
Paper ID #20938

Improving introductory programming courses by using accurate metal mod-
els for the key abstractions.

Mr. Robert A Ward IV, Everett Community College

Robert Ward received his Bachelor of Science from Washington State University graduating summa cum
laude. He served as the chair of WSU’s ACM chapter and received the outstanding senior in Computer
Science award.

He went on to his graduate work at University of Hawaii at Manoa and received his Master of Science
in Computer Science. While at University of Hawaii he was a teaching assistant and developed a strong
interest in Computer Science education specifically introductory programming.

After completing his master degree he was adjunct instructor at Kapi’olani Community College for in-
troductory programming. He then went on to be a full-time instructor at Everett Community College in
Everett, WA. He teaches introductory Java and C++ as well as advanced data structures.

c©American Society for Engineering Education, 2017

Session W1A

First Year Engineering Experience (FYEE) Conference August 6 – August 8, 2017, Daytona Beach, FL

 W1A-1

Improving introductory programming courses by

using accurate mental models

Robert A. Ward IV
Everett Community College, robward@everettcc.edu

Abstract - Computer programming has become

increasingly important to most science and engineering

disciplines. Unfortunately, introductory programming

courses historically have a high failure rate. In addition,

it is vital that computer programming be accessible to a

broader range of students, and to provide a more diverse

group of students the foundation necessary to succeed in

programming.

The goal of this paper is to investigate solutions to

improve the pass rate of introductory programming

courses. These solutions should provide students with the

foundation in the key concepts of programming that allow

them to succeed in subsequent courses, should provide

multiple practice opportunities to reinforce and automate

skills, and should reduce cognitive load. This paper

discusses several key abstractions, the mental model for

each, and how the abstraction is connected to the

operation of a physical computer. Examples of the

exercises used to reinforce these models are discussed.

If we don’t provide a learner with an accurate mental

model, they will create their own mental model, which is

often inaccurate. As they learn more about the topic, their

mental model will fail, and they are forced to create a new

model to accommodate the new information. Students

confronted with the need to rebuild their worldview of

how programs work often decide, “I just can’t do this”

and drop out. If, instead, students had an accurate mental

model from the outset, they could more easily assimilate

new information and ideas and extend the existing model.

Because the new information would still fit with their

existing mental model there is less frustration, less mental

effort on the part of the learner and fewer barriers to

continuing to study programming.

To provide introductory programming students with

a sound foundation, we focus on providing accurate

mental models for the basic abstractions of

programming: variables, conditionals, loops, and

function calls. Early in the introductory class, we

introduce the concept of the fetch-decode-execute cycle to

connect at a high level the operation of the CPU and

program counter to the code. Each model is a given a

direct connection to the deterministic nature and actual

operation of a computer and to the machine code

generated by source code. We couple this focus with

multiple skill-building exercises on the abstractions.

For each key abstraction a simplified, but accurate,

mental model is provided to the learner which must be

simple enough for an introductory student to understand,

while being accurate enough to allow the student to

assimilate new information into the model as they expand

their understanding of programming. To help students

understand the mental model, skill-building exercises are

done in class to reinforce the concepts and to provide skill

automation that reduces the overall cognitive load

required to program. Reducing cognitive load is vital to

being an effective programmer as programming

complexity increases. By automating performance of

certain operations through repeated practice, the student

can limit expending cognitive resources on those

operations and can focus on learning new concepts or

extending old concepts in new ways.

AUDIENCE AND GOALS

The goal of this paper is to introduce a new approach to

teaching introductory programming courses which will be

useful to those who teach introductory college programming

courses, as well as to those who are designing and

implementing secondary school curricula to prepare students

for college engineering.

To help give students a solid foundation we must provide

accurate, if simplified, mental models to students of how the

key abstractions of programming work, so that learners will

be able to extend their programming abilities without having

the cognitive load of unlearning incorrect mental models they

have created themselves. In addition, we must give them

practice using these mental models to reduce the cognitive

load when the students are called on to use them later in their

studies.

