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Abstract 

Complex Programmable Logic Devices (CPLDs) are a class of programmable logic 
device that are commonly used to implement complex digital designs on a single 
integrated circuit. Current applications of CPLDs in the field of computer engineering 
include the implementation of bus controllers, address decoders, communication 
interfaces, etc. This paper outlines a novel application for CPLDs in the field of 
mechatronics. A low cost, microcontroller-based data acquisition system has been 
developed that incorporates both a user programmable microcontroller and a user 
reconfigurable CPLD. The CPLD basically provides reconfigurable digital I/O that 
permits the implementation of interfaces for smart sensors and actuators. Typical 
applications include quadrature decoder/counter interfaces for optical encoders, stepper 
motors controllers and Pulse-Width Modulation (PWM) motor drives. By incorporating a 
CPLD that supports In-System Programmability (ISP) the target device can be 
reprogrammed by the user for a variety of applications without removing it from the host 
system. 
 
Introduction 

Mechatronics can be defined as a design philosophy which encourages engineers to 
integrate precision mechanical engineering, digital and analog electronics, control theory 
and computer engineering in the design of “intelligent” products, systems and processes 
rather than engineering each set of requirements separately. The advantages of the 
mechatronics approach to design are shorter design cycles, lower costs, and elegant 
solutions to design problems that can not easily be solved by staying within the bounds of 
the traditional engineering disciplines. 
 
With an underlying focus on integration, the Mechatronics Design course (MER-180) at 
Union College emphasizes the fundamental technologies on which contemporary 
mechatronic designs are based: sensors and actuators, system dynamics and control, 
analog and digital electronics, microcontroller technology, interface electronics and real-
time programming. The laboratory sessions focus on small, hands-on interdisciplinary 
design projects in which small teams of students configure, design, and implement a 
succession of mechatronic subsystems, leading to system integration in a final project. 
 
For example, as an introduction to digital design, students apply the fundamental 
principals of combinatorial and sequential logic to the design of a quadrature 
decoder/counter circuit that is used to interface an incremental optical encoder to a 
microcontroller. The design is implemented using the appropriate software development 
tools and tested on a Complex Programmable Logic Device (CPLD). Complex 
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Programmable Logic Devices (CPLDs) are commonly used to implement complex 
digital designs on a single integrated circuit. As part of the final design project, students 
integrate the interface circuit and optical encoder with a DC servomotor / lead-screw 
assembly to construct a servomechanism which controls one axis of a simple machine 
tool. 
 
While there are numerous applications for CPLDs in the field of computer engineering 
[1] (e.g., bus controllers, address decoders, communication interfaces, simple 
microprocessors), this paper outlines several novel “mechatronic” applications for 
CPLDs that can be readily implemented in an undergraduate laboratory setting. 
Pedagogically these applications serve as both case studies for introducing various digital 
design methodologies as well as a “toolbox” of predefined modules that can be integrated 
into a final design project. 
 
Hardware Platform 
The primary hardware platform for the Mechatronics Design course (MER-180) at Union 
College is the UC2 system (Union College Universal Controller); a system tailored to the 
needs of engineering students at Union College. This novel, low cost, microcontroller-
based system enables students to interface a variety of sensors and actuators to their 
laptop computers in a laboratory or studio classroom environment. The system is unique 
in that it functions as a data acquisition system, stand-alone controller or data logger. As 
illustrated in Figure 2, the UC2 system incorporates both a user programmable 
microcontroller and a user configurable Complex Programmable Logic Device (CPLD). 
For a more detailed description of the UC2 system, refer to reference [2]. 
 

 
 

Figure 1: Image of populated printed circuit board for the UC2 system. 
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Figure 2: Block Diagram of System 
 

Complex Programmable Logic Device 

Perhaps the most innovative feature of the UC2 system is the incorporation of a user 
configurable Complex Programmable Logic Device (CPLD). The CPLD handles all the 
routine tasks normally associated with embedded controller applications; data latching, 
address decoding, and memory management. This effectively eliminates the need for any 
discrete logic on the board. In addition, approximately 75% of the internal resources and 
18 IO pins on the CPLD are made available to the user for custom applications.  The 
CPLD supports in-system programmability (ISP) via the IEEE 1149.1 Joint Test Action 
Group (JTAG) test port. This permits the target device to be reprogrammed by the user 
without removing it from the host system. Code for the CPLD is developed in either in 
Verilog HDL (Hardware Description Language), VHDL (Very High Speed Integrated 
Circuit Hardware Description Language) or AHDL (Altera Hardware Description 
Language) using the MAX+plus II 9.23 Baseline development environment from 
ALTERA. Educational institutions can obtain a MAX+plus II software license for the 
specific device used in the UC2 system at no cost over the WEB. 
 
