
Session # 3613

Implementing Computational Methods into Classes throughout
the Undergraduate Chemical Engineering Curriculum

William B. Perry, Victor H. Barocas, and David E. Clough
University of Colorado

Abstract

In previous years, the undergraduate Chemical Engineering curriculum at the University of
Colorado has contained a gap in students’ exposure to computational methods and programming.
As freshmen, students learned programming concepts in the course Introduction to Engineering
Computing (GEEN 1300) and were later required to use these skills as seniors in Numerical
Methods for Process Simulation (CHEN 4580). In the two years separating these classes,
students had little opportunity to use and reinforce their programming skills. To remedy this
oversight, we have developed programming modules for six sophomore- and junior-level courses
throughout the curriculum. These modules have been implemented in the courses as
supplements to homework.

Each module focuses on a problem that is familiar to students from course material. Students are
given a sample program that uses computational methods to solve each problem. They are then
asked to modify the program to solve a more difficult problem. In addition to writing these
modules, we have also provided support for students in the form of “Module Teaching
Assistants.” Initially, these modules have proven successful in giving students exposure to
programming. The need for steady reinforcement of computational skills is not restricted to
Chemical Engineering. The programming module concept would be applicable to any
engineering curriculum.

Introduction

The undergraduate Chemical Engineering curriculum at the University of Colorado currently
requires students to take two computer-intensive courses. Entering freshmen are required to take
Introduction to Engineering Computing (GEEN 1300). In this course, students are introduced to
computational methods and become familiar with programming principles, various pieces of
software, and the computing networks at the university. Currently, the Chemical Engineering
section of this course, taught by David Clough, teaches programming skills using Fortran 90.
The course also introduces students to Microsoft Excel, Matlab, and Mathcad. In the fall
semester of the senior year, undergraduate students are required to take Numerical Methods for
Process Simulation (CHEN 4580). In this course, taught by Victor Barocas, students are
introduced to useful methods for numerical problem solving, such as linear and nonlinear
equation solvers, numerical integration, and ordinary differential equation solvers. Although
CHEN 4580 students are given the option to use any programming language for homework
assignments and projects, most find the Matlab platform to be extremely useful.

P
age 4.299.1

Unfortunately, these two computing courses are separated by five semesters in the current
curriculum. In the first course, students learn programming concepts and are then expected to
remember and use these skills in the second course. In the two years separating these courses,
the average student has little opportunity to use his/her programming skills in the normal
Chemical Engineering courses. Without use, these skills fade and must be relearned in the later
course. Maintaining the programming skills learned in GEEN 1300 is not only important for
success in CHEN 4580, but also for engineering problem solving in general.

To correct this problem, we have incorporated programming modules into six Chemical
Engineering courses in between GEEN 1300 and CHEN 4580. Each module introduces a
problem relating to material in the course, which must be solved using programming and
computational methods. Listed below are the six sophomore- and junior-level courses in which
programming modules have been implemented:

Year Semester Course(s)

Sophomore Fall CHEN 2120 Material and Energy Balances

Sophomore Spring CHEN 3200 Chemical Engineering Principles 1
(Fluid Mechanics)

Junior Fall CHEN 3210 Chemical Engineering Principles 2
(Heat Transfer)

CHEN 3838 Applied Data Analysis

Junior Spring CHEN 3220 Chemical Engineering Principles 3
(Separations and Mass Transfer)

CHEN 3320 Thermodynamics

Cases in which students may take these classes in a different order are rare, but do exist. The
ordering of the modules is important because the problems are intended to increase in difficulty
and complement the techniques used in other modules. However, the order in which the
modules are worked is not critical and it is far more important that students have the opportunity
to work every module regardless of order.

