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Abstract 

Student final parallel programs for “Numerical and Parallel Programming”, a course taught at 
California State University Chico, stress ability to put theory into practice. The course normally 
includes parallel programming, allowing students to assess their success with verifiable 
numerical methods (e.g., using MATLAB) and speed-up compared to Amdahl’s law.  The 
pandemic presented new challenges for final parallel programs, and this course had the extra 
challenge of proprietary cluster software, now only remotely accessible.  The course has a 
reputation for being difficult based upon pre-course surveys.  Given the limitations, it would 
have been easiest to simply eliminate the complex parallel programs and focus on simpler 
exercises and assessments.   

However, based upon fall 2020 student mid-term surveys, it was clear that students preferred a 
final parallel program over online assessment.  Further, the COVID-19 remote learning 
constraints presented an opportunity for change. This remote scenario along with large class size 
of 40 students prompted the goal to allow all students to share their work with their cohort in a 
new way.  The final parallel programs for this course focus on numerical methods commonly 
used in science and engineering, traditionally summarized and/or presented one-on-one with 
faculty as individual efforts.  Students are expected to use divide-and-conquer approaches to 
design parallel programs for speed-up using well-known numerical methods from calculus 
combined with algorithms learned in class.  To maintain course learning objectives and improve 
upon them while overcoming the new pandemic limitations, three specific parallel programming 
modifications have been made: 

1) All final shared memory parallel programs can now be completed on a home system 
using equipment that costs less than one hundred dollars or can be completed on the 
existing CSU cluster.  Distributed memory parallel programs must be developed and 
tested on the CSU cluster using MPI based on cost of the system (thousands of dollars). 

2) Final parallel programs can now focus on mastery of a prior problem given as an exercise 
with emphasis on a detailed code walk-through for parallel design. 

3)  All final parallel programs are required to include a brief report, but also a 30-minute 
video of the build, run, and code design completed with a detailed walk-through 
shareable with the CSU learning management system. 

Longer term, CSU Chico is investigating a remotely accessible cluster built using the same at-
home hardware but scaled to 60 nodes. Much like a musician mastering their art would want 
their own instrument and access to more exotic orchestra instruments, students mastering 



programming benefit from their own home Linux systems that support parallel programming and 
multi-core Linux clusters provided by the university.  The goal is to support not only POSIX 
threads and OpenMP shared memory scaling1, but also distributed memory MPI (Message 
Passing Interface)2,3, and shared memory CUDA (Compute Unified Device Architecture)4.  In 
general, the at-home use of single node versions showed no new issues compared to use of the 
proprietary software. 

Based on fall 2020 results, the final parallel program video appears to have positively motivated 
students and gave them multiple options to engage and complete the course.  While not as ideal 
as all students presenting to each other, the new approach scales well for a large class, and allows 
students to share their experience.  The pedagogical experiment introduced by this new final 
parallel program for mastery shows promise, but results are preliminary.  The fall 2020 results 
from pre-course, mid-course, and post-course surveys are summarized in this paper along with 
instructor lessons learned and plans to repeat in spring 2021. 

1. Introduction 

The Computer Science course, Numerical and Parallel Processing, is a senior year course 
required of all undergraduate majors and meets key program learning outcome goals for 
mathematics and computer science.  Specifically, for mathematics, the course requires students 
to apply calculus, linear algebra, and discrete math skills.  For the computer science learning 
objectives, the focus is on comparison of algorithms and design for shared memory and 
distributed memory speed-up of those algorithms.   

The students consider this class to be a significant challenge based upon the complexity of 
assignments and the difficulty of combining knowledge from three areas: 

1) Mathematics, with application of numerical methods for computation. 
2) Programming, with iterative and recursive methods and knowledge of complexity. 
3) Concurrency, with methods of threading in software and knowledge of hardware 

provided parallel execution. 

