
Paper ID #37039

Important and Difficult Topics in CS2: An Expert Consensus via Delphi
Study

Lea Wittie, Bucknell University

Lea Wittie is an Associate Professor in the department of Computer Science in the Engineering College
at Bucknell University.

Anastasia Kurdia, Tulane University

Anastasia Kurdia is a Senior Professor of Practice of Computer Science at Tulane University. She re-
ceived her undergraduate degree in Applied Mathematics from Belarusian State University, and Ph.D.
from University of Texas at Dallas.

Prof. Meriel Huggard, Trinity College Dublin

Dr. Meriel Huggard has been a tenured faculty member in Trinity College Dublin, Ireland since 2000.
During 2015/16 she was a visiting associate professor in Electrical and Computer Engineering at Bucknell
University, PA. She teaches courses in computer

Khai-Nguyen Nguyen, Bucknell University

A senior student at Bucknell University

©American Society for Engineering Education, 2023

Important and Difficult Topics in CS2: An Expert Consensus via
Delphi Study

Lea Wittie
Department of Computer Science

Bucknell University
Lewisburg, PA 17837

Anastasia Kurdia
Department of Computer Science

Tulane University
New Orleans, LA 70118

Meriel Huggard
School of Computer Science and Statistics

Trinity College Dublin
Dublin 2, Ireland

Nguyen Nguyen
Bucknell University

Lewisburg, PA 17837

Abstract

Almost every computer science program contains two semester-long introductory courses, usually
named Computer Science 1 (CS1) and Computer Science 2 (CS2). They have been a mandatory
element of the ACM Computing Curriculum for nearly fifty years and are likely to remain so for
many years to come. While there seems to be a broad agreement on the key elements of CS1, the
curriculum for CS2 can vary significantly between institutions. What material should in fact be
included in CS2? Ideally, an educator would want to cover the topics that students need to master
in order to successfully learn other topics further in the course and in the subsequent courses in
the curriculum (important topics). They would also want to concentrate on topics that students are
likely to struggle with and take a longer time to understand (difficult topics).

This paper details the process and results of a multi-year international study that examined the
topics of difficulty and importance in CS2 using Delphi method (an iterative process for reaching
consensus among a group of subject experts that allows the participants to reconsider their
opinions based on the anonymized responses of the other experts in the group provided at
preceding iterations). We present four topic sets aiming to inform the choice of topics for
designing a CS2 course or exam. The first set contains the topics selected based on importance
and indicates what topics should be included in a CS2 course or its textbook. The second and
third sets of topics are based on both importance and difficulty and as such would be a guide for
the creation of exams and concept inventories. The fourth set contains the topics that none of the
faculty experts marked as either important or difficult, making them candidates for delegation to a
different course, exclusion, or leaving them for self-study. We also provide a comparison with
other published topic sets for CS2.

Introduction

A concept inventory (CI) is a research-based multiple-choice test that seeks to measure a student’s
knowledge of a set of concepts while also capturing conceptions and misconceptions they may
have about the topic under consideration. Each multiple-choice question includes one correct
answer and a set of expertly designed incorrect answers that would result from one or more
misconceptions. Compared a to straightforward multiple-choice test, where the most useful
information lies in how many students answer each question correctly, a concept inventory
provides an additional level of insight into the students’ (mis)understanding of the material. From
the instructor’s standpoint, it can be used to assess the impact of changing instruction methods on
student understanding, to identify topics that need a different instructional approach, or as a way
of comparing instructional methods1, to identify appropriate teaching and learning activities, or to
evaluate overall learning and instructional effects2. For the student, it can guide future learning by
not only confirming the areas they mastered but also highlighting the topics that they haven’t fully
grasped at a finer level compared to a standard test. (We note that a CI is not an appropriate
instrument for assessing teaching performance or for determining grades1). CIs for many subjects
have already been developed3,4,5,6,1,7,8,9,10,11,12,13,14,15,16. One of the earliest concept inventories in
computer science is that of Almstrum et al.1