Learners who are not provided a mental model will

create their own mental model, which is often inaccurate. As

they learn more about the topic their model will fail, and they

are forced to create a new model or revise the existing one to

accommodate the new information, which becomes

increasingly difficult as their mental model differs more and

more from the actual mental model. If they had been given an

accurate mental model in the first place, they could assimilate

new information as it came to light without recreating the

mental model, which requires less mental effort on the part of

the learner. This in turn creates less stress for students and

less frustration that they just “don’t get it and aren’t cut out

to be programmers.”

To provide a sound foundation of understanding for the

students in our introductory programming courses, we have

added a focus on providing mental models for the basic

abstractions of programming and repetitive practice with

these models. Each model is also given a direct connection to

Session W1A

First Year Engineering Experience (FYEE) Conference August 6 – August 8, 2017, Daytona Beach, FL

 W1A-2

the deterministic nature of a computer and to the machine

code generated by source code. The example basic

abstractions discussed in this paper are: conditionals, loops,

variable scope and function calls.

PREVIOUS WORK AND THEORETICAL BASIS

Wulf looked at constructive pedagogical approaches to

teaching programming [1]. He feels that by leveraging such

approaches “resulting courses are accessible to a wider range

of students and incorporate active learning.” While I agree

that such approaches have merit, I am cautious about

focusing on the “higher cognitive levels of Bloom's

taxonomy.” I think we should first ensure we have built a

solid base from which to proceed.

In Krathwhol’s revision of Bloom’s taxonomy, he

discusses all the levels [2]. The higher levels, where learners

analyze and evaluate, are built on the previous levels. Wulf

seeks to reach these higher levels. Reaching these levels are

long-term goals for our students, but they cannot attain them

without progressing through Bloom’s lower levels of

remembering and comprehending. This is not straightforward

in introductory programming, which requires the

understanding of many complex and interlineated concepts to

create even a simple program and for which many

introductory students have no previous experience

whatsoever.

Bloom himself suggested that each discipline should

create its own taxonomy. "Ideally each major field should

have its own taxonomy in its own language - more detailed,

closer to the special language and thinking of its experts,

reflecting its own appropriate sub-divisions and levels of

education, with possible new categories, combinations of

categories and omitting categories as appropriate."[3] Based

on this we should look to create our own version of the

taxonomy. Before we look to improve our student’s abilities

to analyze and create we must provide effective ways for

them to remember and comprehend the world of

programming and computing.

Mordechai Ben-Ari suggested that constructivism could

serve as a solid approach to teaching computer programming

[4]. He pointed out that this was a more active approach that

required instructors to be aware not just of the content being

delivered, but also of the current knowledge that learners

would use to build new understanding.

Specifically, he suggested that, “A (beginning) CS

student has no effective model of a computer.” I agree with

this assertion. He was specifically referring to the “object

first” approach to programming, and thought that a model of

a computer must be taught for students to be successful. He

felt this was not compatible with an “object first” approach to

teaching programming.

As he suggests, a model of the computer is vital and

should be provided. I would go a step further and say that a

model should be provided for all approaches, object first or

not. It is vital that introductory learners have a viable model

for all the key abstractions of programming, such as

conditionals, loops and functions. It is irrelevant whether this

is an object-oriented approach or not.

While I agree with the basic idea, Ben-Ari falls short by

not discussing the general nature of the model or an example

of a model. The model should be accurate enough to be

extended later and simple enough for students to comprehend

at their current level of understanding. The next section will

discuss the basis for these requirements. Later in the paper,

several mental models are provided of both the basic function

of a computer and of some of the key abstractions:

conditionals, loops and functions.

The reason that these abstractions must provide a clear

and effective model is that students no longer have a basis to

understand them. When Dykstra wrote his then famous letter

to the editor: “go to statement considered harmful” [5], and

introduced the term structured programming, everyone

understood the issue he was trying to overcome. The overuse

of go-to statements had created unmanageable, difficult to

decipher code.

The creation of conditionals, loops and functions were

very effective at abstracting away the use of go-to statements.

So much so the people today are often unaware of how the

code they write works. Understanding these key abstractions

has become arbitrary and therefore difficult. We must include

clear effective models for students with these key

abstractions to provide the needed foundation to comprehend

how these key abstractions work in a program running on a

computer.

