
2023 ASEE Illinois-Indiana Section Conference Proceedings

Improving Access to Engineering Education:
Unlocking Text and Table Data in Images and Videos

Uchechukwu Uche-Ike
University of Illinois at Urbana Champaign

uuchei2@illinois.edu

Lawrence Angrave
University of Illinois at Urbana Champaign

Abstract

Accessibility of media, including visual media, is a significant concern in creating
engineering education that is inclusive and accessible; without access, students who are blind or
have low vision are unable to learn from today’s engineering materials. This project presents a
new accessibility tool, implemented as a user-friendly browser extension to extract and create
accessible structured text — with a focus on tables of information — when embedded within
web-based images and video media. The app can extract information to be used in a
speech-to-text output of a screen reader; or text-to-braille device; pasted into a programming
editing environment (e.g., Matlab, Jupyter notebook, Microsoft Code, or text editor); and further,
used as the initial source input for manual or automated construction of audio descriptions to
accompany the original media for future dissemination. In addition to improving access to
engineering education, this project is a productivity tool for students seeking more access to
textual data presented in image form. For example, it serves as a tool for all engineers and
student engineers who seek to extract and re-use tabular information embedded inside an image
or video that otherwise would require manual entry. The system uses the React.js framework and
Tesseract Optical Character Recognition (OCR) engine. The tool preserves privacy because it
runs entirely inside the browser: no image data leaves the client. It can extract information from
any web page on any website supported by the Chrome browser. Users can screenshot images
and videos, extract text and numbers in scientific notation, determine the tabular structure, and
meaningfully extract text from tables in tabular form (separated into rows and columns). We
describe its design: the user interface features that allow its use by people with low-vision and
access specialists. Upon initiation, the user selects a media HTML element to process; the user
can choose to extract text from this frame or change the focus to another object on the page. The
extraction area is adjustable by keyboard or pointer/touch interaction. Finally, the user chooses to
either screen-capture the area and download the image, extract text from the area, or extract
tabular information. To make the tool intuitive, interaction is structured as a wizard where users
are guided along the stepwise process but can go back to previous steps. We provide examples of
the best and worst output of our accessibility tool when applied to engineering education content
and evaluate its accuracy and performance to extract tabular information from image samples
from engineering disciplines.

Introduction

© American Society for Engineering Education, 2023



2023 ASEE Illinois-Indiana Section Conference Proceedings

Engineering content consists of a wide variety of forms - including but not limited to -
prose, images and figures, equations, charts and visualizations, programming code, and tabular
information. A challenge of the inclusive education approach is to provide accommodations for
students with disabilities and use technology to unlock access to these information-rich items.
Unfortunately, textual information is frequently embedded in images or video, which is
inaccessible to students who are blind or have low vision.

In this research paper, we introduce a new Chrome-based tool that can extract
information from an image. Using an Optical Character Recognition (OCR) library, plain text
can be machine-recognized from an image area. This work extends this text extraction to the
extraction of structure and text of tabular information. This aspect is challenging because table
layout and visual presentation can vary significantly. For example, there may be border lines
between rows and columns, and column headings may span several lines.

Background

Optical Character Recognition (OCR) technology is a fundamental component of Text
extraction tools. OCR operates by identifying text in an image, comparing the identified
characters to a model of character features, and finally translating those recognized features into
machine-encoded text. Popular OCR tools include Google Drive OCR, Tesseract, Transym, and
OmniPage. Regardless of OCR application, they all share six principal steps in text extraction:
Image Acquisition, Pre-Processing, Segmentation, Feature Extraction, Classification, and Post
Processing.

Image Acquisition, the first stage, involves acquiring the picture and demarking the light
from dark areas of the image. The light areas are treated as the background, while the dark areas
are text. Pre-Processing follows this step. It takes the acquired picture and transforms it to ease
character recognition in later stages. It includes several subprocesses including: binarization of
the image: making it black and white; rotating the picture for improved horizontal alignment;
noise removal: removing digital image spots and smoothing out edges; thresholding: cropping
out unnecessary parts of the image.