Developing a concept inventory involves identifying a set of topics that the CI should cover,
creating questions, conducting field tests, carrying out validity checks, and reliability testing. The
very first step (finding the set of topics for the concept inventory that would be useful for many
instructors of one course) becomes a difficult task when there is a great variety in opinions on
what should constitute the content of such a course. In fact, there is a significant variance in the
curriculum of the second-semester introductory computer science course (commonly referred to
as CS2) between institutions. Which topics should be included in concept inventories for CS2?
Which topics should the instructors and developers of instructional materials for CS2 focus on?
The goal of this paper is to help address these questions. We present details of the process and
results of a multi-year international study that examined the topics of difficulty and importance in
CS2. As is common in previous CI work, this study uses the Delphi method to identify these
topics. The Delphi method is a systematic iterative process of arriving at a common opinion or
decision by a diverse group of subject experts17. At each iteration (round), the experts are
provided with a questionnaire and an aggregate anonymized group response at the preceding
round that might affect the experts’ responses at a current round18,17,19,20. After several rounds, the
group’s response closely reflects the consensus opinion of the group. By giving each expert’s
opinion equal weight and through the use of anonymous feedback, each expert is only influenced
by the opinions and arguments put forward by other experts, and not by their reputation in the
field16. Using the Delphi method also eliminates the natural bias of individual experts based on
their experience and field of expertise21.

The contributions of this paper are twofold. We present four topic sets that characterize the topics
that should (or should not be) included in the learning materials, exam, or concept inventory of a
CS2 course. The first set of topics is based on importance and suggests what topics should be
included in a CS2 course or its textbook. The second set and the third sets of topics are based on
both importance and difficulty and would be targeted in the creation of exams and concept
inventories. The fourth set of topics contains the ones that none of our experts marked as either

important or difficult. Such topics become candidates for relocation to a different course,
exclusion, or self-study. We also provide a comparison with another published topic set for
CS28,22.

The rest of the paper is organized as follows. In Section we introduce the methods of identifying
the topics for the concept inventory. Section presents the data we obtained. In Section we
compare these results with the relevant published topic set. Section concludes the paper.

Methods

Recruiting and selecting experts The experts were recruited in person at international
computing/engineering education conferences (SIGCSE, ASEE, FIE, EDUCON), via dedicated
lightning talk at SIGCSE’1823, and via email outreach. Approximately 500 email invitations were
sent to CS2 textbook authors and computer science departments on all continents. Among those
recipients, we intentionally included multiple school sizes, and both private and public
institutions as well as 4-year and community colleges.

The group of 34 experts initially signed up to be a part of our study. We then asked them to take a
quick survey on the focus of the CS2 course that they were involved in (focus area meant that at
least 60% of the course was spent on that area). We had identified 3 versions of CS2: one which
taught students to use existing data structures from libraries (Application-focused CS2), one that
taught students to implement their own data structures (list/stack/tree/queue), and also to use them
(ADT-focused CS2), and a third option, which focused on object-oriented programming
(OOP-focused CS2). Nineteen CS2 experts indicated they were involved in the ADT-focused CS2
and seventeen of those chose to participate further in this study.

Our efforts to recruit participants with a wide variety of backgrounds were partially successful.
All seventeen participants were current or recent instructors of a CS2 course. Six of the
participants also conducted research on CS2; one of them additionally had authored CS2
textbooks. Three of the participants were female and fourteen were male. Seven taught in 4-year
universities with a large graduate program and ten taught in predominantly undergraduate 4-year
universities. One was teaching in Asia and sixteen were teaching in North America. We achieved
a good balance of undergraduate- (10) vs graduate- (7) focused schools but no participants from
2-year institutions. According to the Taulbee survey24, in 2018, when the experts were recruited,
20.8% of computer science professors were female so our 17.6% female participation is very
close to being representative. Although we attempted to heavily recruit from each continent, we
only succeeded in recruiting one participant from outside North America.

In phase 1, we asked our experts to create an unordered list of the 10-15 topics they felt were most
important and difficult for a CS2 course. Although the overall focus of this study was data
structures and implementation/usage, the topics in this phase came from the entire range of topics
our experts covered. Seventeen experts completed phase 1. The researchers each separately and
then as a group removed duplicate topics and arranged the remaining topics into 16 categories
containing 119 topics overall.