The educational psychologist Piaget theorized that there

were two main avenues for people learning new information

to update their schema: assimilation and accommodation [6].

When learning via assimilation the learner adds new

information to an existing mental schema, because their

underlying theory of how something works is accurate

enough to allow simply updating their model to include the

new information. In contrast, during accommodation a

learner must revise or replace their underlying theory. While

both methods are vital to be a successful learner,

accommodation is more difficult for learners [7].

When people learn programming for the first-time they

must create an entirely new schema for the world of

programming, if one is not given to them. This can be a

massive undertaking. It can lead to using accommodation

(model replacement) more often than they are otherwise

accustomed to, as they must continuously replace their model

of how programming works when new facts invalidate a

previous schema. This can be very frustrating and confusing

for students. Therefore, our approach involves providing

students with accurate, if simplified, schema from the

beginning.

Donald Norman discussed this idea in terms of mental

models [8]. Users of software have a mental model about how

a system works. This model is the user’s internal idea about

how the machine operates, and it allows the user to interact

with the system effectively. In his words: “These models

need not be technically accurate but they must be functional.”

Session W1A

First Year Engineering Experience (FYEE) Conference August 6 – August 8, 2017, Daytona Beach, FL

 W1A-3

Norman’s point was that when using a system, you need

to understand more than just the visible parts to use it. Often

at least some understanding of how the machine does its job

is vital both to learning how to use it and to using it

effectively [8].

While some students who are introduced to programing

create models that are both effective and accurate enough to

be extended, many create models that are not. A key part of

an introductory programming course should be to provide

extendible accurate mental models. Norman refers to these

models provided to the user as a conceptual model [9].

With this conceptual model as a starting point, students

will develop and evolve their own version which Norman

calls a mental model [9]. We also incorporate Norman’s idea

of explaining what is happening inside the machine in these

mental models. The remainder of this paper will give several

examples of creating such models.

INTRODUCTION OF SIMPLIFIED, ACCURATE, EXTENDABLE

MENTAL MODELS

For each key abstraction, a simplified, but accurate,

model is provided for the learner. The mental model must be

simple enough for an introductory student to understand,

while being accurate enough to allow the student to assimilate

new information into the model as they expand their

understanding of programming, without the need to create a

new mental model. To help students understand and

internalize these mental models, repetitive exercises have

been developed to solidify their understanding of them and to

reduce the future cognitive load when the student must use it

in more complicated problems in the future.

This remainder of this paper discusses several key

abstractions, the mental model provided for the abstraction

using the fetch-decode-execute cycle, and its connection to

the operation of a physical computer.

FETCH DECODE EXECUTE CYCLE

To establish a basis for these mental models the concept

of the fetch-decode-execute cycle is introduced early in the

introductory programming class. The fetch-decode-execute

cycle is connected to the operation of the CPU and the

program counter. This is key to making the mental model

connect with the actual operation of the machine.

Before this idea can be introduced, however, a learner

must be aware of the build process. To effectively explain the

fetch-decode-execute cycle, the process of loading the

executable into RAM is discussed. This allows a clear

discussion of the process of executing a specific instruction.

At this point we can introduce our first mental model. In

it we provide a simplified model of a computer, including

only RAM and the CPU with only a few registers. This

simplified model can be seen in figure 1. This model is not

intended to be complete but rather complete enough to

provide a basis for other concepts. This includes both related

concepts like conditionals and a more complex model of the

CPU’s operation.

FIGURE 1
SIMPLIFIED COMPUTER FOR

FETCH DECODE EXECUTE MENTAL MODEL

At the same time, we introduce a simplified instruction

set. Each instruction has three parts: the instruction followed

by operand one and operand two. The instruction set and the

parts of an instruction are shown in figure 2.

The simplified instruction set provides only the ability to

perform simply mathematical operations. Each instruction is

comprised of an opcode and two operands. The goal is not to

provide a complete model of how a CPU operates but instead

provide a functional model that is extendable. The model

should provide enough information to allow the learner to

understand the basic operation but not so much that they are

overwhelmed at their current level of understanding.

