Improvements in Electric Power Systems Curricula: Developing Continuous Improvement Plan

Ilya Grinberg, John A. Stratton, Frank Pietryga, and James Maxwell

Buffalo State College/ Rochester Institute of Technology/ University of Pittsburgh – Johnstown/ Buffalo State College

Faculty at three universities in the New York / Pennsylvania region offer their engineering technology students required or elective sequences in electric power systems. The three institutions were each looking at possible changes to their respective courses to make them more relevant to the power systems industry which is struggling to assure reliable and economic delivery of power in the light of deregulation and the blackouts of the recent past.

The authors are looking at TC2K Criteria Elements, such as program educational objectives, program outcomes, assessment and evaluation, as well as program characteristics. All these components are compared between three universities. Methodology for continuous improvement is proposed based on the results of the study.

The four faculty compiled the results of the surveys and determined which input was most valuable to each university, comparing the various metrics which were available.

Materials Developed for TAC of ABET

Buffalo State College (BSC) and Rochester Institute of Technology (RIT) were both re-visited by TAC of ABET in the Fall of 2004. Their materials are included from those used in the self-study process for their first TC2K visit. The University of Pittsburgh at Johnstown (UPJ) has not yet been visited since TC2K has been in force. Their materials are based on their internal continuous improvement process.

Program Educational Objectives (PEO's)

The TAC of ABET defines these as very general objectives which alumni should have achieved after a few years of employment in industry. The following is a summary of the PEO's, which the EET programs at each of the three universities have included:

Program Educational Objective	Buffalo State College	Rochester Institute of Technology	University of Pittsburgh at Johnstown
Attained employment in the field.	Yes	Yes	Yes
Pursued Additional Formal Education and / or certification	Not as such.	Yes	Stated as offering opportunities at UPJ – "lifelong learning process"
Attained increasing levels of responsibility and leadership in their	Professional Success	Yes	As part of a basic principle – "grow and develop"

chosen field.			
Ethical standards	Part of a PO, not a PEO	Part of a PO, not a PEO.	Yes
directed toward solving			
technological problems			
of industry and society.			
Human Relations Skills	Part of a PO, not a PEO	Part of a PO, not a PEO.	Yes
Measurements	Alumni and employer	Several measurements	Alumni and employer
	survey every six years	in Alumni Survey done	survey every six years.
		every 6 years.	

Program Outcomes (PO's)

TAC of ABET defines a program outcome as an action which a student demonstrates upon graduation from an accredited program. TAC of ABET defines a set of program outcomes (a-k) which each program must obtain and a set of program criteria for each of the various programs. Each program can define its own program outcomes, so long as it maps them to the general (a-k) and specific program criteria. The following table is a quick summary of the program outcomes defined by the three universities.

ABET	General Category	BSC	RIT	UPJ
Definition				
		From ABET	From ABET	From Continuous
		Self Study	Self Study	Improvement Plan
a	Mastery of Knowledge in	Yes	Yes	Yes
	Technical Fields			
b	Apply Knowledge in Technical	Yes	Yes	
	Fields			
с	Experimentation	Yes	Yes	Yes
d	Creativity in design	Yes	Yes	
e	Work in Teams	Yes	Yes	Yes
f	Solve Technical Problems	Yes	Yes	
g	Communicate Effectively	Yes	Yes	Yes
h	Lifelong Learning	Yes	Yes	
i	Professional, Ethical and Social	Yes	Yes	Yes
j	Diversity and World Issues	Yes	Yes	Yes
k	Quality, timeliness, CIP	Yes	Yes	
Program Criteria	Circuits, programming, etc.	Yes	Yes	
"	Apply Physics / Chemistry	Yes	Yes	
"	Depth & Breadth	Yes	Yes	Yes
"	Various EET Fields	Yes	Yes	
"	Project Management	Yes	Yes	
"	Math beyond Calculus	Yes	Yes	
Institutional		N/A	N/A	

Note: Those categories which have not been checked in these tables are ones which UPJ has not specifically called out in their internal CIP process. They will be preparing for a TC2K visit in the near future.

Conclusions from PEO's and PO's:

It is obvious that each EET program has to meet ABET standards, and from the first two tables they have met these minimum standards for the programs.

There were not particular institutional PEO or PO statements which would alter individual programs or courses at the respective universities.