Clearly reconfiguring the CPLD is beyond the capabilities of many students. In 
recognition of this, the 18 free IO pins on the device are predefined as 8 digital input lines 
and 8 digital output lines plus a free chip select (CS) and a PWM (Pulse-Width-
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Modulation) signal. These IO signals are all readily accessible by the user through the 
microcontroller via the MCS BASIC-52 programming language. 
 
For the advanced user the CPLD provides reconfigurable digital I/O that facilitates the 
implementation of hardware interfaces for smart sensors and actuators. This paper details 
several typical “mechatronic” applications that have been successfully implemented in 
hardware (i.e., in the CPLD) on the UC2 system. These applications include: 
 

• A quadrature decoder/counter interface for an incremental optical encoder 
• A unipolar, half-stepping, stepper motor controller 
• A Pulse-Width-Modulation (PWM) driver for controlling DC motors. 

 
Conventional tasks (e.g., address decoding) are not the primary reason for incorporating 
the CPLD, but can also be explored in a laboratory environment. 
 
Quadrature Decoder/Counter Interface 

In digital closed loop motion control systems, optical encoders are customarily used to 
translate the rotary motion of a shaft into digital form. Optical encoders typically employ 
a Light Emitting Diode (LED) as a light source (or emitter) and a photodiode as a 
detector. A codewheel (Figure 3) rotates between the emitter and detector, causing the 
light from the emitter to be interrupted by the radial slots in the codewheel. The angular 
position of the shaft is evaluated by counting the pulses generated by the detector. For 
bidirectional operation, a second emitter/detector pair is positioned on the circumference 
of the code wheel so that when the first detector (channel A) reads a slot, the second 
detector (channel B) reads a bar. The digital output of channel A is said to be in 
quadrature with that of channel B (i.e., 90 degrees out of phase). When the codewheel 
rotates in the counterclockwise direction, channel A will lead channel B and the system 
must count up. In the clockwise direction, channel B leads channel A and the system 
must count down (Refer to Figure 4). 

 
 

 
 

 
 

Figure 4: Quadrature decoding timing diagram  
illustrating the four possible states. 

 
 

Figure 3: HEDS-5120 Codewheel 
    from Agilent Technologies.  
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As illustrated in Figure 4, channels A and B can be in one of four possible states. Based 
on the past binary state of the two signals and the present state, the binary counter must 
be either incremented or decremented as illustrated in Figure 5. By counting high-to-low 
or low-to-high transitions on both channels, a resolution corresponding to four times the 
basic resolution of the codewheel can be achieved. Thus a typical 512 slot codewheel 
yields an effective resolution of 2048 counts per revolution. 
 

Channel A Channel B State 

1 0 1 

1 1 2 

0 1 3 

 
0 0 4 

 
Figure 5: Valid state transitions. 

 

CPLD Implementation 

The CPLD implementation of the quadrature decoder/counter interface consists of four 
modules; edge detectors for channels A and B, quadrature decoder logic, a 16-bit binary 
counter and bus interface circuitry.  
 

 
Figure 6: Edge-detection circuitry. 
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The edge detectors operate by sampling the incoming channels at a frequency 
significantly higher than the fundamental encoder frequency. In the case of the UC2 
system, the global clock is set at 11.0592 MHz which results in a maximum operational 
speed of over 300,000 rpm for a typical 512 slot codewheel. As illustrated in Figure 6, a 
two-bit shift register employing D-type flipflops is used to detect transitions on channels 
A and B.  
 
By way of example, a rising edge on channel A is detected when enc_dec0.q and 
enc_dec1.q are “1” and “0” respectively. The transitions between the various states 
illustrated in Figure 5 can be decoded by analyzing the outputs of the four D-type 
flipflops as shown in Table 1 below.  
 