The course overall is intended to reinforce knowledge of mathematics, specifically calculus and 
discrete math, while introducing students to vector, matrix methods for linear systems and data 
processing.  At the same time, students are expected to use programming skills from prior 
coursework and combine that with new methods of parallel programming introduced in the 
course. 

The strategy has been a balance of coverage of the three topic areas, with emphasis on 
applications that benefit from the combination of the three.  Students are shown the value of this 
approach to scientific computing, high performance computing and emergent application areas 
such as computer vision.  Through a series of challenging exercises (six in total), they are 
introduced to combined numerical, parallel problems and methods to speed-up programs.  The 
exercises include simple problems, but each problem set also has a final problem that is a 
significant challenge to implement and realize speed-up.  Students are challenged at the end of 
the course to pick a program to design or re-design and to show significant speed-up, comparing 



results to Amdahl’s law5,6, based on parallel hardware used.  Modern systems hardware can 
make selection of the appropriate value for scaling factor used in Amdahl’s law, “S”, a non-
trivial decision.  The value for S can be based on SMT (Simultaneous Multi-Threading), super-
scalar multi-instruction features, vector instructions, and the potential to use co-processor cores.  
Generally, in this course the goal is to keep the scaling factor S simple, with focus on the number 
of cores per node (ignoring SMT) and the number of nodes in a cluster.  However, this 
simplification can be pessimistic given micro-parallel features most CPU systems now 
incorporate by default7,8,9.  Based upon micro-parallel features and node scaling with MPI where 
memory and cache are scaled in addition to number of cores, some students see super-linear 
results, which exceed the speed-up expected.  More time is needed by students to master their 
understanding of speed-up obtained.   

To deal with this challenge and to ensure that distance requirements of COVID-19 do not dilute 
this final parallel programming effort, students were asked to produce a short 30-minute video, 
explaining their design, their code, and the speed-up attained.  The video presentation allows all 
students to share their final parallel program work in good detail, to view each other’s outcomes, 
and for the instructor to hear their story as well as reading a report.  This paper shares this 
experience and presents preliminary results that characterize the pedagogical challenge of this 
course and potential advantages and disadvantages of recorded presentations compared to 
alternatives (written, presentation, traditional final exam). 

2. Course Structure and Challenges 

Numerical and Parallel Programming is designed to leverage student programming skills 
obtained in three previous courses, to build upon calculus and discrete mathematics, and to 
introduced significantly new numerical methods and parallel programming for shared memory 
and distributed memory systems.  The class is a challenge well suited to interactive teaching 
methods with problem-based and active learning approaches that enhance student 
engagement10,11. 

Students are shown two shared memory parallel programming methods.  The first is OpenMP, a 
method that uses compiler pragmas (directives) to generate concurrent threading programs for 
loop bodies and functions, with a high level of abstraction.  While this approach makes 
adaptation of sequential algorithms to parallel simpler, it is however opaque, and exactly how the 
compiler generates the parallel code is not directly studied.  This approach allows students to 
think of parallelism at a block level, e.g., one thread per loop iteration, or multiple threads 
executing the same block or function with different parameters, that must be later combined.  
The second method is POSIX threading, known as “Pthreads”12, which requires students to more 
directly determine how threads will divide work, execute in parallel, and combine results, with 
very explicit thread creation, control, and synchronization.  Both methods allow for shared 
memory scaling, where scaling is determined by the parallel hardware (processor cores and 
thread microarchitecture) on one computing node.   

Students are also introduced to cluster scaling, and programing for distributed memory parallel 
processing using MPI (Message Passing Interface).  The MPI programs can execute on a single 



node in distinct process address spaces as well as on physically distinct address spaces on 
different computer nodes that are networked together.  A key learning objective is to clearly 
understand the differences, advantages and disadvantages of distributed memory scaling 
compared to shared memory.  Students are provided strategies and methods to time code 
sections, to analyze code tracing and profiles, and to determine the speed-up that can be achieved 
for a range of algorithms that vary from easy to make parallel (embarrassingly parallel, e.g., 
thread gridded image transformation) to very difficult to make parallel (algorithms with data 
dependencies and requirements for data access and resource locks).  The distributed approach 
has an advantage of node scaling, where the scaling factor includes memory, cache, and 
processing for each additional node, but with overhead of message passing.  By comparison, 
shared memory has lower overhead for data sharing, but more potential pitfalls associated with 
race conditions and data integrity. 