Segmentation crops the pre-processed image to focus on the text portion of the
photograph. The first part of Segmentation, Page Segmentation, removes parts of the image not
containing text. Character segmentation then isolates individual characters for classification in
the later stages, and the Image size normalization substage takes those separated characters and
resizes them for the Feature Extraction stage.

© American Society for Engineering Education, 2023



2023 ASEE Illinois-Indiana Section Conference Proceedings

In the Feature Extraction stage, the OCR application analyzes the isolated characters for
distinguishing features: the tail of a capital Q, the stem of an L, and other minute details. The
OCR software records these details for the penultimate stage: Classification.
Classification uses several machine learning algorithms: K- Nearest Neighbor (K-NN) classifier,
Support Vector Machines (SVM) classifier, and Probabilistic Neural Network (PNN) classifier to
classify the segments of the image into characters. The extracted text is then output to the user
during the Post-Processing phase. During this phase, the machine-encoded text could be placed
in a file and edited for grammatical or spelling errors.

Implementation [Research design]

Our application uses Javascript, the React.js framework and the Tesseract.js OCR engine.
The React.js framework allows for a simplistic, dynamic, state-driven user interface without
interacting directly with the DOM of a webpage. Tesseract.js is a free, open source OCR tool
with customizable features for text extraction, including character allow lists/deny list, Page
Segmentation Modes, and adjustable borders for text extraction.

In our text extraction application, the user right-clicks on a webpage and is prompted
with a context menu to open the application. Upon clicking "open," the application window
becomes visible and selects the first video/image HTML element on the screen. The user is
guided through a wizard where they can choose whether or not to change the text extraction
focus, adjust the frame of the focus to extract text from, screenshot the frame, and extract tabular
information or text from the image. Finally, the wizard prompts the user to repeat the text
extraction on the same HTML element or pick a new extraction focus.

Our Text Extraction Application follows this general flow chart (Figure 1): it uses the
Javascript Canvas API to screenshot the extraction focus: a video or image. The application then
crops the screenshotted image based on the user's input. The cropped image is reduced to two
colors, given padding, and borders are placed around the image. These three techniques improve
text accuracy. For tabular extraction, this additional preprocessing is omitted for performance
sake, and an edge detection algorithm processes the image and returns the dimensions of the
table and the dimensions of the individual table cells. The tesseract engine is used on each cell
individually. For normal extraction, the app forwards the entire preprocessed image to the
Tesseract OCR engine.

© American Society for Engineering Education, 2023



2023 ASEE Illinois-Indiana Section Conference Proceedings

Figure 1

In the case of numerical text extraction, an allow list orders Tesseract to recognize
exclusively characters standard numerical notation: "0123456789e*^." For normal text
extraction, an allowlist is not used. The app then displays the extracted text. Tabular text can be
displayed as an HTML table, CSV file, or JSON table.

Development began with linking Tesseract.js functionality with React.js. Tesseract allows
users to insert several object types as parameters for OCR text extraction: Image URLs,
filenames, and HTML canvas objects, among others. HTML's Canvas object is a convenient
medium for text extraction as React.js can take a "screenshot" of an image or video in the
website DOM. React.js can directly send that screenshot to Tesseract.js.

After linking React.js' functionality to Tesseract's functionality, the next concern became
the tabular extraction feature. The principal issue was table formatting. Table formats vary
wildly: cell boundaries, cell arrangements, and color schemes can all affect how an algorithm can
interpret a table from an image. For the application's early stage, we assumed that tables have a
uniform layout with a black-and-white color scheme.

© American Society for Engineering Education, 2023



2023 ASEE Illinois-Indiana Section Conference Proceedings

Our initial implementation of a tabular extraction used a K-means clustering algorithm to
find areas in the image with the most amount of black pixels. The intuition was black clusters on
the image would be where cell entries reside. Cell dimensions could be interpreted from the
relative position of those clusters along the X and Y axes. We abandoned this approach after
experiments found that the clustering algorithm required a significant amount of time and often
misidentified the table edges as cell entries.