 
State Transition  Encoder Signals Flipflop outputs: enc_decX.q 

Past 

State 

Present 

State 

Count Chan 

A 

Chan 

B 

0 1 2 3 

1 2 UP 1 ↑ 1 1 1 0 
2 3 UP ↓ 1 0 1 1 1 
3 4 UP 0 ↓ 0 0 0 1 
4 1 UP ↑ 0 1 0 0 0 
1 4 DOWN ↓ 0 0 1 0 0 
4 3 DOWN 0 ↑ 0 0 1 0 
3 2 DOWN ↑ 1 1 0 1 1 
2 1 DOWN 1 ↓ 1 1 0 1 

Note: ↑ and ↓ indicate a rising and falling edge respectively. 
 

Table 1: Summary of quadrature decoding logic. 
 

Although there are several methods of implementing state machines in VHDL or AHDL, 
this particular example was implemented by means of a truth table. In an AHDL truth 
table, each entry in the table contains a combination of input values that will produce 
specified output values. 
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Table 2: Truth table implementation of quadrature decoder. 

 
The two nodes up_cnt and dwn_cnt are subsequently used to increment or decrement a 
16-bit binary counter which holds the encoder pulse count. Note that for the majority of 
states, nodes up_cnt and dwn_cnt are both “false” and the current count is simply 
maintained. In the AHDL implementation of the counter module shown below, the 
variable encoder is a 16-bit array of D-type flipflops which allows for 32 complete shaft 
revolutions for a 2048 (effective) pulse per revolution encoder. 
 

 
 

IF up_cnt THEN 
  encoder[].d = encoder[].q + 1; 
 ELSE 
  IF dwn_cnt THEN 
   encoder[].d = encoder[].q - 1; 
  ELSE 
   encoder[].d = encoder[].q; 
  END IF; 
 END IF; 

TABLE 
 enc_dec[3..0].q =>      dwn_cnt,        up_cnt; 
 
 B"0000"   => 0,  0; 
 B"0001"   => 0,  1; 
 B"0010"   => 1,  0; 
 B"0011"   => 0,  0; 
 B"0100"   => 1,  0; 
 B"0101"   => 0,  0; 
 B"0110"   => 0,  0; 
 B"0111"   => 0,  1; 
 B"1000"   => 0,  1; 
 B"1001"   => 0,  0; 
 B"1010"   => 0,  0; 
 B"1011"   => 1,  0; 
 B"1100"   => 0,  0; 
 B"1101"   => 1,  0; 
 B"1110"   => 0,  1; 
 B"1111"   => 0,  0; 
  
END TABLE; 
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The interface circuitry allows the microcontroller to both read and reset the binary 
counter. In many respects this is the most complex part of the design since it involves 
implementing a tri-state, bidirectional bus. In addition, since the microcontroller data bus 
is 8 bits wide, the Most Significant Byte (MSB) of the encoder count must be latched into 
a data buffer when the Least Significant Byte (LSB) is read to prevent a false count due 
to delays between subsequent microcontroller reads. The interface circuitry is beyond the 
scope of this paper but the basic implementation is summarized below. 

 
The LSB and MSB of the binary counter are mapped to memory locations enc_low and 
enc_high respectively. The bidirectional data bus is accessed via a tri-state node (tri-
node[7..0]) which is connected to two tri-state primitives corresponding to the LSB and 
MSB of the binary counter. 
 
Unipolar Half-Stepping, Stepper Motor Controller 

Stepper motors are characterized as bipolar or unipolar. Bipolar stepper motors have four 
lead wires and require a total of eight drive transistors (i.e., two full H-bridges). Unipolar 
have an additional center-tap on each phase for a total of six lead wires. With the center-
taps connected to a common voltage source, unipolar stepper motors can be controlled 
with four identical NPN or N-channel drive transistors (Figure 7). In conventional full-
stepping mode, one motor phase is energized at a time resulting in minimum power 
consumption and high positional accuracy regardless of winding imbalance. Half-
stepping control alternates between energizing a single phase and two phases 
simultaneously resulting in an eight-step sequence which provides higher resolution, 
lower noise levels and less susceptibility to motor resonance. 
 
