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Abstract 

 
Program as well as course assessments indicate that, while technical skills are generally good, a 
weakness remains in students’ ability to translate information and skill sets from one Carnegie 
unit (one course) to another.  The inability to apply probability and/or statistical concepts in 
different problem contexts is particularly problematic for undergraduate students in industrial 
engineering.  Despite the completion of six credit hours in probability and statistics, 
undergraduate students continue to have difficulty translating that information to industrial 
engineering applications in quality control, stochastic models, and work measurements.  
Historical data using the probability and statistics concepts inventory (Figure 1 below) indicates 
that, for most students, true conceptual understanding of probability basics remains elusive.  This 
problem may be exacerbated somewhat due to a disconnect between the theory covered in the 
mathematics department and the applications needed in the industrial engineering program.  In 
this paper we discuss some of the initial inroads towards improving conceptual understanding in 
the industrial program from a historical perspective and include examples of virtual experiments, 
technology enabled support modules, and collaborative learning activities.  In addition to use of 
the concepts inventory, program assessments include use of Fundamentals of Engineering (FE) 
exam, embedded assessments in subsequent courses, and analysis of dwell time and module 
usage for online support.  We conclude with the current status of the initiative and a vision for a 
collaborative learning approach to statistical concepts through classroom inversion.   
 
Introduction  

 
Statistics is an important element of the curriculum for students in a variety of majors including 
engineering, business, and the social sciences.  Increasingly, elements of data analysis and 
probability are being emphasized in industry in a variety of disciplines and is becoming 
increasingly prevalent not only in accreditation requirements but in K-12 standards1.  For the 
industrial engineering and the engineering management disciplines, a solid foundation of 
statistical reasoning is critical.  While Fundamentals of Engineering (FE) analysis and course 
assessments indicate that, in general, student technical skills are good, a weakness remains in 
students’ abilities to translate information and skill sets from one Carnegie unit to another.  This 
is particularly problematic for industrial engineering students who complete 6 credits in 
probability and statistics, but have difficulty translating that information to industrial engineering 
applications in simulation, quality control, stochastic models, work measurements, and human 
factors.  Indeed, long term tracking over 6 years utilizing the Fundamentals of Engineering and a 
Concepts Inventory show little, if any, gains in statistical reasoning (see Figure 1 below). P
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Figure 1.  Probability and Statistics Concept Inventory Results (2003, 2008) 

 
Figure 1 shows results from a campus inventory given in the second semester of a 

probability and statistics sequence.  Enrollment in the course is predominantly industrial 
engineering majors.  Figure 1 reflects limited understanding of fundamental concepts but this 
performance is neither new nor limited to probability and statistics.  There is a significant and 
growing body of research that indicates that students’ inability to translate theory to alternative 
applications may very well rest with students’ conceptual understanding or with strongly-held 
misconceptions2,3 within a discipline even after many years of formal and informal training.  
Several investigations including three video case studies, Lessons from Thin Air, Private 

Universe, and Can We Believe our Eyes
4 demonstrate that traditional instruction does little to 

help students revise their understanding of important concepts.  Indeed, the concept inventory 
movement was spurred by the development and implementation of the Force Concept 
Inventory5,6 as a mechanism to identify student misconceptions when entering a course and 
check for gains after completing a course.  Garfield and Ahlgren7 provide an extensive review of 
students’ difficulties learning basic probability and statistics concepts and provided much of the 
initial framework for development of the Statistics Concept Inventory (SCI)8.  Additional 
information on available concept inventories and associated research may be found at the NSF 
supported Concept Inventory Central website9.   
 
A Theoretical Framework for Improving Conceptual Understanding 

 
Through much of the research associated with concept inventories with repeated testing, it was 
discovered that students gain the most conceptual knowledge in interactive engagement courses, 
as opposed to traditional lectures10.  This is not too surprising and is consistent with the research 
on pedagogies of engagement11 first reported by Karl Smith and colleagues.  A new pedagogical 
technique called model-eliciting activities (MEAs) holds considerable promise for overcoming 
misconceptions and building a robust foundation for richer engagement with the material and 
subsequently better conceptual understanding.  MEAs were first developed to elicit problem-
solving strategies in mathematics, but have since been developed in a number of other disciplines 
including engineering science12.   