FIGURE 2

SIMPLIFIED INSTRUCTION SET

To help students retain this model, simple exercises are

provided that require students to load a simple program and

show the changes to the registers in several sequences of the

fetch-decode-execute cycle. This model emphasizes several

key concepts to the learner, (a) the connection source code

has with instructions, (b) the sequential nature of all

programs, and (c) the importance of the program counter to

the execution of a program. Examples of these exercises are

included in the addendum to this paper.

Supporting future learning by allowing us to extend our

understanding from previous knowledge is a key advantage

to accurate mental models. As we will see in later examples,

understanding the role of the program counter is essential to

understanding conditionals, loops and functions.

Session W1A

First Year Engineering Experience (FYEE) Conference August 6 – August 8, 2017, Daytona Beach, FL

 W1A-4

CONDITIONALS

 Flow control in a program was originally done by

conditional jumps in the program. Most modern languages

have abstracted this away to remove the need for most jumps

in source code (together with the confusion and spaghetti

code that jumps created). However, jumps still occur in the

machine code generated by the source code.

 Today most learners are merely taught that the code

block after a conditional is skipped if the Boolean expression

associated with the conditional is false. Often students will

create their own mental models of how this happens on the

machine. Their model is often inaccurate and will need

revision (accommodation) later in their development as a

programmer. Instead of forcing students to make their own

model, it is far better to give them a more accurate model. We

therefore build on our previous example of the simplified

CPU and connect the concept of a conditional to the program

counter.

The following is the description of a simplified mental

model provided for the learner, with diagrams to help clarify

it. Visual learners especially might find that diagrams are

invaluable to understanding the mental model.

A program is really a long list of machine instructions

that reside in memory. One by one the instructions are

fetched, decoded, and executed by the CPU. The program

counter provides the location of the next instruction to fetch.

Conditionals work by altering the program counter to skip

one or more instructions. Changes to the program counter are

done by machine instructions called jumps. While often

referred to as branching, decisions are made by some form of

jumping over a block of instructions by altering the program

counter.

If the Boolean expression of a conditional is true, then

the program counter merely increments as it normally does,

increasing by one memory address at a time, as seen in

Figure 3. In the figure, the instruction Action represents a

generic instruction whose specific effects are not material

other than they do not alter the program counter. The first

instruction inside the conditional code block is fetched.

FIGURE 3

INSTRUCTIONS FETCHED SEQUENTIALLY WITH TRUE EXPRESSION

If, however, the Boolean expression of a conditional is

false, then the program counter is changed to the first

instruction after the conditional code block. This alters the

normal sequential nature of the change to the program

counter, and the instructions within the code block associated

with the conditional are skipped or “jumped” over as shown

in Figure 4.

FIGURE 4

INSTRUCTIONS NOT FETCHED SEQUENTIALLY WITH FALSE EXPRESSION

LOOPS

Just like conditionals, loops in a program were originally

done by conditional jumps. Most modern languages abstract

this away, much in the same way they do with conditionals.

Most learners are merely taught that the code block of a loop

is repeated if the Boolean expression associated with it is true,

without being given a model for how it works within the

machine.

 The previous model introduced for conditionals can also

be used for the mental model of loops. This allows learners

to leverage the previous understanding and reinforce the idea

of the program counter and how the machine operates. The

chief difference between the model for a conditional and that

of a loop is that for a loop the program counter will often be

set to a previous instruction. Figure 5 shows the operation of

a pretest loop when the expression is true and the loop

continues.
FIGURE 5

PRETEST LOOP CONTINUES WITH TRUE EXPRESSION

Session W1A

First Year Engineering Experience (FYEE) Conference August 6 – August 8, 2017, Daytona Beach, FL

 W1A-5

Figure 6 shows the operation of a pretest loop when the

expression is false and the loop exits.

FIGURE 6

PRETEST LOOP EXITS WITH FALSE EXPRESSION

Again, we connect the changes in the program flow to

the changes that occur to the program counter. This gives us

another opportunity to connect the source code with the way

the machine code operates on a physical machine. This

repetition of the same underlying concept in a later lesson

also provides spacing between these learning experiences,

which will improve students’ retention of the concept [10].