The calculus and discrete math skills required have been previously learned by students in 
prerequisite courses and linear algebra is introduced in the course, but leverages common 
algebra, and furthers knowledge with vector, matrix approaches to linear systems.  The calculus 
focuses on numerical methods of integration, finite difference methods, and comparison to exact 
solutions as well as simulation of systems where exact solutions are not known.  For both 
calculus and linear systems, tools such as MATLAB are used13, and students are encouraged to 
check their work done by hand and implemented as programs with MATLAB and other online 
“cloud-based” math tools14.   

For all problems, students start with a sequential numeric program and verify correctness by 
comparison to known and sometimes exact solutions.  For example, the area under a sine 
function of amplitude one over the 0 to 𝜋𝜋 interval is known to be 2.0 exactly, provable 
geometrically and known as a calculus antiderivative.  Methods such as a simple Riemann sum, 
trapezoidal approximation, Simpson’s rule, and others are then used to show that the numerical 
methods for approximation can be compared to definite integral solutions to gain insight into the 
accuracy and precision of these methods15.  Students should be familiar with definite integrals 
such as the area of sin(x) over the interval x=0… 𝜋𝜋. 

� 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥)𝑑𝑑𝑥𝑥 = −𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥)]0𝜋𝜋 = 2.0
𝜋𝜋

0
 

The above can also be graphically proven by considering the velocity of a shadow cast vertically 
(vertical projection) on the diameter of a unit circle, where-by the velocity of the projection as it 
traces a unit circle is the integration of sin(x) over the interval x=0… 𝜋𝜋, and the distance from 
one side of the unit circle to the other is exactly 2.0.  In other words, students are encouraged to 
use mathematically observable facts to verify numerical methods and to assess accuracy of 
numerical methods for any precision (e.g., double precision floating point). 

While calculus and discreate math are previously studied, linear systems are known from algebra 
and solutions for simultaneous equations used in calculus and physics.  A major goal for the 
numerical learning objectives is demonstration of the value of approximations and numerical 
methods for applied math uses such as image processing and solutions for simulations of real-



world problems from physics and engineering.  The mathematics introduced in earlier courses 
are reinforced and emphasized with simulation and applications such as image transformation.  
These objectives require critical thinking, where students not only recall mathematical methods 
and programming methods, but must also apply them, evaluate methods of making the programs 
parallel, and create an overall solution. 

3. Course Learning Objectives 

The key program learning objectives for the course used to assess pedagogical goals include: 

1) Application of computer science theory and software development fundamentals to 
produce computing-based solutions. 

2) Use of divide-and-conquer-algorithms for computation with identification of practical 
examples where this can be applied. 

3)  Reinforcement of mathematics previously studied (calculus and discrete math) and 
introduction to vector, matrix mathematics applied to data processing and linear systems. 

Based on Bloom’s cognitive dimensions16, this is an ambitious goal that stresses higher level 
reasoning to create, evaluate, analyze, and apply math and programming in a new way with the 
parallel programming methods introduced in this class. 

The most significant practical challenge of this course is that it is taken senior year, after a 
sequence of three programming courses (CSCI 111 – Programming and Algorithms I, 211 – 
Programming and Algorithms II, 311 – Algorithms and Data Structures), completion of 
mathematics prerequisites, and operating systems.  Most students are not in the mood for a final 
challenge of this magnitude their senior year.  So, the strategy taken to keep students engaged is 
to show students the value of the knowledge and the power of these methods to solve high 
impact problems.  Further, the course provides evidence that this knowledge is useful for 
industry, for scientific and high-performance computing, and emerging applications, such as 
computer vision.   