Before describing the scaffolding approach adopted by the industrial engineering 
department, we need to provide a short introduction on cognitive development.  A fundamental 
premise of virtually all student development models is that true intellectual growth will not occur 
unless the foundational skills (conceptual understanding) is firmly grounded.  Felder and Brent13 
provide an excellent summary review of different developmental models.  Karlin and Kellogg14 
have incorporated much of that work along other psycho-social models to provide a conceptual 
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framework for holistic learner development (HLD).   While the scope of the HLD model is 
beyond that required for this paper, a fundamental component of the model is the Steps for Better 
Thinking model proposed by Wolcott and Lynch15 and shown below in Figure 2.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Conceptual Model for Steps for Better Thinking  
 

Conceptual advantages of this model is that it is relatively easy for engineering educators to 
understand, it has an assessment rubric, and it highlights the need to ensure that students have 
access to the foundational skills needed for intellectual growth to occur.  Stated another way, it is 
difficult, if not impossible for intellectual gains if students do not fully understand the 
fundamental concepts of the theory in which they are engaged.   

Given this theoretical framework, a logical approach would be to invert the classroom and 
redesign the probability and statistics courses to incorporate MEAs and real world problem 
solving activities.  That in itself would embody considerable effort, but the problem is further 
complicated by the fact that the department does not own the required probability and statistics 
courses.  Consequently, we needed to develop an approach that bridged industrial engineering 
applications in stochastic models, simulation, and quality control with basic theory presented in 
probability and statistics.  We also needed a mechanism to reinforce and integrate foundational 
skills while simultaneously covering advanced material in other courses.  To do this, the 
department adopted a three pronged approach to improve student conceptual understanding in 
probability and statistics.  
 

1. Provide a set of technology enabled support modules that support conceptual 
understanding and alternative modes of intellectual inquiry  

2. Reinforce probability concepts through fundamental review and engagement in stochastic 
models  

3. Reinforce statistical concepts through virtual applications in quality control  
 

Support Modules for Probability and Statistics  

 
The department has developed over 20 interactive support modules for probability and statistics.  
Modules include coverage of basic probability, distributions, probability plotter/calculator, 
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estimators, central limit theorem, differences between the normal and Student’s T distributions, 
hypothesis testing, and the memory-less property of the exponential distribution.  Modules are 
available online and are fully accessible by any computer with internet access.  Modules vary in 
coverage depending on the level required.  For example, the module on the central limit theorem 
covers alternative modes of intellectual inquiry by providing a simple dice example, an 
experimental sample from a manufacturing process, a heuristic derivation, and a formal 
derivation using moment generating functions.  Most industrial engineering students find the 
heuristic derivation fairly helpful whereas most non-engineering students enjoy the 
manufacturing or dice examples.  Very few students access the formal derivation even though it 
is the primary method utilized in most introductory texts.  The distribution pages provide 
summary information, characteristics, relationships to other distributions and a plotter for each 
distribution and are typically accessed by students in stochastic models and simulation.  A 
sample module frequently accessed by students shows confidence interval differences between 
the normal and Student’s T distributions is shown in Figure 3 below.   
 

 
Figure 3.  Graphical Display from the Student T vs Normal Distribution Module 

 
 Another popular module allows students to explore type I and type II errors as one changes 
sample sizes and critical values for acceptance or rejection of a lot (see Figure 4).   
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Figure 4.  Graphical Display from the Hypothesis Testing Module 

 
 Besides principles of good practice in multi-media design16,17, a number of important 
criteria were considered in the development of the review modules.  Specifically,  

≠ Where appropriate, modules should consider a variety of learning styles  

≠ Review modules should primarily be focused at knowledge (Foundational) level on the Steps 
for Better Thinking model (see Figure 2).   

≠ Review modules should be relatively short and should provide opportunities for exploration 
of applications related to the topic. 

≠ Embedded online interactive exercises should be self-correcting. 

≠ Navigation through review modules should be student-controlled. 