Specific Course Materials in Power Systems

Since this paper will focus particularly the power system required or elective courses, it is now time to look at the specifics of three sets of courses in power systems: electric machines, power systems and power electronics. In each case, there may be more than one course in a given area but we will lump the courses into these three categories.

In each of the three areas, there are also three items worth investigating. The first is what many who have written TAC of ABET self studies would call course outcomes or intended learning objectives. The second is the set of topics included in each area. The third is the laboratory exercises included (if any) in each course.

Part of the exercise of preparation for ABET is to be as specific as possible, without listing items that cannot or will not be measured. While some of the items are certainly included in a course, they are not stated because they are not going to be measured in the particular course at the particular institution. Where "Not stated" is used, the material may well be covered, but not measured for ABET purposes.

Electric Machines Course Outcomes	BSC	RIT	UPJ
Identify types, characteristics and components	Yes	Not stated	Yes
Convert transformers and machines to circuit models	Not stated	Yes	Yes
Measure the electrical and mechanical parameters	Yes	Yes	Yes
Specify motors, generators and transformers	Yes	Yes	Yes
Work in teams to build, troubleshoot and analyze devices.	Not stated	Yes	Yes
Obtain / compare data to theory.	Yes	Yes	Yes
Compare electrical and mechanical quantities	Yes	Yes	Yes
Good written report	Yes	Not stated	Not stated
Technical Literacy and Lifelong Learning	Yes	Not stated	Not stated
Role and limitations of technology	Yes	Not stated	Yes

Electric Machines

Electric Machines Topical Content	BSC	RIT	UPJ
Review of Circuits	Yes	Yes	Yes
Transformer Parameters and specifications	Yes	Yes	Yes
Ideal and realistic transformers	Yes	Yes	Yes
Transformer parameters referred to high side and	Yes	Not stated	Yes
low side.			
Rotating Magnetic Field	Yes	Yes	Yes
Induction Motor Principles	Yes	Yes	Yes
Squirrel Cage and Wound Rotor3 Phase Induction	Yes	Yes	Yes
Motors			
Single Phase Induction Motors	Yes	Yes	Yes
Speed and torque control of induction motors	Yes	Not stated	Yes
Solid State motor controls	Yes	No	Yes
Fractional HP motors, application and types	Yes	Yes	Yes
Stepper Motors & controls	Yes	Yes	No
Synchronous Motors and generators	Yes	Yes	Yes
Rotor Types	Yes	Yes	Yes
Power Factor Correction with SM	Yes	Not Stated	Yes
Synchronous Machine Power Angle	Yes	Yes	Yes
Efficiency	Yes	Yes	Yes
Industrial Applications: specifications – selecting,	Yes	Not Stated	Yes
sizing.			
DC Machines	Not Stated	Yes	Yes

Electric Machines Laboratory Topics	BSC	RIT	UPJ
3 Phase AC Circuits	Not stated	Yes	Yes
3 Phase Power & Phase Sequence	Not stated	Yes	Yes
Transformer, Motor & Generator Testing Procedures	Yes	Yes	Yes
Instrumentation for Testing	Yes	Yes	Yes
Simulation Software	Yes	Not Stated	Yes
Single Phase Transformer parameters and voltage	Yes	Yes	Yes
regulation			
Wound-Rotor induction motor	Yes	Yes	Yes
Squirrel cage induction motor	Yes	Yes	Yes
Synchronous Motor and Generator	Yes	Yes	Yes
DC machines	Not stated	Yes	Yes