4. Course Challenges 

Given the combined application of math, programming, and newly learned parallel processing, 
many students are intimidated and sometimes overwhelmed.  Often the class is split on 
challenges such as mathematics, concurrent programming methods, and programming in general.  
The pre-class survey includes questions on prior knowledge on a Likert scale17, and very often 
the class is split as can be seen from student answers to the following questions.  Table 1 shows 
that perhaps much of the perception that this course is hard is based upon lack of familiarity with 
calculus used.  Table 1 shows that 50% of students disagree or strongly disagree that they are 
familiar with the mathematics they will need to succeed in this course.  Only 37.5% believe that 
they are familiar with mathematical methods that will be used.  These statistics indicate the value 
of more formative learning, allowing students more time to re-learn math skills prior to 
summative assessment of them.  The skills must also be combined with new methods of 
programming.  Given this extra challenge, where students must combine math learned much 
earlier (typically freshman and sophomore year) with advanced programming in their final 



semester of their senior year, it is not surprising many students worry about succeeding in this 
course. 

Table 1. Pre-Course Student Familiarity with Calculus Used in Course 

I am familiar with numerical integration and difference equations.  

40 students polled Percent Answered 

Strongly Agree 8.3% 

Agree 29.2% 

Neither Agree nor Disagree 12.5% 

Disagree 33.3% 

Strongly Disagree 16.7% 

Unanswered 0.0% 
 

 

 
While all students have studied integration and differentiation, they are split on whether they 
have familiarity with numerical integration and difference equations, with more than a third 
agreeing that they are familiar, half in disagreement, and a small fraction undecided.  This may 
in part be due to terminology unfamiliar to them, but perhaps also based upon prior struggles 
with mathematics. 

5. Course Adjustment for Distance Learning (COVID-19) 

Prior to the 2020/2021 academic year, taught entirely via video conference for Computer Science 
students at California State University Chico, Numerical and Parallel programming had the 
following formative and summative learning assessment strategy18, 19, 20. 

1) Seven quizzes on basic concepts and methods – 20% of total grade 
2) Five major programs – 40% of total grade 
3) A two-hour final exam covering all learning objectives – 30% of total grade. 
4) Attendance and participation – 10% of total grade 

The final exam and the challenge of the programing assignments resulted in an unofficial 
reputation for the course as a “difficult final hurdle for graduation”, and many students appear to 
have delayed taking the course based on this reputation.  The department encouraged re-design 
of the course in 2020/2021.  With COVID requiring distance teaching, the re-structuring was 
based upon student feedback and a more formative approach for learning with programming 
exercises and quizzes.   

With higher stakes assessments such as mid-term exams and most of the summative assessment 
deferred and determined by a final parallel program.  This final parallel program is not a new 
“project” and can be refinement for mastery of an existing programming problem.  For many 



students, they have indicated that they have not fully understood or completed exercises on their 
first try, earlier in the semester.  The new strategy is summarized as follows: 

1) Five low-stakes quizzes to provide formative attainment of key concepts and methods.  
Quizzes are timed, making look-up while completing difficult, questions are randomized, 
but answers shown, and students can re-attempt.  Scores are averaged and students are 
expected to achieve 100% accuracy on their last try.  Quizzes are given every third week 
during the semester – 15% of total grade. 

2) Six major programming exercises, with challenge such that the last problem is not 
expected to be fully solved by most of the students.  These are given every 2 weeks and 
due after non-quiz weekends – 30% of total grade. 

3) One mid-term exam with focus on parallel programming methods and numerical methods 
at a fundamental level – 15% of total grade. 

4) A high stakes final parallel program, with detailed design and speed-up analysis, 
presented as a design, code, and result walk-through video – 40% of total grade. 