Each module focuses on a target computational technique to be used in solving the problem. The
basic module outline consists of background information on this target computational technique
followed by the actual problem statements. Each module contains at least two major
programming problems. First, the module introduces a basic “tutorial” problem and gives

P
age 4.299.2

students a complete program with which to solve it. Students must then type in and run this
program. Next, the module gives one or more “challenge” problems, which are considerably
more difficult. Students are then asked to modify the previous program to solve the new
problem(s). In this way, the module does not ask students to recall all the syntax and structure of
a programming language. Giving students a functional program to solve the tutorial problem
allows them to refresh their memories on how the language works so that they are never asked to
write a program from scratch. Although it is important that students be able to write a complete
program on their own, the primary purpose of the modules is to reinforce students’ programming
skills and help them remain comfortable with programming.

Generally, the tutorial problem is simple enough to have an analytical solution. Students are
then asked to compare this solution to the program’s numerical solution. In contrast, the
challenge problem does not have an analytical solution and can only be solved numerically. This
type of structure illustrates to students that a pen, paper, and calculator can only take them so far.
At some point, the level of difficulty of the problem warrants the use of a computer.

In the courses, these modules were implemented as full homework assignments, with length
comparable to that of other homework assignments in the course. The modules in the fall
semester ranged from 9-18 pages long and took students anywhere from 5-10 hours to complete.
All six modules are available for use on the Computational Methods in Chemical Engineering
web site at http://casablanca.colorado.edu/~barocas/Computational.html.

Module Problem Descriptions

Developing the module problems is a challenging task because the problems must blend a series
of computational methods problems with course topics that follow the Chemical Engineering
curriculum. Making this task even more difficult is the fact that the computational methods
should be introduced in order of difficulty, with each problem ideally being progressively more
challenging in its programming requirements. This section details each of the six module
problems, describing both the computational methods and the course topics we have chosen for
the problems.

The first step in developing the module problems is to consider students’ understanding of both
material in the course and their programming backgrounds. In terms of their experience in
computational methods, GEEN 1300 students will have worked extensively with at least one of
the following equation solvers: the bisection method, the false position method, or Newton’s
methods. Through homework assignments, students may also have used Euler’s Method,
Simpson’s rule, and the trapezoidal method for numerical integration in addition to the Golden
Section Search Method for optimization.

Considering this background, students in the Material and Energy Balances course should be
able to handle a problem with significant computational methods requirements. The tutorial
problem for this module uses the Golden Section Search Method to maximize the profit of an
isothermal reaction. At constant temperature, only mass balances are required in solving this

P
age 4.299.3

problem. The challenge problem then asks students to consider an exothermic reaction and again
maximize the profit. For this challenge problem students must add energy balances to their list
of equations. Optimization problems fit very well in Material and Energy Balances and can
serve as a cumulative review of topics covered throughout the semester.

In the following semester, students in the Fluids course are introduced to numerical solutions of
ordinary differential equations (ODEs) by the finite-difference method. The module involves
Poiseuille flow of Newtonian (tutorial problem) and non-Newtonian (challenge problem) flow in
a pipe. The concept of non-Newtonian fluids is introduced in the course, but up until now the
students have had no quantitative experience with such fluids. The module thus allows students
to improve both their understanding of fluid mechanics and their computer skills.

In the fall semester of the junior year students have programming modules in two courses. In the
Heat Transfer course, students again work with ODE solvers, but in a more difficult problem.
Here, the tutorial problem asks students to determine the temperature profile of the familiar
cooling fin. This problem generates a second-order ODE, which can be solved both analytically
and numerically. In order to aid students with the numerical solution, they are given a first-order
ODE solver routine. However, because the problem statement gives the temperature at the base
of the fin and a flux boundary condition at the tip of the fin, the numerical solution requires
students to implement a shooting method. Effectively, students must combine the ODE solver
from the tutorial problem with an equation solver. Once the shooting method algorithm is
complete, students are asked to again use it to solve the cooling fin problem—but this time they
are asked to consider both convection and radiation. This module complements the finite
difference methods used for a second-order ODE in the fluids module.