Power Systems

Power Systems Course Outcomes	BSC	RIT	UPJ
Distinguish the elements of a power system.	Yes	Yes	Yes
Solve balanced and unbalanced 3 phase circuits	Yes	Yes	Yes
Solve power factor correction problems and apply various methods	Yes	Yes	Yes
of controlling switched capacitors.			
Find 60 Hz transmission line impedances	Yes	Yes	Yes
Apply various substation configurations, including placement of	Implied	Yes	Yes
instrument transformers.			
Determine the efficiency and voltage regulation of a transformer.	See	Yes	Yes
	Machines		
Design and present the electrical layout of an industrial facility, city	Industrial	Yes	No
or region.	Facility		
Apply basic criteria to troubleshoot for power quality	Yes	Yes	No
Write a paper on electric power systems, using significant	Yes	Yes	No
references from technical magazines.			
Solve a load flow for a power system.	Yes	Yes	Yes
Solve a simple economic operation problem with two generators.	No	Yes	Yes
Determine line fault currents using symmetrical components.	Yes	Yes	Yes
Use the equal area criterion to determine the stability of a power	Yes	Yes	No
system.			
Apply electromechanical and solid state relays to simple power	Yes	Yes	Yes
systems.			
Include concepts of supervisory control and telemetry in the study	Implied	Yes	Yes
of power systems.			
Do a class projects utilizing load flow, protective relaying and	Yes	Yes	Yes
system faults.			
Historical development of power systems to include effects of	Yes	Implied	No
deregulation.			
Per Unit Analysis	Yes	Implied	Yes
Simple Fault Analysis without symmetrical components.	Yes	No	Yes
Economics of Power Distribution	Yes	No	Yes
Lifelong learning skills.	Yes	Implied	Implied
Role and limitations of technology and need of responsible	Yes	Implied	Implied
application of technology.		_	_
Demand Management and its calculations	Yes	No	No

Power Systems Topical Content	BSC	RIT	UPJ
Review of single phase power	No	Optional	No
Basic Elements of Power System	Yes	Yes	Yes
Balanced and unbalanced 3 Phase	Yes	Yes	Yes
Capacitors and PF Correction	Yes	Yes	Yes
Transmission Line configurations and impedances	Yes	Yes	Yes
Transformers, autotransformers and 3 phase transformers	Yes	Yes	Yes
Per Unit System, system parameters	Yes	Yes	Yes
Load management and energy conservation	Implied	Yes	Yes
Substation Layout	Yes	Yes	Yes
Metering and Instrument Transformers	Yes	Yes	Yes
Power Reliability and Quality	Yes	Yes	Yes
Class Project – Layout of a power system	Yes	Yes	Yes
Library project and oral presentation	Yes	Yes	No
Load flow – equations and simulation	Yes	Yes	Yes
Economic Operation – 2 Generators	No	Yes	Yes
Fault Analysis with symmetrical components	Yes	Yes	Yes
System stability – equal area criterion	Yes	Yes	No
System protection, using EM and SS relays	Yes	Yes	Yes
Supervisory Control and Telemetry	Yes	Yes	Yes
Capstone class project	Yes	Yes	No
Historic development of power systems to include effects of deregulation	Yes	Implied	No

Power Systems Laboratory Content	BSC	RIT	UPJ
30 degree phase shift in 3-phase transformers	Yes	Yes	Yes
Characteristics of Time Over-Current Relay	Not at this	Not at this	Yes
	time	time	
		(NATT)	
Simulations of Faults and Load Flow	Yes	Yes	Yes
Characteristics of Directional Over-Current Relays	NATT	NATT	Yes
Characteristics of Differential Relays	NATT	NATT	Yes
Characteristics of Reverse Power Relays	NATT	NATT	Yes
Tour local power generation and industrial plant with large	Yes	NATT	Yes
power systems in place			
Use of Simulation Software: Power World Simulator, SKM	Yes	NATT	Yes
Analysis			
Protective Relay Coordination Studies	NATT	NATT	Yes

Note: Lab content is being revised at Buffalo State as a result of Schweitzer Engineering Laboratories equipment donation.

Power Electronics

Power Electronics Course Outcomes	BSC	RIT	UPJ
Describe the characteristics of power semiconductor	Yes	NATT	Yes
devices			
Demonstrate the principles of operation of static power	Yes	NATT	Yes
conversion			
Specify appropriate pulse-width modulation techniques for	Yes	NATT	Yes
voltage and frequency control.			
Select and design an appropriate technique of Thyristor	Yes	NATT	Yes
commutation for an industrial application			

Power Electronics Course Outcomes	BSC	RIT	UPJ
Relate the advantages and disadvantages of various	Yes	NATT	Yes
conversion topologies.			
Design a power electronics circuit for an industrial	Yes	NATT	Yes
application.			
Analyze the designs and apply design considerations for	Yes	NATT	Yes
several power electronic circuits			