The re-design was based upon formative and active learning principles where students can 
attempt hard problems early.  Based on their challenge experienced, they can then choose a 
program to re-attempt as they learn more.  This re-attempt allows students to bring questions to 
class for problem-based learning and hands-on programming practice with the instructor.  The 
re-design was based upon unanimous concern about online programming exams and a final exam 
with programming. 

Another key pedagogical theory employed is based upon low stakes grading early.  Students are 
encouraged to take on hard problems and analyze, evaluate, and create parallel programs that 
will provide significant improvement over sequential programs solving the same problem.  Very 
often, students will achieve success in one or two of the three learning objectives for parallel 
programs:  

1) Correct numerical methods with verified mathematical accuracy and precision. 
2) Correct C and C++ programs that run without error. 
3) Parallel programming that provides significant speed-up on parallel hardware. 

The value of the course re-design to de-emphasize the exam-based programming frees up time 
for students to repeat a programming problem with greater mastery (speed-up achieved, 
numerical accuracy and precision, algorithmic correctness, and efficiency).  The value of this 
approach is reflected in their mid-course survey from fall 2020.  Students had a negative reaction 
to the word “project” and preferred the idea of more singular pursuit of mastery of a program, 
not a semester-long project.   

The mastery approach allows students to re-attempt a problem from earlier exercises, completed, 
and explained more fully than time allowed during their first attempt.  The elimination of a final 
exam and/or final project, frees up time as well at the end of the semester.  Time regained has 
been used for more formative learning exercises such as the quizzes.  Based upon polling in the 
fall 2020 semester, students found the quizzes useful by clear majority, summarized in Table 2. 



Table 2. Mid-Course Student Sentiment Regrading Quiz Style Used 

I have found the take 3x and average quizzes to be helpful for achieving learning objectives. 

40 students polled Percent Answered 

Strongly Agree 58.8% 

Agree 29.4% 

Neither Agree nor Disagree 5.9% 

Disagree 0.00% 

Strongly Disagree 0.00% 

Unanswered 5.8% 
 

 

Table 3 shows that while formative exercises are time consuming and challenging for students, 
the majority found them useful for achievement of course learning objectives. 

Table 3. Student Perceived Value of Assigned Exercises to Learning Objectives 

I have found the assignments to be interesting and they have helped me to learn programming 
methods (e.g., MPI, Pthreads, OpenMP) as well as numerical methods and processing. 

40 students polled Percent Answered 

Strongly Agree 29.4% 

Agree 29.4% 

Neither Agree nor Disagree 29.4% 

Disagree 11.8% 

Strongly Disagree 0.0% 

Unanswered 0.0% 
 

 

 

Finally, Table 4 shows that a strong majority of students “liked” the idea of re-attempting a 
problem previously encountered.  While some students liked re-attempting a parallel program 
thinking that this is easier than a new project, the final program analysis and requirement to 
explain fully with a video walk-through increases challenge.  The 30-minute video seems long, 
but this affords students ample time to walk through and explain every line of their code in 
good detail.  The ability to explain code in good detail helps to substantiate that the students 
wrote the code, given their ability to fully describe it.  Ideally these videos would not only be 
made available to other students for viewing, but also for rating and providing peer reviews.  
This was not done due to lack of time in 2020. 



Table 4. Student Perceived Value of Final Parallel Program 

I like the idea that the final project is my choice in terms of topic and that I can re-do and improve 
a prior assignment problem OR choose any creative programming problem I wish that requires 
parallel programming, demonstrates speed-up, and allows me to explain my code in good detail. 