The improved methodology uses an edge detection algorithm that records into an array
the number of times the pixel color changes significantly while scanning horizontally and then
vertically across an image. The logic of this approach is that text in an image would cause a row
of pixels to have more "edges'' detected than space or cell borders on the table. The mode
number of edges is found. Any rows/columns in the image that have more edges than the mode
are treated as text subsections; those with a less or equal number of edges are non-text
subsections. The app interprets the horizontal and vertical subsections as the rows and columns
of the table; these subsections determine the position of the table cells in the image. The
application sends the table cells' coordinates to Tesseract.js.

After solving the tabular extraction issue, the last major challenge with the "Extract Text
as Numerical Value" functionality. Ideally, the feature would extract text in Scientific notation
from images and return the value of the number in standard form as text. For example, the text
"3.02e2" on an image would translate to "302" in the application output. However, initial
versions of the application had text extractions for mathematical expressions such as 3.02^5 be
recognized as 3.02M5 or 3.0275. The problem was Tesseract's default OCR model did not
recognize the caret ("^") character. To rectify this issue, a new training model was created based
on the existing Tesseract model for English with additional training data to help recognize the
caret symbol.

Preliminary Testing

For testing, we looked into the accuracy of the tabular extraction feature of our proposed
out. We ran our proposed text extraction app on several STEM-related course books. Screenshots
were taken of the tables in these course books with generous amounts of whitespace around the
tables. We then classified the screenshots into two main groups: Regular and Irregular. Regular
tables contain a fixed number of rows and columns and do not have missing table entries. An
example of a regular table is shown below in Figure 2.

© American Society for Engineering Education, 2023



2023 ASEE Illinois-Indiana Section Conference Proceedings

Figure 2

Irregular tables are tables that do not conform to the specifications of Regular tables:
asymmetrical table dimensions, empty table entries, multiple header rows/columns, etc. An
example of an irregular table can be shown in Figure 3.

Figure 3

The Regular table group further divides into two subgroups: Alphanumeric and Numeric.
Alphanumeric tables contain both alphabetic and numeric characters. Likewise, alphabetic tables
only have alphabetical characters in the table contents - alphabetical characters include greek
letters.

To measure our app's word accuracy, we recorded four metrics. The word accuracy, the
header accuracy, the data accuracy, and the extracted dimensions of the table. We calculate the
word accuracy as the difference between the number of correct characters extracted by the
number of incorrect characters extracted divided by the total number of characters in the original
image. For numerical figures, a single-digit error results in the entire number being incorrect.
Other artifacts from extraction, such as newline characters ("\n"), are ignored for accuracy
measurement. Header accuracy and data accuracy are similarly defined but only consider text in
the header and data sections of a table.

© American Society for Engineering Education, 2023



2023 ASEE Illinois-Indiana Section Conference Proceedings

Results

Table Type Word
Accuracy

Header
Accuracy

Data
Accuracy

Expected
Dimensions

Extracted
Dimensions

Alphabetical

Table 5 89.66% 0% 91.57% 5x2 5x2

Table 8 52.41% 42.55% 52.96% 10x6 2x11

Table 4 0% 0% 0% 4x4 N/A

Alphanumerical

Table 2 86.66% 84.61% 100% 3x5 1x1

Table 3 18.64% 12.82% 75% 3x5 2x2

Table 4 73.13% 69.49% 100% 3x5 2x2

Irregular

Table 2 83.09% 90.32% 37.5% N/A 7x1

Table 1 13.73% 4.65% 37.5% N/A 7x1

Table 8 0% 0% 0% N/A 1x1

These are some highlights of the results of running our app on tables of each type of table
from the college coursework.