Each expert makes
a set of important
and difficult topics

Researchers take
the union of the set,
eliminate duplicates,
categorize

Each expert makes
ranks each topic by
d i f fi c u l t y a n d
importance

Researchers find
quartiles for ranked
t o p i c s , r e m o v e
unselected topics

Each expert re-ranks
each topic, justifies
scores outside the
middle 50%

Researchers analyze
the data

Phase 1 Phase 2 Phase 3

Topic sets E1, …, E17 Topic ranks with 30
most important, most difficult

E1, …, E12
16 categories

119 topics

Statistics

Topic ranks
justification

E1, …, E8

Figure 1: Phases of the Delphi method in this study.

Identifying topics In phase 2, we asked our experts to select and order their 30 most important and
30 most difficult topics. Twelve experts completed phase 2. From their ordered responses, the
researchers found quartile data indicating which topics were in each quartile for most important
and also for most difficult. The 10 topics that no one indicated in their top 30 for importance and
7 topics no one indicated for difficulty were dropped from those overall respective lists.

In phase 3, we sent out the remaining sets of important and difficult topics broken into quartiles.
We asked our experts to reconsider their ranking given the quartile information and to justify any
topic they kept that fell into the 3rd or 4th quartile. Eight experts completed phase 3. We stopped
the Delphi rounds at this point and began our final data analysis.

The phases of the Delphi method are illustrated in Figure 1. There were intended to be 4 phases in
the study. Due to the global pandemic, our participants clearly no longer had time to give to our
study. We, therefore, made the decision to stop after phase 3. Goldman19 found that in practice,
the top-ranked results from phase 2 of a Delphi study accurately predicted the top-ranked topics
in later phases so the loss of phase 4 is unlikely to have had much effect on our top results.

Results

The results of this Delphi study are rankings on the 119 topics for importance and for difficulty.
From these rankings, we obtained sets of the most important topics (Set 1), the topics that are
both difficult and important (Sets 2 and 3), and the leftover topics (Set 4). We chose Sets 1 and 2

from the topics that at least 50% of our experts agreed should be included in the top 30 topics by
importance and/or by difficulty. We did not take agreement into account with Set 3.

Set 1: Important topics A set of 25 topics important to at least 50% of our experts can be seen in
Table 1. Each topic is shown with its cumulative importance rank which is a measure of how
important the topic is. Higher rank implies that the topic is more important to master. These are
the topics that our study suggests should be included in an ADT-focused CS2 course or textbook.
Of these topics, only binary search had 100% agreement in its importance. This shows that there
is a considerable breadth of opinion on the subject of what topics are important (agreeing with the
results by Hertz25 who also showed a lack of broad agreement on what should be included in a
CS2 course).

Set 2: Important and difficult topics Table 2 shows the set of the 11 important topics from Set 1
that at least 50% of our experts also agreed were difficult. Each topic is shown with its cumulative
difficulty rank which is a measure of how difficult the topic is. A higher rank indicates that the
topic is more difficult to learn. This set of difficult and important topics is useful for the creation
of both exams and concept inventories. Difficulty also correlates with the time needed to cover
the topic.

Set 3: Top ten topics for importance and difficulty Figure 2 shows the 10 highest ranked topics as
measured by Manhattan distance to the top cumulative importance and difficulty ranking. This set
does not exclude topics with low agreement.

Set 4: Leftover topics We also obtained a set of topics that are either not important, not difficult,
or belong elsewhere. After the experts chose the 30 topics that were important and the 30 topics
that were difficult, there were leftover topics that no one marked as either important or difficult
for a CS2 course (Table 3). In short, these cold either be the topics that belong in a different
course, topics that can be left for self-study, or topics that are not important or difficult relative to
other topics in the ADT-focused CS2 course. Note that the topic Linked implementation here
refers to ADTs other than the Linked List. Presumably, once students can implement a linked list,
it is not difficult for them to implement a linked stack or queue.