VARIABLE SCOPE’S CONNECTION TO CONDITIONALS

Block variable scope related to the body of a conditional

or loop is often a subtle and difficult concept for new

programmers, because the reason for this scope is often

difficult to connect to the students’ previous knowledge. This

can be ameliorated if students have a firm understanding of

how conditionals work at the machine level.

Variables defined within a conditional block are only in

scope inside the block. It will be much easier to explain why

this is the case using the previous mental model for

conditionals. By injecting a hypothetical variable declaration

in the conditional block, the uncertainty of whether the

variable was declared or not can be clearly demonstrated. If

the conditional expression is true, the code after the

conditional block could see it as a valid variable. If it was

false, however, this code would be skipped, and the

instruction declaring it would be skipped. There is no way for

the later instruction to create the declared variable, therefore

any variable declared within the body of a conditional or loop

can only be valid inside that code block.

FUNCTION CALLS

Another important concept introduced in introductory

programming classes is the ability to create and use callable

units (functions or methods). This idea is often

misunderstood by the novice programmer, who then often

creates inaccurate and difficult to understand mental models

of the process happening when a function is called.

While this model requires more information than the

ones previously presented, it still connects to them. Prior to

explaining how a function is called, the idea of a stack and

stack frame must be explained. Again, the goal of this is to

provide only the information needed to understand the

process of calling a function, not a full explanation of the

stack.

 To that end a stack frame is described as a block of

data that contains (a) the memory location of the instructions

of the function and (b) the local variables of the function. It

should be made clear to the students that this is a

simplification of a stack frame.

 The idea of the program stack and its key functions

should also be introduced. These functions include: keeping

track of the current function that is executing, restoring the

current instruction when you return to it, and passing

information from one callable unit to another in the form of

arguments and return values.

 Now we can provide a simplified model of a stack

to students, followed by the basic mental model of the

program stack as shown in Figure 7.

FIGURE 7

SIMPLIFIED STACK MODEL

The bottom item in the stack is always the main function.

If the main function calls a function, a stack frame for that

function is pushed onto the stack, and the address of the first

instruction for that function is placed in the program counter.

The main method waits for the called function to complete its

job and give it the information it was designed to calculate

(return value). In some cases, the function has no

information to return, but it has a side effect (for example:

print something). When a function completes its last

instruction, the stack frame associated with that function call

is popped off the program stack. The address of the

instruction after the instruction that called this function is put

in the program counter.

This model must be supported with a visual

representation to be effective. Figure 8 below provides a

simple set of functions that can be used to demonstrate the

operation of the program stack.

FIGURE 8

METHODS OF A PROGRAM IN RAM

Session W1A

First Year Engineering Experience (FYEE) Conference August 6 – August 8, 2017, Daytona Beach, FL

 W1A-6

This mental model required the most additional

information but it is also vital to a learner’s understanding of

how a program runs on a machine. It also supports other key

concepts such as local variable scope and the processing cost

of function calls. While at this early stage they may not fully

understand this model, it provides an important foundation

without which they will struggle as they continue to extend

their understanding of programming.

The student’s comprehension of this model can be

reinforced by exercises like the previous example. Given a

set of methods they are asked to show the changes to the

program stack and program counter.

Figure 9 below shows both the changes to the program

stack and the changes to the program counter based on the

methods in Figure 8. Example exercises are in the addendum

to this paper.

FIGURE 9

CHANGES TO THE PROGRAM STACK AND PROGRAM COUNTER

 BASED ON METHODS OF FIGURE 7

USE OF THE MODELS IN PRACTICE

These mental models and others have been introduced

and used in the CS0 class at Everett Community College for

the past two years. Currently there is only anecdotal evidence

to indicate they are effective, but they appear to have been

useful in helping students be successful in the introductory

and subsequent courses.

The course that first uses this approach is the prerequisite

for CS 1 Java and CS 1 C++. Instructors for both courses felt

that students who had been exposed to this approach in the

previous quarter were more successful.