In the other fall junior-level course, Applied Data Analysis, students are asked to fit a data set to
a two-parameter linear model. The analytical solution to this problem requires use of the least-
squares estimator equations. To determine a numerical solution, students are given a program
that minimizes the sum of the squares of the errors (SSE), using the method of steepest descent
(the gradient method). Here, the analytical solution serves, not only as a basis of comparison,
but also as an initial guess for the two model parameters. For the challenge problem, students
are asked to improve the algorithm and use it to fit the data to a nonlinear model.

In the Spring Junior semester, students again have programming modules in two of their courses.
In the Mass Transfer and Separations course, students use Newton-Raphson iteration with
numerical differentiation to determine the mass balance on an equilibrium flash (tutorial
problem) and then on two flashes (challenge problem) in series for an azeotropic system. Again,
students develop both computational and classical skills. For the Thermodynamics course a
modified line search is used to generate a ternary phase diagram. Liquid phase behavior is an
important component of thermodynamics, and it is also important that students recognize that
bracketing methods, although less efficient locally than Newton, can be of great value in finite-
domain problems (note that Newton's method can struggle in such problems because it allows
mole fractions outside of [0,1]).

By the time students reach CHEN 4580, they will be comfortable writing programs and will have
used several computational techniques.

P
age 4.299.4

Software

Because the initial purpose of creating the programming modules was to bridge GEEN 1300 and
CHEN 4580, the software used in both of these courses must be considered when selecting the
programming software for the modules.

After completing GEEN 1300, students should feel very comfortable writing a Fortran 90
program and will have an excellent understanding of the language. Fortran 90 is used for this
course because many engineers will find it useful in their careers. In addition to being an
excellent language for numerical calculations, Fortran 90 is supported by several libraries such as
IMSL, Numerical Recipes, and NAG. It is also a good language for learning general
programming principles.

On the other hand, most CHEN 4580 students prefer to use Matlab and the programming
language associated with it. The main strength of Matlab is that it is easy to learn and use.
Matlab is a good fit for a Numerical Methods course, because it easily performs matrix
calculations, a task that arises frequently in CHEN 4580. Furthermore, Matlab is excellent when
it comes to plotting and displaying results. It offers numerous styles of graphs and all can be
viewed with a simple one-line command. When compared to Fortran 90, Matlab is much better
in this respect. Down the road, however, Fortran 90 may be useful to students who face large-
scale numerical tasks.

Naturally, the programming modules use both of these languages and progress from using the
familiar Fortran 90 to introducing Matlab. To aid in the transition from Fortran 90 to Matlab, we
have written a brief tutorial to introduce students to both the front end of Matlab and Matlab m-
files. This tutorial is also available on the Computational Methods in Chemical Engineering web
site. The two modules used in the sophomore-level courses present the tutorial problems with
both Fortran 90 and Matlab programs. For the challenge problem in both of these modules,
students are told to use the language with which they are most comfortable. No doubt, most will
use Fortran 90.

In contrast, the four junior-level modules emphasize the use of Matlab over Fortran 90. This
change encourages students to use Matlab so that it will be a familiar tool by the time they reach
CHEN 4580. As the problems become more difficult, the ability to visualize results with graphs
becomes more valuable. In addition, these modules require matrix calculations. Because
problems in the junior-level modules are more challenging, the easy-to-use Matlab platform will
certainly be preferred by students.

The Student Task Force and Module Teaching Assistants

To more easily implement the modules into courses, a student task force was created to write the
modules and develop solution keys. Lead by Victor Barocas, this task force ideally has three
students each semester, one for each course in which modules are implemented. Although the
task force as a whole is responsible for developing the modules, each member of the task force

P
age 4.299.5

will also act as a “Module Teaching Assistant” for one course and will focus his/her duties on
that course. The Module TA is required to both grade the modules and help students through
office hours or help sessions. In addition, this person acts as a liaison between the course
instructor and the student task force. We have found that an effective way for the Module TA to
help students is to first hold a help session to introduce students to the material presented in the
module and answer any initial questions. Then, as the due date approaches, office hours should
be held in a computer lab to help students with specific programming tasks. Effectively, the
Module TA is a teaching assistant for one homework assignment in the course. Making the
Module TA a separate position is preferable, because the instructors and the normal TA’s for the
courses may not be as familiar with the programming concepts used in the modules.

