;

for p in h'left(1) to h'right(1) loop
up:= (h'right(1))*(H_c(p));
up_u:=to_UNSIGNED(up,6);
div_test:= SHift_Right(up_u,3);--shift threenés because the fourth shif depends on Isb
if div_test(0)="1'then
div_test ;= SHift_Right(up_u,4) + 1;

else
div_test := Shift_Right(up_u,4);
end if;
B :=to_INTEGER(div_test);
T(p) := B;
end loop;

-- Rescan the image and write an output image gvitly-levels gq
foriin my_hist'left(1) to my_hist'right(1) loop
for j in my_hist'left(2) to my_hist'right(2) loop
gp := my_hist(i,j);
temp:= T(gp);

T_eql(i,j) := temp;
end loop;

end loop;

T eq<=T_eq],
--wait;
end process;

end Behavioral;