≠ All materials developed should be suitable for incorporation with a classroom project or as a 
stand-alone review module for asynchronous delivery. 

 
Concept Reinforcement in Stochastic Models  

 
Stochastic models is highly dependent on students’ understanding of basic probability, 
conditional probability, the exponential family of distributions, and the memory-less property of 
the exponential distribution and considerable class time is devoted to review of those topics.  The 
syllabus includes a requirement to review those modules immediately prior to class coverage of 
those topics.  Nevertheless, the instructor reinforces these fundamental concepts in class through 
review and in class group activities.  Class activities can include group discussions, game show 
format review of fundamental theory18, or simple in class group calculation activities.  As a 
consequence class progression is slow at first, but gradually picks up as students become more 
comfortable with the support modules and building connections between basic theory and the 
more advanced models in stochastic models.   

To the extent possible, the course also incorporates a modified model eliciting activity or 
MEA.  More or less, this is just a fancy way of stating that we are essentially neophytes in this 
area and, because of time and logistical constraints, we have resorted to a less formal approach 
than a true MEA.  Nevertheless, we follow the philosophical construct of open-ended problem 
solving and model elicitation.  A recent example that was fairly popular with the students 
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includes data collection on the time between orders of a fruit cup at a popular on-campus coffee 
bar.  Prior to the exercise, students are asked to review the expectation and distribution modules 
and explore distribution shapes via the plotter/calculator.  Students are then given basic 
information, a timeline for data collection, and detailed information as to how data is to be 
collected.  Following data collection, students are assigned to informal groups in class and asked 
to a) determine the underlying distribution and b) determine the parameters for the distribution.  
This is an enormously tough concept for students and initially, groups are slow to respond.  
Eventually however, one of the groups will propose a histogram or other method as a means of 
selecting an underlying distribution and deeper engagement with the problem follows shortly.  
The session is halted ten minutes prior to the end of class so that the instructor may demonstrate 
the maximum likelihood estimator module.  Student groups are then given a formal assignment 
to determine the best distribution/parameter fit from the available data.  The next class session is 
devoted to a discussion of discrepancies between groups, transference to a more realistic 
application such as time between arrivals at an emergency room, and finally, the implications 
distribution selection has for incorporation in a queuing model.   

 
Obviously, these activities take time and there is a trade-off to be made between course 

content and conceptual understanding.  The fundamental principle at stake is whether or not 
students learn more by covering less.  For example, the instructor no longer covers the M/G/1 or 
models with non-Poisson inputs with the expectation that students now more fully recognize 
when such models are appropriate and can resort to alternative formulations or simulations when 
the situation dictates.  Course embedded assessments covered in a later section indicate this is a 
reasonable assumption.   
 
Concept Reinforcement in Quality Control  

 
The undergraduate quality control course relies upon the students’ background with continuous 
and discrete distributions, hypothesis tests, and conditional probability concepts developed in 
two prerequisites courses in mathematical statistics.  As with the Stochastic Modeling course, 
approximately ¼ of the semester is spent reviewing how to apply these prerequisites in an 
industrial or service application. 

One of the first reinforcement activities for this course includes an in-class review exercise 
for hypothesis testing.  This exercise includes a review and reinforcing application practice on 
hypothesis tests and distribution yield; distribution assumption checks; single sample acceptance 
plans; and MIL STD 105E acceptance plan operations.  The in-class exercise has the students 
develop a decision-table for selecting the most appropriate hypothesis test for a range of 
situations.  One of the student sample products from this exercise is shown in Figure 5 below.  
While it is recognized that the graphic Figure 5 is difficult to read, it is an element taken directly 
from a student journal.  Journal entries (such as shown in Figures 5 and 6) are non-graded, but 
may be used for exam, in-class open-ended problem solving activities, or hand simulations.    
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Figure 5.  Class-developed decision table for hypothesis testing. 
 