Power Electronics Topical Content	BSC	RIT	UPJ
Applications of power electronics, and types of power	Yes	NATT	Yes
electronic circuits			
Characteristics of diodes and power semiconductor diodes	Yes	NATT	Yes
Diode Rectifiers: single and three phase rectifiers	Yes	NATT	Yes
Thyristors: Characteristics of silicon-controlled rectifiers,	Yes	NATT	Yes
gate-turn-off thyristors and MOS-controlled thyristors			
Controlled Rectifiers: Single phase converters and dual	Yes	NATT	Yes
converters			
AC Voltage Controllers: Single-phase and three-phase	Yes	NATT	Yes
converters			
Power Thyristors: Characteristics of power BJTs,	Yes	NATT	Yes
MOSFETs and IGBTs			
DC Choppers: step-down and step-up operation	Yes	NATT	Yes
Pulse-Width Modulated Inverters: Single-phase, three-	Yes	NATT	Yes
phase inverters, voltage control of inverters, and current			
source inverters			
Resonant-Pulse Inverters: Series-resonant and parallel-	Yes	NATT	No
resonant inverters			

Power Electronics Laboratory Content	BSC	RIT	UPJ
Diode characteristics	Yes	NATT	Yes
Diode rectifiers	Yes	NATT	Yes
Thyristor circuits	Yes	NATT	Yes
Thyristor controlled circuits	Yes	NATT	Yes
Single-phase converters	Yes	NATT	Yes
Three-phase converters	Yes	NATT	Yes
Single-phase inverters	Yes	NATT	Yes
Three-phase inverters	Yes	NATT	Yes

Continuous Improvement Model and Systems Approach

The authors utilized systems engineering principles [1] to the proposed model. These principles are:

- Decomposition and functional analysis
- Requirements or criteria
- Synthesis
- Testing
- Communications

Iterative top-down decomposition is utilized to the subject matter itself and results in topical outlines presented in the previous section. This process reflects actual engineering procedures and operations found in design and operations of electric power systems.

Requirements or criteria must be measurable, should be monitored throughout further steps of analysis, and could be optimized. Besides technical and economical requirements found in any engineering system the criteria specified in ABET Criterion 2 for program outcomes are also utilized.

With topical outlines known it is possible to propose an advanced curriculum based on interrelations between topics of different disciplines within Electrical Engineering Technology (EET) program, between EET and other programs, and between courses and programs in different institutions.

Communications are utilized through direct connections between blocks as well as feedback loops.

Figure 1 shows the diagram of proposed methodology.

The authors modified the process proposed in [2] by specifying the content of each block and adding additional feedback loop.

Program goals, program educational objectives, and suggestions from Industrial Advisory Boards are viewed as an intellectual input to continuous improvement program (CIP). Program outcomes are viewed as a process, while topical outlines are the output of the CIP and course outcomes are considered to be the outcomes of the CIP. Conditions, such as faculty, facilities, equipment, institutional and external support, are treated as physical input to the CIP.

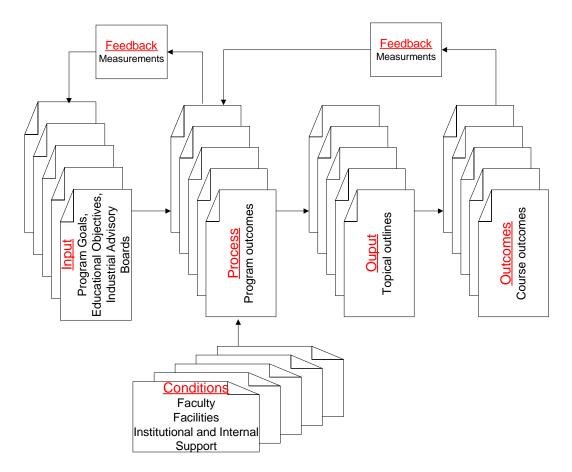


Figure 1. Continuous Improvement Program Diagram

There are two feedback loops: the process (program outcomes) could be modified as a result of measurable feedback from course outcomes. The input (program goals and objectives) could also be modified as a result of modifications in program outcomes. It is also clear that the amount of internal and external support, available equipment, state of facilities, and qualifications of faculty members provide unique input to the process and are responsible for diverse output and outcomes. As an example, an ability of University of Pittsburgh in Johnstown to acquire power systems simulator led to a variety of laboratory and lecture topics to be introduced. Similarly, acquisition of power electronics set of modules by LabVolt allowed Buffalo State College to offer a senior elective laboratory course in this discipline. Likewise, recent donation of digital relays set by Schweitzer Engineering Laboratories to Buffalo State changed topical outlines and added laboratory experiments to their power systems and other EET courses.