Developing the modules will require a considerable amount of work from the student task force,
but very little work once the modules are written. In our experience, writing and editing a single
module, including developing the problems, and making the solution key requires 50-70 hours or
3-5 hours per week over the course of a semester. Considering that three modules must be
developed each semester, the student task force will work an estimated twelve hours per week
through an entire academic year just in writing the modules. Obviously, developing the modules
is the most difficult part of this project. However, the modules may be used multiple times.
Once the modules have been written, the student task force is no longer needed. Of course, in
using the same module from year to year, the opportunity exists for a sophomore or junior to
copy answers from a junior or senior who has already worked the module. In this respect, the
modules are no different from many of the assignments in an engineering curriculum. As with
any out-of-class assignment, the responsibility of regulating duplication of work lies with the
students themselves.

After the modules have been written, only the duties of the Module TA’s remain. Between help
sessions, office hours, and grading modules, each Module TA will probably only work about
fifteen hours or the equivalent of one hour per week over the course of a semester. This estimate
is based on an average class size of about 60-70 students for these six classes. Most of the work
for Module TA’s will be concentrated during the time when the module is used in the class.
Again, with three modules each semester, this works out to only three hours of work per week,
year-round, in order to implement the programming modules into the curriculum. This is such a
small time commitment that it may be possible to borrow TA’s from other courses, such as an
introductory computing course or a numerical methods course, to also act as Module TA’s.

Grading

There are two important points to consider when grading the programming modules. Because
the first part of each module contains a great deal of background and no programming, the text in
these sections contains fill-in-the-blank questions to guarantee that students are absorbing the
material. These questions are relatively easy, but they are numerous. The second point to
consider is that the purpose of these modules is more for instruction than evaluation. With this in
mind, grading does not seem completely fair. We could never expect to measure the
instructional value of a module for each individual. Nevertheless, without a grade students

P
age 4.299.6

would have no incentive to work the module. Therefore, some credit should be given just for
attempting the programming problems, regardless of whether they were done properly. Any
student who has done the programming problems has put forth an effort to learn the material, and
the grade should reflect this.

As an example, consider a module that contains twenty fill-in-the-blank questions along with the
tutorial and challenge programming problems. A fair grading breakdown might look like this:

• 40 % for the fill-in-the-blank questions (2 pt. each)
• 30 % for completing the programming problems (10 pt. for tutorial problem, 20 pt. for

challenge problem)
• 30% for correct answers on the programming problems (10 pt. for tutorial problem, 20 pt.

for challenge problem)

A Department-Wide Effort

One problem with implementing programming modules is that they cannot be implemented as an
independent project by one or two faculty-members. Because the modules are used in courses
throughout the curriculum, they must be a department-wide effort. Naturally, some faculty
members will be opposed to implementing programming modules into an engineering
curriculum.

Some might argue that programming has little value and will question whether programming
should be taught at all. Those opposed to teaching programming argue that professional
engineers rarely program because they prefer to use software packages with built-in capabilities.
Thus, the time spent teaching programming skills should instead be used to introduce common
software packages. Many of these software packages, however, have programming languages
associated with them. Excel, Matlab, Mathcad, and LabView all allow their built-in capabilities
to be extended through programming. Students and engineers who are unable to program will be
limited in their ability to use these software tools.

In addition, programming forces students to learn general problem solving strategies, to organize
their thoughts, and to formulate them in the structure of a programming language. Although
professional engineers may rarely use their programming skills, they will almost certainly use the
problem-solving skills obtained by learning to program. Furthermore, engineers who rarely use
programming skills may actually be avoiding opportunities to program, and instead opting for
more difficult, less accurate solutions. This programming phobia is unfortunately shared by
many engineering students and should by no means be encouraged. Instead, engineering
students should have to face their fears of programming by being forced to use the skills
repeatedly throughout their curriculum. These programming modules are an excellent way for
students to reinforce the skills they learned in introductory computing courses.