Table 1: (Set 1) Cumulative importance rank of topics with at least 50% agreement in the final
phase
Topic rank % agreement
How to choose data structures (by complexity; what’s a reasonable default) 168 87.5
LinkedList and its implementation 167 87.5
Binary search trees (simple, not self-balancing) 128 87.5
Difference between array-based and link-based implementations 126 75
Stack 124 87.5
Hash tables 118 87.5
Maps 117 75
Binary search 114 100
Recursion 112 75
Queue 108 75
Array processing: resizing, insertions and removals of items 106 62.5
Abstraction 100 50
Algorithmic complexity (can include runtime or space or cache usage etc) 98 50
Recursion (as applied to usage in processing data structures) 96 75
Abstract Data Types (specifically: List, Map, Set) 95 50
Big-Oh notation 93 75
Merge sort (another divide & conquer) 87 75
Binary trees 77 50
Heaps and heapsort 70 62.5
Comparison-based sorting 66 75
Debugging 62 50
Structural recursion on trees 61 62.5
Runtime analysis 43 50
Deep vs shallow copy 40 62.5
Trees and recursive traversals 34 50

Table 2: (Set 2) Cumulative difficulty rank of topics with at least 50% agreement in both impor-
tance and difficulty in the final phase

Category Topic rank % difficulty agreement
Recursion Recursion 158 75
Tree Structural recursion on trees 144 75
Recursion Recursion (as applied to usage in 105 62.5

processing data structures)
Abstraction Abstraction 104 75
List LinkedList and its implementation 101 75
Analysis and Big O Big-Oh notation 89 62.5
Heap Heaps and heapsort 65 62.5
Memory Deep vs shallow copy 65 62.5
Array Array processing: resizing, 50 62.5

insertions and removals of items
Tree Trees and recursive traversals 44 50
Map and Hash Table Hash tables 39 50

ANR

RDS

REC

LL

ADT

BST

BGO

RTR

PTR

ABS

Figure 2: (Set 3) Topics ranked by Manhattan distance from 0,0 for cumulative importance and
difficulty. The highest top ten ranked topics are labeled. The other (unlabeled) topics are shown
for comparison.
REC Recursion
LL LinkedList and its implementation
BST Binary search trees (simple, not self-balancing)
ANR Analysis of recursive algorithms
RTR Structural recursion on trees
ABS Abstraction
RDS Recursion (as applied to usage in processing data structures)
PTR Dealing with pointers in linked structures
BGO Big-Oh notation
ADT How to choose data structures (by complexity; what’s a reasonable default)

Table 3: (Set 4) Topics no one marked as either important or difficult in the final phase
Category Topic
Abstraction and ADT Abstraction (interfaces, how to write comments without implementation details)
Array Matrix
Memory How array-based data structures grow through reallocation
Graph Creating a linked directed graph implementation
Graph Graph traversals
List Usage of simple data structure (list/sets)
List Linked implementations
Set Set implementation
Tree Forest
Sorting Sorting algorithms (sequential, plus parallel merge sort)
Software engineering Organizing all collection ADTs in a single inheritance hierarchy
Software engineering GUIs/Java AWT
Software engineering C++ operator overloading
Software engineering Invariants
Software engineering Implementing a list iterator for multiple list implementations
Software engineering MVC design pattern
Software engineering Testing
Software engineering Teamwork
Other Intro to security concerns

Discussion

Core topics In comparison, the sets of top-ranked topics for both importance and difficulty with
(Set 2) and without (Set 3) taking agreement into account have 6 topics in common (see Table 4 in
the Appendix). The set where agreement is irrelevant includes 4 other topics that were highly
ranked but less than half of our experts chose to list. The set with 50% agreement includes 5 other
topics that were slightly lower ranked than those seen in the agreement irrelevant group but at
least half of our experts agreed that they merited to be included in the top importance and
difficulty lists. These results suggest that the topics of Abstraction, Big-Oh notation, Linked list
and its implementation, Recursion, Structural recursion on trees, and Recursion in processing
data structures should all be included in the core of an ADT-focused CS2 course (be given a large
share of the time spent and should appear on exams) and in CS2 concept inventories.