In Fig. 1 multiple documents reflect different programs, such as EET, MET, and other programs within Engineering Technology as well as outside the unit itself. Business, Computer Information Systems, Creative Studies, Math and Physics are among them. All these layers should be coordinated as well for optimal course and program outcomes. The same is true for coordination between institutions. In this case CIPs of each participating institution should be synthesized to provide for a better process. Coordination and consultations between different entities is important and provides benefits to the profession despite organizational structure in different institutions.

What Have The Author's Found?

1. The requirements by ABET for preparation to better document student outcomes, course content and laboratory content has allowed this kind of comparison to be done.

2. Different institutions will naturally have somewhat different courses in the same general area. Such differences come from interaction with industrial advisory committees, input from graduates, and the expertise of the instructors. Additional differences will come from the number of courses allocated by the EET curriculum to required power courses and to technical electives available to the students.

3. While the course content may be similar between institutions, the course student outcomes may be written differently. Some institutions may rely on the power courses to demonstrate areas like lifelong learning, impact of technology on society and capstone experiences, others may use alternate courses to fulfill these requirements.

4. Areas like an understanding of lifelong learning and ethics might also be measured by a PEO rather than just a PO, as now used by TAC of ABET.

5. Project Management is not now taught in the power courses, but this is a possible use for it in EET curricula.

6. A survey such as this one can help an institution justify better laboratory equipment and more power electives in its curriculum.

Conclusions

Institutions can learn by comparing their courses with others whose mission is similar. After consultation with industrial advisory boards and alumni, the faculty may choose to alter their current courses. Such consultation and thought can result in very significant changes in courses, or may only result in minor changes.

The three institutions who have participated in this study will make such decisions over the next year or two, but it will take a few years for course changes and equipment purchases to impact their curricula. Some institutions may choose not to make significant changes, but to evolve their curricula into what their constituencies will recommend.

The authors have concluded that yet another influential input besides IABs and alumni should be in the form of consultations between institutions with similar programs. Creating a consortium (regional or even broader) of institutions with power-related programs would serve this purpose well, although other forms of cooperation are possible.

Bibliography

1. Grinberg I., Stratton J. A Systems Engineering Approach to Engineering Design Methodology, *Journal of Engineering Technology*, Fall 1996, pp. 8-13

2. Gregory Neff and Susan Scachitti. "Continuous Improvement of Engineering Technology Programs --Coming Soon to a University Near You", *Proceedings of 2000 Annual Conference of the American Society for Engineering Education, Montreal* St. Louis, Missouri June 18-21, 2000

ILYA Y. GRINBERG

Ilya Grinberg graduated from the L'viv Polytechnic Institute (L'viv, Ukraine) with an MS in EE and earned a Ph.D. degree from the Moscow Institute of Civil Engineering (Moscow, Russia). He has over 30 years of experience in design and consulting in the field of power distribution systems and design automation. Currently he is Professor of Engineering Technology at Buffalo State College. He is a Senior Member of IEEE, and a member of ASEE.

JOHN A. STRATTON

John A. Stratton graduated from the Rochester Institute of Technology (RIT) with a BS and Rensselaer Polytechnic Institute with an MS in EE in 1964 and 1966 respectively. Currently he is Professor of Engineering Technology at RIT. He is a Senior Member of the IEEE and a member of the ASEE.

FRANK W. PIETRYGA

Frank W. Pietryga is an Assistant Professor at the University of Pittsburgh at Johnstown. He graduated from UPJ in 1983 with a BSEET degree and completed his MSEE degree in 1993 at the University of Pittsburgh, main campus. His interests include power system engineering, AC/DC machinery, power electronics, and motor drive systems. Mr. Pietryga is also a registered professional engineer in the Commonwealth of Pennsylvania

JAMES MAXVELL

James Maxwell is a Professor and Chair of the Business Department at Buffalo State College. He holds a Ph.D. in Management from Webster University, St. Louis, Missouri, a MBA and BS in Management from Maryville University, St. Louis, Missouri. He is currently completing a Ph.D. in Technology Management in Indiana State University, Terre Haute, Indiana. He serves on editorial boards for several business and management journals.