All students in the course must prepare an engineering notebook (individual student-
developed reference material) implementation.  Essentially, anything the student can write, copy, 
cut, staple, paste, glue or otherwise persuade to reside permanently within their engineering 
notebook can be used as a reference on their test(s).  The notebooks are the common 9-3/4" x 7-
1/2", 80 – 100 page composition books carried by office supply store chains for about $2.50. 
Students typically paste a subset of lecture slides, reference tables, classroom examples, and 
student-developed decision trees in the notebooks.  An advantage of the journal entry format is 
that students may take ownership of the format and express difficult concepts through alternate 
typologies.  Figure 5 above, for example, demonstrates a very linear or analytical format, 
whereas students display information from a more conceptual framework.   

In addition, the course incorporates on-line spreadsheet templates for normal probability 
plots; continuous variables, attributes, individuals control charts; gauge repeatability and 
reproducibility; and acceptance sampling randomization.  These templates allow students to 
simulate and explore control chart performance under different scenarios.  Figure 6 (below) 
shows screen captures for one such experiment: a comparison of time to signal for Exponentially 
Weighted Moving Average (top), Moving Average (center), and CUSUM (bottom) control 
charts.  In this example, students conduct virtual experiments using the Excel random number 
generator and the spreadsheet templates to see how quickly an out-of-control signal is generated 
for (1) a small shift of 0.75 σ, (2) a medium shift of 1.5 σ, (3) a large shift of 2.5 σ and (4) a slow 
process drift of 1% increase per unit.  (For the large shift and the student’s selected parameters, 
the Moving Average chart outperforms the EWMA and CUSUM charts by at least two sampling 
periods.) 
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Figure 6.  Example of spreadsheet simulation/comparison of control chart performance. 
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Much of the course has been redesigned to incorporate hands-on applications of the SQC 
tools and include applications involving Deming’s Red Bead Experiment, Grip Strength 
Hypothesis Testing, and Caliper and Vernier Micrometer Gauge System Capability Study.  
Additional hand simulations have been developed to help demonstrate variation and 
manufacturing and production processes. 
 
Assessment Data  

 
The department incorporates four different measures to track student conceptual understanding 
and areas for improvement.  These include (1) tracking number of hits and time on task for 
support modules, (2) embedded assessments in stochastic models, (3) embedded assessments in 
quality control, and (4) longitudinal tracking via the Statistics Concept Inventory (SCI).   

Student access and dwell time for technology enabled support modules are tracked to 
determine which modules seem to be more effective in terms of support.  Figure 7 below shows 
that students tend to visit the site during peak times of the semester when it is needed for review 
or when it is needed for a MEA.  The StatTracker software captures page loads, unique visitors, 
and returning visitor data along a user defined time interval for a defined sample size (in our case 
100).   

 
Figure 7.  Tracking Student Access to Probability Modules  

 
Of greater value to us is which pages are of primary interest to students and the dwell time 

at those pages.    The probability calculator/plotter, hypothesis test, and distribution modules 
seem to be of primary interest to students.  Dwell time for all probability/statistics modules is 
shown below in Figure 8.   
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Figure 8.  Dwell Time on Probability and Statistics Review Modules  
 

While the bulk of students spend less than 5 seconds on a particular page, it should be 
remembered that students must navigate to the particular module of interest.  Once there, roughly 
half the students spend 5-20 minutes on a particular module and half spend over 20 minutes.  A 
significant number of students (18.3%) spend over an hour on some modules.  

Embedded assessments are also incorporated in stochastic models and quality control.  
Embedded assessments in stochastic models are incorporated within homeworks and as short 
non-graded quiz items that cover concepts in probability, distributions, properties of 
distributions, the central limit theorem, statistics, and the memory-less property of the 
exponential.  Results over the past five years are summarized in Figure 9 below.   

 

 
Figure 9.  Correct Percentages in Probability and Statics Concepts  
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Conceptual gains have been made in all areas and range from an 8.9% gain in basic 
statistics to a 78.6% gain in the memory-less property.  Nevertheless, with the possible exception 
of the central limit theorem, overall gains in conceptual understanding remain low.  Even then, 
statistics scores seem to indicate that students still have difficulty knowing when to apply 
different sampling distributions and when the central limit allows use of the normal.  While it 
should be noted that statistics is not covered in this course so it is possible scores remain low on 
embedded assessments here for the simple reason that the course incorporates no meaningful 
application.  That being said, it is entirely possible that student understanding regresses in the 
areas of probability and distributions once removed from the course for the same reasons.   