Broader context A notable related work is that of Clancy, Lee, Porter, Taylor, Webb, and
Zingaro8,22 (for clarity of exposition we use the name of the alphabetically first author and refer to
this work as the Clancy Project). Analyzing course syllabi for various CS2 courses, they
identified 6 categories (topics8) taught in CS2: sorting, recursion, basic data structures, advanced
data structures, object-oriented programming, and algorithm analysis. They then assembled a
panel of 8 experts and generated a set of 49 topics (subtopics8) based on personal expertise and
analysis of course descriptions, syllabi, exams, and other course materials from their own and
expert’s courses. They then asked the experts to quantify ”How critical is the following category
for student success in your CS2 class?” and ”What is the importance that students know the

content of the following category as a prerequisite for courses that follow your CS2 class?” using
a 7-point Likert scale, where 1 was “not at all critical” and “not at all important” and 7 was
“absolutely essential” and “very important”. The resulting assessment is summarized in Table 5
in the Appendix.

Besides the direct methodological difference (the Clancy Project used an expert panel and this
study used the Delphi method to generate topics), we note a number of finer-grained differences.
First, in addition to topic importance, our study also considers the question of topic difficulty.
Second, our study specifically targets the experts in an ADT-focused version of CS2 while Clancy
Project experts are involved in different versions of CS2. Third, Clancy Project’s focus is on
categories, while ours is on topics. Fourth, the categories in the Clancy Project are evaluated by
their absolute importance (very important/not at all important) and our topics are evaluated by
their relative importance and difficulty with respect to other topics of the course. Fifth, Clancy
Project considers the importance of topic categories for the courses following CS2 in the
curriculum, this study concentrates on the CS2 course itself. Finally, topic identification in the
Clancy Project is rooted in the actual existing course materials, i.e. the categories and topics
emerged from what is already being taught in CS2 by the experts. In this study, the task of
naming the important and difficult topics was given to the experts and is likely to reflect experts’
belief in what should be taught.

Comparing and aligning our findings with those of the Clancy Project, a number of interesting
observations emerge.

Lack of complete agreement amongst different studies There is no uniform agreement of what
should constitute the content of a CS2 class. Increasing the number of experts broadens the
number of topics suggested for inclusion in CS2 (in the Clancy Project, the materials of 8 experts
elicited 49 topics, in this study, 17 experts generated 116 unique topics).

Substantial overlap between study results There is a substantial overlap between the categories of
important and difficult topics (Set 2) and the important categories in the Clancy Project: 9 of 11
Set 2 topics belong to a category from Table 5.

Topics present in our results absent in the Clancy Project Two Set 2 topics, Abstraction and Deep
and shallow copy, represent respective categories Abstraction and Memory that were not
explicitly identified as critical in the Clancy Project (or other previous work), but were found both
important and difficult in this study. Mastering these topics is currently a byproduct of CS2
studies; clearly, many experts believe that those should instead be some of the central
themes.

Topics present in the Clancy Project absent in our results Conversely, none of the topics from
Sorting and OOP categories identified in the Clancy Project are included in Set 2. We interpret
exclusion of OOP topics to be a result of our expert selection process (we intentionally included
experts on an ADT-focused CS2). The exclusion of Sorting-related topics can be explained by the
relative nature of Set 2: it is likely that other topics are seen as more important and more difficult.
Notably, sequential sorting algorithms and parallel merge sort are included in our Set 4, leftover
topics.

Set 2 specifies particularly important and difficult topics from Basic Data Structures (Array, List)

and Advanced Data Structures (Tree, Map and Hash Table, Heap). Standard algorithmic and data
structures topics (Search, Stacks, Queues) are absent from Set 2. Our experts believed they were
important (they were included in Set 1) but their relative difficulty is apparently lower than that of
other topics in Set 2.

Conclusion

There is considerable variation among the CS2 community as to what the contents of such a
course should be or how difficult those contents are to learn. There are however, a few categories
in common between both this study and previous work; they include Analysis and Big-O,
Recursion, Basic Data Structures (Arrays, Lists), and Advanced Data Structures (Tree, Heap,
Hash Table). Considering difficulty allowed us to identify specific important topics in these
categories that are hard for students to master and where further work in concept inventory and
content development is likely to be the most impactful. The expert consensus also illuminates the
topics that have not previously been explicitly named important in a CS2 course (Abstraction,
Deep vs. shallow copy, How to choose data structures). These also represent the topics where
more content and assessment development work is needed.