Others opposed to introducing programming modules might argue that it will require too much
time from both instructor and students and will distract from the material of the course.

P
age 4.299.7

Naturally, instructors fear that modules will require too much preparation time. However, as
discussed above, the modules require very little effort on the part of the course instructors. The
student task force is responsible for developing the modules and solution keys, for grading
assignments, and for answering student questions. Time necessary for instructors to edit the
modules and help students is minimized by this support.

The instructor’s only task would be to make room in the course syllabus for the module. At
some point during the course of the semester, preferably toward the end, the instructor must
lighten the homework load for students and perhaps allow 10-15 minutes of class time to have a
Module TA introduce the module. If the instructors are behind schedule in the course and have
not been able to cover all the topics they would have liked to, making room for programming
modules may be difficult. However, if the modules are written to include these end-of-the-
semester topics, they may be especially valuable to the instructors and students. Furthermore, at
the end of the semester, the programming modules may be a good review of the course material.
Developing and solving a complex mathematical model requires a deep understanding of the
system being modeled. Thus, the modules serve to complement the course material rather than
distract from it. If making room in the course syllabus is not an option for some courses, these
instructors might consider making the module an optional assignment that would replace a low
homework grade. In this way, the instructor would not necessarily need to lighten the students’
workload but students would have some incentive for working the module. In addition, this
method might allow students to test the modules and give their feedback before implementing
the modules as a standard part of the curriculum. By allowing the modules to be used as an extra
assignment and removing all responsibility from the instructor, the course instructors are given
an offer that is difficult to refuse.

Final Comments

In their first semester, the modules were implemented into courses as optional assignments.
Unfortunately, not more than ten students in each course took advantage of the module
assignments. But, judging from the students who worked the modules, they were challenging
but helpful. The modules were certainly successful in giving students exposure to programming
and students who worked the modules will be better prepared for CHEN 4580. As the modules
program matures, we expect more complete incorporation into the classes.

Finally, introducing students to computational methods in a curriculum-wide plan such as this is
not a task that is restricted to chemical engineering. The programming module concept would be
applicable to any engineering curriculum. In fact, implementing computational methods into
courses throughout the curriculum may be the best way to teach this topic to engineering
students. After all, computational methods are tools to be used with other subjects—would it not
be best to teach them in the same way they will be used? With enough background information,
these modules could potentially replace a numerical methods course.

P
age 4.299.8

Acknowledgments

The authors would like to thank both the University of Colorado Engineering Excellence Fund
and well as the Department of Chemical Engineering for their support of this project. We would
also like to thank the course instructors for recognizing the value of the modules and
implementing them into their courses. Finally, we would like to thank the students who have
helped in developing modules and making this project a reality.

Biographical Information

WILLIAM B. PERRY is currently a doctoral student at the Massachusetts Institute of Technology. In 1998, he
received his BS in Chemical Engineering from the University of Colorado at Boulder, where he worked as a
teaching assistant for Introduction to Engineering Computing and programming module TA. His research interests
are in the areas of Biochemical and Biomedical Engineering.

VICTOR H. BAROCAS is an Assistant Professor of Chemical Engineering at the University of Colorado at
Boulder. He has taught the undergraduate course CHEN 4580 Numerical Methods for Process Simulation for the
last two years and has helped promote the broad instruction of numerical methods. His primary research interests
are in biomechanics and complex transport systems.

DAVID E. CLOUGH is Professor of Chemical Engineering at the University of Colorado and has been on the
faculty there since 1975. From 1986 through 1992 he was Associate Dean of the College of Engineering and
Applied Science. His research interests are centered on the optimization and control of chemical processes. He
teaches process control, applied statistics, and introductory computing. He lives in a log home in the Rocky Mtns.

P
age 4.299.9