Assessment of student progress in quality control was broken into three areas:  SQC Basics 
content, covering terms, cumulative density function and hypothesis test applications; 
Continuous Variables Control Charts, covering basic chart interpretation, terms, x-bar-, R-, s-
charts, gauge R&R and process capability analysis; and SQC Individuals Charts and Acceptance 
Sampling, covering x- and moving range charts, moving average, EWMA, and CUSUM charts, 
and single sample acceptance plans, including MIL STD 105E.  These data have been tracked 
over the past five years, and correlated with developed materials (as described below). 

For the SQC Basics content areas, the initial assessment (in Fall of 2005) showed a distinct 
lack of capacity for applying the basic principles to common industrial situations.  After 
discussion with the students, it was discovered that most of them had little applied-practice 
problem experience.  To salvage student course grades (and the instructor’s enthusiasm) it was 
decided to offer an optional, “second chance exam”, capping the maximum score at 89%.  This 
exam was continued through the Fall of 2007, and the maximum correct outcome is shown in 
Figure 10 (below). 
 

 
Figure 10.  Term-by-Term Outcomes on Application of Basic SQC Principles. 

 
Similar results for continuous variables trendlines and SQC charts and acceptance 

trendlines are shown in Figures 11 and 12 below.  Figure 11 shows gains following incorporation 
of template simulations and professional journaling with slight erosion of effectiveness in areas 
when student use of some of these tools were optional.   
 P

age 15.691.12



 
Figure 11.  Term-by-Term Outcomes on Application of SQC Continuous Variables 

 
Most of the additional resources for the SQC Individuals Charts and Acceptance Sampling 

content was implemented in the course from the start (Fall 2005).  Variations in aggregate 
performance (as depicted in Figure 12) tend to occur in a positive direction when the resources 
were used in-class for assessment (and assignment points), and when used as an in-class 
development exercise for inclusion in their engineering notebooks.   

 

 
Figure 12.  Term-by-Term Outcomes on Application of SQC Acceptance Sampling 

 
Across all three content areas, the detailed data seem to show that:  (1) the resources tend to 

be helpful for those that choose to use it, (2) those that do not choose to use it do quite poorly, 
and (3) unless there is a substantial incentive (carrot or stick), a good proportion of students will 
make only a half-hearted attempt to utilize the resources. 
 
The Next Step  
 
While some gains have been made, it is clear that better strategies for intervention and 
reinforcement of concepts need to be made.  Nevertheless, a number of important lessons have 
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been learned over the past years.  Interactive modules can provide substantial to aid student 
understanding but, unless required, students who need the support most are the least likely to 
take advantage of the support.  Student understanding of tougher concepts can be enhanced 
through interactive modules but require the interaction to be incorporated at the time of the 
reading.  Hands-on experiments and MEAs can be very effective mechanisms for promoting 
better conceptual understanding, but they do take time and would be more effective if employed 
when fundamental concepts are first introduced in the introductory courses.   
 To fully realize the gains that are desired, support modules and classroom activities need to 
be more formally integrated through an inverted classroom concept.  In the traditional classroom, 
students are assigned a section of a textbook to read before class, though quite a few of them do 
not.  Following a passive reading, if it occurs at all, students attend class where they are passive 
recipients of a lecture.  Following the lecture, students are assigned homework.  It is on their 
own, interacting with their homework, where students first actively engage with the course 
material.  In the inverted classroom, we move the active content engagement from post-class to 
in-class.  The first systematic attempts at classroom inversion came from economics education19.  
In the early attempts, the focus was on creating an environment where “events that have 
traditionally taken place inside the classroom now take place outside the classroom and vice 
versa”.  Thus, the early attempts at inversion moved the passive student engagement with lecture 
to pre-class by using media, computers, and the internet to provide basic content information to 
students before class.  By providing some content prior to class, the instructor is free to use 
appropriate active learning methods to draw the students deeper into the material.   
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