Discussion

Overall, while our proposed app was sometimes accurate at deducing table dimensions,
the accuracy of the extracted text was poor. We believe this is because the size of the tables from
the engineering coursework was significantly smaller than those we used for our preliminary
testing. Our edge detection algorithm described previously relies on differences in pixel color
while scanning through the image. For tables with a dense amount of text or minute padding
between table cells and their entries, our edge detection algorithm often interpreted multiple
rows/columns as a single row/column (Figure 4). We furthermore believe this problem was
exacerbated by our image binarization algorithm; while effective in improving the quality of
larger images, for smaller images, we imagine binarization made deducing table dimensions
harder for our edge detection algorithm. In scenarios where our edge detection algorithm
accurately deduced table dimensions, the meager padding between the cell borders and contents

© American Society for Engineering Education, 2023



2023 ASEE Illinois-Indiana Section Conference Proceedings

hindered the Tesseract OCR software from correctly transcribing the image as text based on
empirical data. Tesseract OCR would forgo some of the text altogether or misinterpret characters
.

Figure 4

The alphabetic tables had the highest accuracy overall. We assume this is because most
tables in this category were larger and had ample space between their cells. Predictably, the
irregular tables had the worst accuracy overall. Since these tables had merged rows/columns
headers, our edge detection algorithm would erroneously split the headers into two among the
aforementioned issues. The alphanumeric tables were a peculiar case because the Tesseract OCR
technology would moderately accurately transcribe the text; however, because these tables were
the smallest out of all groups, our edge detection algorithm had its worst performance deducing
the table dimensions.

Conclusion

A means of extracting text embedded in media is crucial in creating a more accessible
world for people in all educational disciplines. In this research paper, we proposed our
application for extracting text from videos and images with several features such as
screenshotting, text extraction, and tabular extraction. We furthermore tested the application on
several real life instances of text and found some insightful results.

Further Work

Although our application's accuracy was disappointing, the results of our testing revealed
opportunities for future potential improvements to our application. The critical step in our
application's table extraction process was determining the table dimensions; any errors in this
step propagate to the other stages in table extraction. To improve the issues with table dimension
detection, we will evaluate a new algorithm that combines edge detection and cell border
detection to deduce the table dimensions. The general strategy of this algorithm is to use the edge
detection algorithm for larger tables where ample padding exists within cell dimensions and
utilize cell border detection for smaller images. This proposed cell border detection algorithm
will seek elongated horizontal and vertical lines in an image that is identical in the pixel color
and assume those are the borders between cells.

© American Society for Engineering Education, 2023



2023 ASEE Illinois-Indiana Section Conference Proceedings

Beyond automated dimension detection, our application could employ user input in
finding table dimensions. The app would first run the previously described algorithms on an
image and prompt the user to adjust the rows and columns using an interface similar to Microsoft
Word (Adding Rows/Columns, Splitting Cells, etc). The application would then forward these
dimensions to Tesseract.

To improve pre-processing of cells for Tesseract, we propose the idea of using each cell's
contents and adding upscaling, padding, and other pre-pro-cessing effects to the cells similarly to
how we described the general pre-processing . We had forgone these for table extraction as a
compromise for performance; however, these tests have shown that for smaller images this
pre-processing may prove indispensable for Tesseract to transcribe the text correctly.

References

Smith, Ray. "An overview of the Tesseract OCR engine." Ninth international conference on
document analysis and recognition (ICDAR 2007). Vol. 2. IEEE, 2007.

Tupaj, Scott, et al. "Extracting tabular information from text files." EECS Department, Tufts
University, Medford, USA 1 (1996).

J. Memon, M. Sami, R. A. Khan and M. Uddin, "Handwritten Optical Character Recognition
(OCR): A Comprehensive Systematic Literature Review (SLR)," in IEEE Access, vol. 8, pp.
142642-142668, 2020, doi: 10.1109/ACCESS.2020.3012542.

“What Is ...” Amazon, The University, 1978, https://aws.amazon.com/what-is/ocr/.

© American Society for Engineering Education, 2023


	2023ASEEILINProceedings 14
	2023ASEEILINProceedings 15
	2023ASEEILINProceedings 16
	2023ASEEILINProceedings 17
	2023ASEEILINProceedings 18
	2023ASEEILINProceedings 19
	2023ASEEILINProceedings 20
	2023ASEEILINProceedings 21
	2023ASEEILINProceedings 22