The desired drive waveforms are illustrated in Figure 7. The eight step drive sequence 
shown (steps 1 through 8) advances the stepper motor four full steps or eight half steps. 
Reversing the drive sequence (i.e., from step 8 towards 1) reverses the direction of 
rotation. 

tri_node[7..0]  = tri_enc_low[7..0].out; 
 tri_enc_low[7..0].in = encoder[7..0].q; 
 tri_enc_low[7..0].oe = enc_low & !read/; 
 
% MSB of encoder count is latched when LSB is read to prevent a false 
count due to delay between reads % 
 
 enc_latch[].clk   = clk; 
 enc_latch[].clrn  = VCC; 
 enc_latch[].prn   = VCC; 
 enc_latch[].ena   = enc_low & !read/; 
 enc_latch[].d  = encoder[15..8];  
 
 tri_node[7..0]  = tri_enc_high[7..0].out; 
 tri_enc_high[7..0].in  = enc_latch[7..0].q; 
 tri_enc_high[7..0].oe  = enc_high & !read/; 
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STEP TRANSISTORS 

 1 2 3 4 

1 ON OFF ON OFF 

2 ON OFF OFF OFF 

3 ON OFF OFF ON 

4 OFF OFF OFF ON 

5 OFF ON OFF ON 

6 OFF ON OFF OFF 

7 OFF ON ON OFF 

 
8 OFF OFF ON OFF 

 

Figure 7: Half-step switching sequence for unipolar stepper motor. 
 

CPLD Implementation 

As with the decoder/counter interface, there are several possible methodologies for 
implementing a stepper motor controller on a CPLD [3] [4], however synthesizing the 
desired waveforms by applying the basic principles of synchronous sequential circuit 
design has significant pedagogical value. 
 
The basic design is that of a conventional synchronous counter employing JK-type 
flipflops running off a common clock. In this particular case, four flipflops are required to 
generate the required waveforms for the four drive transistors. In order to achieve speed 
control, the common clock is generated by the microprocessor programmable timer. As 
shown in Tables 3 and 4, the two inputs to the flipflops, J and K, are synthesized from the 
current output state of the flipflops using conventional combinatorial logic. The 
appropriate Boolean logic functions are determined by applying Karnaugh maps of five 
variables. Four of the variables are the current outputs of the flipflops (Q0 to Q3). The 
fifth variable, Qt, is a direction bit. If Qt equals zero the sequence advances from step 1 
towards 8, whereas if Qt equals 1, the direction is reversed. The complete schematic for 
the unipolar, half-stepping, stepper motor controller is shown in Figure 8 while the 
AHDL implantation is shown in Table 5. 
 
Although this particular design may appear somewhat complex, it was successfully 
completed by senior undergraduate students who genuinely appreciated seeing the fruits 
of their labors implemented in hardware and tested on a real stepper motor. 
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Table 3: Truth Table for half-step switching sequence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Karnaugh maps for stepper motor half-stepping synchronous counter design. 

000 001 011 010 110 111 101 100 000 001 011 010 110 111 101 100

00 X 1 0 0 X X X X 00 X X X X X X 0 0

01 X 0 0 0 X X X X 01 X X X X X X 1 0

11 1 X X 0 X X X X 11 X X X X X X X 0

10 0 X X 0 X X X X 10 X X X X X X X 1

000 001 011 010 110 111 101 100 000 001 011 010 110 111 101 100

00 X 0 X X X X 0 0 00 X X 1 0 X X X X

01 X 1 X X X X 0 0 01 X X 0 0 X X X X

11 0 X X X X X X 0 11 X X X 1 X X X X

10 1 X X X X X X 0 10 X X X 0 X X X X

000 001 011 010 110 111 101 100 000 001 011 010 110 111 101 100

00 X X X 1 X X X 0 00 X 0 0 X X X 1 X

01 X X X 0 X X X 1 01 X 0 1 X X X 0 X

11 0 X X 0 X X X 0 11 X X X X X X X X

10 0 X X 0 X X X 0 10 X X X X X X X X

000 001 011 010 110 111 101 100 000 001 011 010 110 111 101 100

00 X 0 0 0 X X 0 1 00 X X X X X X X X

01 X 0 0 1 X X 0 0 01 X X X X X X X X

11 X X X X X X X X 11 0 X X 0 X X X 1

10 X X X X X X X X 10 0 X X 1 X X X 0

J0 = Q2*Q1' * Qt + Q2' *Q1' *Qt' K0 = Q3*Qt + Q2*Qt'