40 students polled Percent Answered 

Strongly Agree 52.9% 

Agree 35.3% 

Neither Agree nor Disagree 5.8% 

Disagree 5.8% 

Strongly Disagree 0.0% 

Unanswered 0.0% 
 

 
6. Course Re-Design Hypothesis 

The hypothesis for the course re-design with no final exam and/or final project, is to instead 
require mastery of a final parallel program - an idea that was well received by students, with 
unanimous agreement by ZOOM interactive poll in fall 2020.  Students felt that an exam was not 
a good final assessment of learning, and the majority in fall 2020 supported having a choice 
between re-doing and mastering a prior problem or choosing a creative programming problem.  
As this approach was determined by a ZOOM poll, these questions were again repeated in a new 
documented Likert survey poll in spring 2021.  The pedagogical theory is that by delaying final 
assessment with a high stakes event announced way in advance, students will achieve learning 
objectives earlier, with more challenging problem-based learning first, and that they will do 
better overall in attainment of learning outcomes at the end. 

To ensure that the high-stakes final parallel program is in fact mastered, students are required to 
create a video to be shared with the instructor and all other students via CSU’s learning 
management system (Kaltura and Blackboard).  Emphasis is placed upon design quality, code 
quality with a required walk-through of the design, code, and speed-up results. 

Students are asked to analyze their design and program performance two ways.  The first way is 
to measure speed-up, using scaling factor “S” based on number of nodes and cores per node, and 
then solve for “P”, the parallel portion of the program, and “(1-P)”, the sequential portion of the 
program.  This approach using measured speed-up is an indirect method to estimate how much 
parallelization their design provides.  Time is measured for the parallel and sequential version of 
the program to determine Speed-up actual below. 

1) Speed-up actual = Tsequential / Tparallel, e.g., 3.0, with S=4 for a 4-core system 
2) 1

(1−𝑃𝑃)+𝑃𝑃4
 = 3.0, so 3.0 �(1− 𝑃𝑃) + 𝑃𝑃

4
� = 1.0, or 3.0 − 9𝑃𝑃

4
=1.0, 9𝑃𝑃

4
=2.0 



3) 𝑃𝑃 = 8
9

= 88.88%, (1-P)=11.11% 

Second, they are asked to examine their code and estimate P and (1-P) based upon the threaded 
section of code and non-threaded using compiler assembly output instruction count.  Based upon 
P and (1-P), the expected speed-up can be computed, given S and Amdahl’s law. 

1) Amdahl’s Law = 1
(1−𝑃𝑃)+𝑃𝑃𝑆𝑆

 , if P=0.8, S=4, (1-P)=0.2 

2) Speed-up = 1
0.2+0.8

4
=2.5x 

Students observing anything that was above linear speed-up, super-linear, must justify their 
measurements based upon memory, cache, and other node scaling advantages for MPI.  Having 
previously developed and tested programs, most students can leverage sequential numerical 
programs from prior exercise work and focus intently on methods of parallelization. Making an 
existing program faster with parallel programming is a major course learning objective along 
with methods to determine the accuracy and precision of results.  

Based on COVID-19 restrictions, all students have had to either access the California State 
University Chico cluster remotely and/or use home equipment.  Home systems can be used for 
shared memory parallel programming (OpenMP and Pthreads) and even at-home clusters using 
Raspberry-Pi21 to support students who want to better understand the hardware.  This has been 
largely successful, and while students can just use the remotely accessible university hardware, 
most have interest in building their own at-home solutions too.   

In fact, the Computer Science department is adding two new Raspberry Pi clusters for remote 
access and a Jetson Nano cluster as well to replicated what students can build at home.  Open-
source tools for parallel computing are widely available, with OpenMP and Pthreads supported 
by GNU tools and Linux by default, and MPI supported with open-source tools for small 
clusters22, including the newer OpenHPC tools23. 

7. Course Re-Design Formative Problems 

Up front hard problems are a key to the hypothesis that problem-based learning with a high-
stakes assessment at the end for refinement and improvement of solutions has advantage over 
timed exams.  The course has six programming exercises with the following summary of 
challenge by learning objective noted in Table 5.  Students have more time during office hours to 
get help with exercises they found most challenging with the re-do for mastery approach.  Many 
of the problems involve simulation and algorithms that are not easy to make parallel.  The 
challenge most often is due to data sharing and data dependencies inherent in the problems such 
as physical simulation.  Tackling simulation and more involved numerical applications rather 
than exercises allows students to understand that not all problems are “embarrassingly parallel”.  
The challenge of the problems that students attempt and can later re-do for mastery include 
programming, numerical methods, and parallel programming for each problem described in 
Table 5 is significant. 