Acknowledgements

We thank the 17 experts that participated in our Delphi study.

References

[1] Vicki L Almstrum, Peter B Henderson, Valerie Harvey, Cinda Heeren, William Marion, Charles Riedesel,
Leen-Kiat Soh, and Allison Elliott Tew. Concept inventories in computer science for the topic discrete
mathematics. In ACM SIGCSE Bulletin, volume 38, pages 132–145. ACM, 2006.

[2] Reed-Rhoads, T., and Imbrie, P. K. Concept inventories in Engineering Education. In National Research
Council Promising Practices in Undergraduate STEM Education Workshop 2, Washington, DC., 13 – 14
October 2008.

[3] Joan Krone, Joseph E Hollingsworth, Murali Sitaraman, and Jason O Hallstrom. A reasoning concept inventory
for computer science. 2010.

[4] Geoffrey L Herman. The development of a digital logic concept inventory. PhD thesis, University of Illinois at
Urbana-Champaign, 2011.

[5] Holger Danielsiek, Wolfgang Paul, and Jan Vahrenhold. Detecting and Understanding Students’
Misconceptions Related to Algorithms and Data Structures. In Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, pages 21–26, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1098-7. doi: 10.1145/2157136.2157148. URL
http://doi.acm.org/10.1145/2157136.2157148.

[6] Kuba Karpierz and Steven A. Wolfman. Misconceptions and Concept Inventory Questions for Binary Search
Trees and Hash Tables. In Proceedings of the 45th ACM Technical Symposium on Computer Science Education,
pages 109–114, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2605-6. doi: 10.1145/2538862.2538902.
URL http://doi.acm.org/10.1145/2538862.2538902.

[7] Leo Porter, Saturnino Garcia, Hung-Wei Tseng, and Daniel Zingaro. Evaluating student understanding of core
concepts in computer architecture. In Proceedings of the 18th ACM conference on Innovation and technology in
computer science education, pages 279–284. ACM, 2013.

[8] Leo Porter, Daniel Zingaro, Cynthia Lee, Cynthia Taylor, Kevin C Webb, and Michael Clancy. Developing
course-level learning goals for basic data structures in cs2. In Proceedings of the 49th ACM technical
symposium on Computer Science Education, pages 858–863, 2018.

[9] Leo Porter, Daniel Zingaro, Soohyun Nam Liao, Cynthia Taylor, Kevin C. Webb, Cynthia Lee, and Michael
Clancy. Bdsi: A validated concept inventory for basic data structures. In Proceedings ACM ICER, 2019.

[10] C. Taylor, D. Zingaro, L. Porter, K.C. Webb, C.B. Lee, and M. Clancy. Computer science concept inventories:
past and future. Computer Science Education, 24(4):253–276, 2014. doi: 10.1080/08993408.2014.970779.
URL http://dx.doi.org/10.1080/08993408.2014.970779.

[11] Allison Elliott Tew. Assessing fundamental introductory computing concept knowledge in a language
independent manner. PhD thesis, Georgia Institute of Technology, 2010.

[12] Allison Elliott Tew and Mark Guzdial. The FCS1: a language independent assessment of CS1 knowledge. In
Proceedings of the 42nd ACM technical symposium on Computer science education, pages 111–116. ACM,
2011.

[13] Kevin C Webb and Cynthia Taylor. Developing a pre- and post-course concept inventory to gauge operating
systems learning. In Proc. 45th ACM SIGCSE, pages 103–108. ACM, 2014.

[14] Ricardo Caceffo, Steve Wolfman, Kellogg S. Booth, and Rodolfo Azevedo. Developing a Computer Science
Concept Inventory for Introductory Programming. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, pages 364–369, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3685-7.
doi: 10.1145/2839509.2844559. URL http://doi.acm.org/10.1145/2839509.2844559.