J3 = Q2' *Q0' *Qt' + Q2' *Q1' *Qt

J2 = Q3' *Q1*Qt + Q3' *Q0*Qt'

K3 = Q3*Q1*Qt + Q0*Qt

K2 = Q3' *Q1*Qt' + Q0*Qt

J1 = Q3' *Q0' *Qt' + Q3*Q0' *Qt K1 = Q2*Qt + Q3*Q0' *Qt' 

Present Input Next

Q3Q2Q1Q0 Qt Q3Q2Q1Q0 J3 K3 J2 K2 J1 K1 J0 K0

1010 0 1000 X 0 0 X X 1 0 X

1010 1 0010 X 1 0 X X 0 0 X

1000 0 1001 X 0 0 X 0 X 1 X

1000 1 1010 X 0 0 X 1 X 0 X

1001 0 0001 X 1 0 X 0 X X 0

1001 1 1000 X 0 0 X 0 X X 1

0001 0 0101 0 X 1 X 0 X X 0

0001 1 1001 1 X 0 X 0 X X 0

0101 0 0100 0 X X 0 0 X X 1

0101 1 0001 0 X X 1 0 X X 0

0100 0 0110 0 X X 0 1 X 0 X

0100 1 0101 0 X X 0 0 X 1 X

0110 0 0010 0 X X 1 X 0 0 X

0110 1 0100 0 X X 0 X 1 0 X

0010 0 1010 1 X 0 X X 0 0 X

0010 1 0110 0 X 1 X X 0 0 X

Half-Stepping Forward and Backward

P
age 9.695.10



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

 
 

Figure 8: Schematic of stepper motor controller. 
 
 

 
 
 
 
 

Table 5: AHDL implementation of stepper motor controller. 

stepmot3.CLK =pwm_in; 
stepmot3.K =stepmot3.q & stepmot1.q & data0 # stepmot0.q & !data0; 
stepmot3.J =!stepmot2.q & !stepmot0.q & !data0 # !stepmot2.q & !stepmot1.q & data0; 
stepmot3.clrn =VCC; 
stepmot3.prn =stepmot3.q # stepmot2.q # stepmot1.q # stepmot0.q; 
 
stepmot2.CLK =pwm_in; 
stepmot2.K =!stepmot3.q & stepmot1.q & !data0 # stepmot0.q & data0; 
stepmot2.J =!stepmot3.q & stepmot1.q & data0 # !stepmot3.q & stepmot0.q & !data0; 
stepmot2.clrn =VCC; 
stepmot2.prn  =VCC; 
 
stepmot1.CLK =pwm_in; 
stepmot1.K =stepmot2.q & data0 # stepmot3.q & !stepmot0.q & !data0; 
stepmot1.J =!stepmot3.q & !stepmot0.q & !data0 # stepmot3.q & !stepmot0.q & data0; 
stepmot1.clrn =VCC; 
stepmot1.prn =VCC; 
 
stepmot0.CLK =pwm_in; 
stepmot0.K =stepmot3.q & data0 # stepmot2.q & !data0; 
stepmot0.J =!stepmot1.q & stepmot2.q & data0 # !stepmot2.q & !stepmot1.q & !data0; 
stepmot0.clrn =VCC; 
stepmot0.prn  =VCC; 
 
dig_out0 =stepmot3.q;  
dig_out1 =stepmot2.q; 
dig_out2 =stepmot1.q; 
dig_out3 =stepmot0.q; 
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Pulse Width Modulation Controller 
Pulse Width Modulation (PWM) amplifiers are commonly used to control the speed or 
torque or DC servomotors. They operate by switching the DC supply voltage to the motor 
“on” and “off” at a fixed frequency (typically 10 kHz). The average current through the 
motor is controlled by varying the duty cycle, i.e., the ratio of the “on” time to the period 
of the PWM waveform. This effectively changes the speed and torque at the output of the 
motor. 
 
CPLD Implementation 

The CPLD implementation of the PWM controller is perhaps the simplest mechatronic 
example presented in this paper. The microprocessor basically sets the period of the 
PWM waveform (totaltime) and the “off” time (lowtime) in clock cycles (Figure 9). 
These 8 bit values are latched by the CPLD into two 8 bit registers consisting of D-type 
flipflops. These values are compared to a free running counter (cntr). An output pin is set 
when cntr exceeds lowtime and cntr is reset when it reaches totaltime. The complete 
AHDL implementation of the PWM is given in Table 6. 
 