Table 5. – Six Parallel Programming Exercises that Deal with “Hard” Problems 

Exercise Description Programming Numerical Parallel 
1 Image 

transformation with 
PSF convolution and 
Discrete Cosine 
Transform 

3D color image 
arrays, addressing 
and application of 
pixel neighborhood 
operations 

Convolution, 
transcendental 
functions, inverse, 
and forward 
transformation 
(lossy, lossless) 

OpenMP and 
Pthreads, thread 
gridding and 
thread blocks 

2 Image 
transformation 
(rotation) and prime 
number theorem 

Vector, matrix 
operations, large 
numbers, primality 
testing, and search 

Vector matrix 
operations and 
prime number 
theorem 

OpenMP and 
Pthreads, thread 
gridding and 
locks for critical 
sections 

3 Simulation of a train 
trajectory given 
linear acceleration 
profile 

Simulation and 
analysis of physical 
problems 

Numerical 
integration, 
accuracy 
verification, and 
precision 

Pthreads shared 
memory scaling 
and MPI 
distributed 
memory node 
scaling 

4 Simulation of a train 
trajectory given 
non-linear 
acceleration profile 

Simulation and 
analysis of physical 
problems 

Numerical 
integration, 
comparing 
methods, accuracy 
verification, and 
precision 

Pthreads shared 
memory scaling 
and MPI 
distributed 
memory node 
scaling 

5 Linear systems 
solvers for 
engineering systems 

Iterative (e.g., 
Gauss-Seidel and 
vector, matrix row 
operations for 
linear systems 
solving (LU 
decomposition) 

Iteration and 
automation of LU 
decomposition 
with analysis of 
accuracy and 
issues of 
truncation and 
cancellation 

OpenMP and 
MPI scaling and 
speed-up 

6 Numerical 
integration with 
Root Solving to find 
intersection (e.g., 
times when trains 
pass each other) 

Numerical 
integration and 
methods of 
bisection, and 
intervals with slope, 
to precisely 
determine roots of 
error equations 

Methods of 
bisection, Newton-
Raphson to 
precisely 
determine roots of 
error equations 

OpenMP and 
MPI scaling and 
speed-up 

 

The train problems, from Table 5, are harder than most students expect, with challenges based 
upon data dependencies in integration and programming to abstract functions for features such as 
root solving.  To provide an idea of design complexity students face, Figures 1 and 2 show 



diagrams provided by the instructor to document one potential strategy for speed-up using MPI.  
Students can re-attempt this problem improving their MPI solution or can try a new method of 
parallelization such as OpenMP, or even use of more advanced methods such as CUDA and GP-
GPU co-processors. 

Figure 1 shows the first parallel pass to integrate an acceleration profile, which can use a 
function generator or look-up table with interpolation (complicating the problem). 

Figure 1. Program Design for Parallelization of Acceleration Profile Integration 

 

Figure 2 shows the second parallel pass to integrate a velocity profile, derived from the first pass 
integration of acceleration, which must be used in a second look-up table with interpolation (for 
the most general use) or a second function generator.  While students have most likely seen 
linear interpolation before, they have perhaps not used it with integration and to model functions 
for physical simulation. 