[15] GL Herman, MC Loui, and C Zilles. Administering a digital logic concept inventory at multiple institutions. In

Proceedings of the 2011 American Society for Engineering Education annual conference and exposition, pages
26–29, 2011.

[16] Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey L. Herman, Lisa Kaczmarczyk, Michael C. Loui, and Craig
Zilles. Setting the Scope of Concept Inventories for Introductory Computing Subjects. Trans. Comput. Educ.,
10(2):5:1–5:29, June 2010. ISSN 1946-6226. doi: 10.1145/1789934.1789935. URL
http://doi.acm.org/10.1145/1789934.1789935.

[17] Norman Dalkey and Olaf Helmer. An experimental application of the Delphi method to the use of experts.
Management science, 9(3):458–467, 1963.

[18] Mark J. Clayton. Delphi: a technique to harness expert opinion for critical decision[U+2010]making tasks in
education. Educational Psychology, 17(4):373–386, 1997. doi: 10.1080/0144341970170401.

[19] Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey Herman, Lisa Kaczmarczyk, Michael C. Loui, and Craig
Zilles. Identifying Important and Difficult Concepts in Introductory Computing Courses Using a Delphi
Process. In Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education, pages
256–260, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-799-5. doi: 10.1145/1352135.1352226. URL
http://doi.acm.org/10.1145/1352135.1352226.

[20] Juri Pill. The Delphi method: Substance, context, a critique and an annotated bibliography. Socio-Economic
Planning Sciences, 5(1):57–71, 1971. URL
http://EconPapers.repec.org/RePEc:eee:soceps:v:5:y:1971:i:1:p:57-71.

[21] Mary A Nelson, Monica R Geist, Ronald L Miller, Ruth A Streveler, and Barbara M Olds. How to create a
concept inventory: The thermal and transport concept inventory. In Annual Conf. of American Edu. Research
Association, 2007.

[22] Cynthia Taylor, Michael Clancy, Kevin C. Webb, Daniel Zingaro, Cynthia Lee, and Leo Porter. The practical
details of building a cs concept inventory. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education, SIGCSE ’20, page 372–378, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450367936. doi: 10.1145/3328778.3366903. URL
https://doi.org/10.1145/3328778.3366903.

[23] Lea Wittie, Anastasia Kurdia, and Meriel Huggard. Recruiting experts: Toward a concept inventory for
computer science 2 (abstract only). In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, SIGCSE ’18, page 1104, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450351034. doi: 10.1145/3159450.3162210. URL
https://doi.org/10.1145/3159450.3162210.

[24] S. Zweben and B. Bizot. Undergrad enrollment continues upward; doctoral degree production declines but
doctoral enrollment rises. CRA Taulbee Survey, pages 1–81, 2018. URL
https://cra.org/wp-content/uploads/2019/05/2018TaulbeeSurvey.pdf.

[25] Matthew Hertz. What Do “CS1” and “CS2” Mean?: Investigating Differences in the Early Courses. In
Proceedings of the 41st ACM Technical Symposium on Computer Science Education, pages 199–203, 2010.
ISBN 978-1-4503-0006-3.

Appendix

Table 4: Comparison of Sets 2 and 3; topics that were both difficult and important both with and
without agreement.

Topic 50% agreement agreement irrelevant
Abstraction X X
Big-Oh notation X X
LinkedList and its implementation X X
Recursion X X
Structural recursion on trees X X
Recursion (as applied to usage in X X

processing data structures)
Binary search trees (simple, not self-balancing) X
Analysis of recursive algorithms X
Dealing with pointers in linked structures X
How to choose data structures (by X

complexity; what’s a reasonable default)
Heaps and heapsort X
Deep vs shallow copy X
Array processing: X
Trees and recursive traversals X
Hash tables X

Table 5: Average importance of each component for student success in CS2 and as a prerequisite
for later courses8, on a scale from 1 (not at all important) to 7 (very important).

Category CS2 Success As Prereq.
Object Oriented Prog. 6.4 5.9
Basic Data Structures 6.4 5.7
Recursion 6.3 5.9
Sorting 5.3 3.5
Algorithm Analysis 5.1 3.6
Advanced Data Structures 3.9 2.3