This particular implementation allows both the duty cycle and base frequency to be set by 
the microcontroller. If the base frequency is fixed at say 256 clock cycles then an even 
simpler implementation is possible. 

 
Figure 9: Drive waveform for PWM controller. 

 
Conclusions 

Undergraduate students are increasingly involved in mechatronic design projects that call 
for small, microcontroller-based, stand-alone controllers. For example, student 
participating in the SAE Walking Machine Challenge must design an intelligent, 
autonomous system that must perform a variety of simple tasks without human 
intervention. Both the UC2 system and the CPLD-based interfaces described in this paper 
have been used extensively in such projects. Students have also adapted the three basic 
interfaces for specific sensors and actuators. For example, a custom PWM controller has 
been developed for driving Radio Control (RC) servos directly from the UC2 system. 
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In the Mechatronics Design course (MER-180) at Union College students apply the 
fundamental principals of combinatorial and sequential logic to the design of the various 
mechatronic interfaces described in this paper. The designs are implemented using the 
appropriate software development tools and tested on the UC2 system with the 
appropriate sensors and actuators (e.g., encoder, stepper motor). As part of the final 
design project, students integrate the various modules developed into servomechanisms, 
robots or autonomous vehicles. As a general observation, students greatly appreciate the 
hands on experience and the ability to see their designs in operation (as opposed to on 
paper or in computer simulations). 
 

 
Table 6: AHDL implementation of PWM controller. 

totaltime[].clk  = clk; 
totaltime[].clrn = VCC; 
totaltime[].prn  = VCC; 
totaltime[].ena  = io_space_2 & (add_latch[3..0].q == B"0110") & !write/;  
%7ff6h% 
totaltime[].d = add_data[];  
 
lowtime[].clk  = clk; 
lowtime[].clrn = VCC; 
lowtime[].prn  = VCC; 
lowtime[].ena  = io_space_2 & (add_latch[3..0].q == B"0111") & !write/;  
%7ff7h% 
lowtime[].d = add_data[];  
 
cntr[].clk  = clk; 
cntr[].clrn = !(cntr[].q == totaltime[].q); 
cntr[].prn  = VCC; 
cntr[].ena  = VCC; 
cntr[].d = cntr[].q + 1; 
 
switch.clk  = clk; 
switch.clrn = VCC; 
switch.prn  = VCC; 
switch.ena  = VCC; 
pwm_out = switch.q; 
 
switch.d = (cntr[].q < lowtime[].q); 
 

P
age 9.695.13



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

 
Bibliographical Information 

 
1. M.E. Parten, “Teaching Digital Design with HDL,” Proceedings of the 1997 American Society for 

Engineering Education Annual Conference and Exposition, Milwaukee, WI, June 15-18, 1997. 
 
2. N. Krouglicof, “Development of a Universal Controller for Pedagogical Applications Involving Data 

Acquisition, Data Logging and Control,” Computers in Education Journal, vol. XIII, No. 2, pp. 2-10, 
2003. 

 
3. D.J. Ahlgren and J.E. Mendelssohn, “The Trinity College Fire-Fighting Home Robot Contest: A 

Medium for Interdisciplinary Engineering Design,” Proceedings of the 1998 American Society for 
Engineering Education Annual Conference and Exposition, Seattle, WA, June 21-24, 1998. 

 
4. O. Fucik, B. Wilamowski, and M. McKenna, “Laboratory for the Introductory Digital Course,” 

Proceedings of the 2000 American Society for Engineering Education Annual Conference and 

Exposition, St. Louis, MO, June 18-21, 2000. 
 
 
 
Biographical Information 

 
NICHOLAS KROUGLICOF joined the Mechanical Engineering Department at Union College in 
September 2000. Previously, he was a faculty member at the École de technologie supérieure in Montreal. 
He has taught and developed laboratories for a number of undergraduate courses relating to system 
dynamics and control, mechatronics, automation, and CAD.  His research interests are in the areas of 
machine vision, intelligent sensors, and mechatronics. 
 

 

P
age 9.695.14