Figure 2. Program Design for Parallelization of Acceleration Profile Integration 

 

The MPI programming requires use of advanced features to compute global sums that are 
synchronized to divide up the work over a large number of MPI nodes (up to 31 in the CSU 
cluster).  Making this simulation parallel and testing it for any acceleration profile, linear or non-
linear, is not trivial.  For students wanting more challenge, the problem can be extended to model 
more physical details (e.g., friction, over longer periods or time, etc.). 
Students may design a creative problem of their own interest, or simply re-do one of the major 
problems with a goal for mastery.   The improvements for mastery must be significant and 
clearly demonstrate speed-up in the final reporting and video overview.  Whether a new creative 
program is proposed, or an old problem is re-done for mastery, all students must clearly analyze 
speed-up and present a clear design and code walk-through to demonstrate what they learned.  
The videos created take students significant time after completion of their programming, 
analysis, and testing (at least 3 to 4 hours) and force them to reflect upon the correctness and 
clarity of their work.  Often students think of ways to improve code while explaining, and many 
indicated they had to re-do their videos. 



8. Course Final Parallel Program Results 

Several students achieved speed-up higher than expected by Amdahl’s law and linear scaling 
based upon number of cores and nodes used.  Most students achieve speed-up that can be 
explained by Amdahl’s law with credible parallel portions in the 80% or better range.  Students 
who explain their speed-up comparing to Amdahl’s law with their estimated parallel and 
sequential code portions with accurate and precise results have mastered programs that gave 
them difficulty when the first attempted them.  Only a few students were below expectation in 
fall 2020, and while some did drop the course based upon COVID-19 rules at California State 
University Chico, the majority performed above expectation.  The results are summarized below. 

Table 6. – Final Parallel Program Outcomes for Students 

Above Expectation 
for Learning 
Outcomes 

Expected Learning 
Outcomes 

Below Expected Not Completed 

60.6% 23.7% 2.7% 13.0% 
 

Final overall course grades were not quite as successful.  Some students had difficulty with 
quizzes, exercises, and the mid-term exam, perhaps based upon workload and time challenges, or 
just based upon learning and making mistakes on the first try.  Overall, the outcomes for the 
course for fall semester can be summarized as follows. 

Table 7. – Final Course Grade Outcomes for Students 

Above Expectation 
for Learning 
Outcomes 

Expected Learning 
Outcomes 

Below Expected Not Completed 

23.7% 60.5% 15.8% 0.0% 
 

9. Future Work 

Based on success and student interest in this approach, the persistence of COVID-19 and need 
for distance learning this spring, the new design has been repeated in spring 2021.  An effort to 
collect a second sampling of pre-course, mid-course, and post-course data has been repeated to 
determine if results are repeatable.  The original design was taught by another instructor, so the 
only way to obtain a control comparison would be reversion to the older approach, away from 
this new approach described here.  However, this only seems ethical and viable if students 
support this approach and it is unlikely that this course will ever be offered online only again.  It 
is the author’s opinion that the re-design should instead be adapted to in-person instruction and 
fine-tuned, perhaps to better scaffold the final parallel program work and to provide some earlier 
assessment of this final high-stakes exercise.  With 40% of the grade all assessed by one final 
report and a video, for more than fifty students, is a serious challenge for the instructor to grade 
the last week of the semester.  Ideas to have students help with peer assessment and other 
methods such as automated program testing and assessment may also be investigated in the 



future.  Overall, the strategy appears to be successful enough to warrant more study and 
refinement. 

10. Summary 

The outcome, where most students designed, implemented, explained, and analyzed a non-trivial 
parallel program for a numerical simulation or analysis at the end of the course, appears to 
support the hypothesis of low-stakes formative learning early and high-stakes summative 
assessment later in the semester along with refinement of a previously attempted problem and 
solution.  The idea is that mastery in upper division courses is important to student success and 
attainment of learning objective outcomes, and that this also allows more students to complete 
this important course their senior year.   

One hazard of this approach is that many students are not satisfied with their grades prior to the 
final parallel program grading, with lower grades computed up to that point.  One method to 
repair this is to perhaps break the final parallel program into two parts, one delivered earlier than 
the other, perhaps as an early submission and then the final video.  However, this creates more 
work for students while they are trying to concentrate on the formative learning. 
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