The CS 1 C++ instructor stated:

"My CS 1 C++ classes in the winter quarter had a

majority of students who had taken the CS 0 course using this

method during the fall quarter. I noticed a night and day

difference with these students in comparison to my previous

students. The two areas that stood out with these students,

was that they were competent with the basics of

programming, but more importantly they were comfortable

and confident with programming. This comfort level with

programming freed them to continue to explore and grow in

programming abilities"

The author of this paper was instructor for two CS 1 Java

sections. I also noticed a difference in ability between

students from the CS 0 course using this approach and

students from different CS 0 sections that did not use this

approach. The students exposed to this approach had a very

clear understanding of the basic concepts of conditionals,

loops and functions. Many of the students from the other

groups that did not use this approach struggled to keep up

with the pace of CS1 and in general did not perform as well.

There are many differences in the approaches used in

teaching the two groups of students. The instructor, the depth

of coverage and the specific material covered could all be

contributing factors to the difference in performance.

Specific data would need to be measured to make a true

comparison.

SUMMARY

The key to a mental model being effective is that it is

accurate enough that later information can be integrated into

it without extensive replacement or modifications to the

underlying model. However, it must also be simple enough

that it does not introduce excessive cognitive load that

overwhelms the learner. Lack of simplicity would make it

difficult for learners to understand the material and would be

an impediment to them learning the original concept. This

approach has been effective when used in introductory

programing courses and is based on the concept of mental

models developed by Donald Norman and of schemas

developed by Piaget.

To avoid students creating their own inaccurate mental

models we provide them with accurate, sometimes

simplified, models. These mental models also demonstrate

the connection between source code and the actions of the

machine, a step often omitted in introductory programming

courses. At the same time, these models clarify specific

concepts that have been abstracted away in modern

programming languages. Conditionals, loops and function

calls are all accomplished at the machine level by changes to

the program counter. By demonstrating this in a clear but

simple model, a solid foundation is provided from which

students can extend their understanding. This eliminates the

confusion, effort and need for unlearning that is created by

incorrect mental models.

While CPU architectures may change, the advantage of

the models described here is that they functionally model the

operation of a Turing machine. As Norman states “Models

need not be technically accurate but they must be functional.”

They should be an effective starting point for learners for the

foreseeable future.

Further investigation of the long-term impact of effective

mental models would be useful in future research. While the

short-term impact may be significant, the impact over several

courses may be even more substantial and impact retention of

computer science and engineering students.

Session W1A

First Year Engineering Experience (FYEE) Conference August 6 – August 8, 2017, Daytona Beach, FL

 W1A-7

REFERENCES

Wulf, T, “Constructivist approaches for teaching

computer programming”, Proceedings of the 6th conference

on Information Technology Education, 2005 Oct 20. pp. 245-

248.

Krathwohl, D. R., “A revision of Bloom's taxonomy: An

overview”, Theory into Practice, Vol 41, No. 4, 2002 Nov 1,

pp. 212-8.

Anderson L.W., Krathwohl D.R., Airasian P.W.,

Cruikshank K.A., Mayer R.E., Pintrich P.R., Raths J., and

Wittrock M.C., A Taxonomy for Learning, Teaching, and

Assessing: A Revision of Bloom's Taxonomy of Educational

Objectives. 2001, pp.137-75

Ben-Ari, M, “Constructivism in computer science

education”, ACM SIGCSE Bulletin, Vol. 30, No. 1, 1998 Mar

1, pp. 257-261.

Dijkstra, E, W, "Letters to the editor: go to statement

considered harmful." Communications of the ACM, Vol 11,

No.3, 1968, pp. 147-148.

Piaget, J, Part I: “Cognitive development in children:

Piaget development and learning”, Journal of Research in

Science Teaching, Vol 2, No. 3, 1964 Sep 1, pp. 176-86.

Piaget J., “Problems of equilibration”, Topics in

Cognitive Development, Vol. 1, 1977, pp. 3-13.

Norman, D, The Design of Everyday Things: Revised

and expanded edition., 2013 Nov 5, pp. 24-34.

Norman, D. A., “Some observations on Mental Models”,

Mental Models, Vol. 7, No. 112, 1983 May; pp. 7-14.

Kornell, N, “Optimising learning using flashcards:

Spacing is more effective than cramming.”, Applied

Cognitive Psychology, Vol. No. 9, 2009 Dec, pp. 11297-317.

