
Paper ID #35221

Improving Student Outcomes with Final Parallel Program Mastery Approach
for Numerical Methods

Dr. Sam B Siewert, California State University, Chico

Dr. Sam Siewert has a B.S. in Aerospace and Mechanical Engineering from University of Notre Dame and
M.S., Ph.D. in Computer Science from University of Colorado. He has worked in the computer engineer-
ing industry for twenty-four years before starting an academic career in 2012. Half of his time was spent
on NASA space exploration programs and the other half of that time on commercial product development
for high performance networking and storage systems. In 2020 Dr. Siewert joined the California State
University to teach computer science and software engineering as full time faculty and retains an adjunct
professor role at University of Colorado Boulder and Embry Riddle Aeronautical University. Research
interests include real-time systems, machine vision and machine learning. Dr. Siewert was a co-founder
of the Embedded Systems Engineering program at University of Colorado.

c©American Society for Engineering Education, 2021

Improving Student Outcomes with Final Parallel Program Mastery Approach
for Numerical Methods

Sam Siewert
California State University

400 W. First St.
Chico, CA 95929-0410

530-898-4342
sbsiewert@csuchico.edu

Abstract

Student final parallel programs for “Numerical and Parallel Programming”, a course taught at
California State University Chico, stress ability to put theory into practice. The course normally
includes parallel programming, allowing students to assess their success with verifiable
numerical methods (e.g., using MATLAB) and speed-up compared to Amdahl’s law. The
pandemic presented new challenges for final parallel programs, and this course had the extra
challenge of proprietary cluster software, now only remotely accessible. The course has a
reputation for being difficult based upon pre-course surveys. Given the limitations, it would
have been easiest to simply eliminate the complex parallel programs and focus on simpler
exercises and assessments.

However, based upon fall 2020 student mid-term surveys, it was clear that students preferred a
final parallel program over online assessment. Further, the COVID-19 remote learning
constraints presented an opportunity for change. This remote scenario along with large class size
of 40 students prompted the goal to allow all students to share their work with their cohort in a
new way. The final parallel programs for this course focus on numerical methods commonly
used in science and engineering, traditionally summarized and/or presented one-on-one with
faculty as individual efforts. Students are expected to use divide-and-conquer approaches to
design parallel programs for speed-up using well-known numerical methods from calculus
combined with algorithms learned in class. To maintain course learning objectives and improve
upon them while overcoming the new pandemic limitations, three specific parallel programming
modifications have been made:

1) All final shared memory parallel programs can now be completed on a home system
using equipment that costs less than one hundred dollars or can be completed on the
existing CSU cluster. Distributed memory parallel programs must be developed and
tested on the CSU cluster using MPI based on cost of the system (thousands of dollars).

2) Final parallel programs can now focus on mastery of a prior problem given as an exercise
with emphasis on a detailed code walk-through for parallel design.

3) All final parallel programs are required to include a brief report, but also a 30-minute
video of the build, run, and code design completed with a detailed walk-through
shareable with the CSU learning management system.

Longer term, CSU Chico is investigating a remotely accessible cluster built using the same at-
home hardware but scaled to 60 nodes. Much like a musician mastering their art would want
their own instrument and access to more exotic orchestra instruments, students mastering

programming benefit from their own home Linux systems that support parallel programming and
multi-core Linux clusters provided by the university. The goal is to support not only POSIX
threads and OpenMP shared memory scaling1, but also distributed memory MPI (Message
Passing Interface)2,3, and shared memory CUDA (Compute Unified Device Architecture)4. In
general, the at-home use of single node versions showed no new issues compared to use of the
proprietary software.

Based on fall 2020 results, the final parallel program video appears to have positively motivated
students and gave them multiple options to engage and complete the course. While not as ideal
as all students presenting to each other, the new approach scales well for a large class, and allows
students to share their experience. The pedagogical experiment introduced by this new final
parallel program for mastery shows promise, but results are preliminary. The fall 2020 results
from pre-course, mid-course, and post-course surveys are summarized in this paper along with
instructor lessons learned and plans to repeat in spring 2021.

1. Introduction

The Computer Science course, Numerical and Parallel Processing, is a senior year course
required of all undergraduate majors and meets key program learning outcome goals for
mathematics and computer science. Specifically, for mathematics, the course requires students
to apply calculus, linear algebra, and discrete math skills. For the computer science learning
objectives, the focus is on comparison of algorithms and design for shared memory and
distributed memory speed-up of those algorithms.

The students consider this class to be a significant challenge based upon the complexity of
assignments and the difficulty of combining knowledge from three areas:

1) Mathematics, with application of numerical methods for computation.
2) Programming, with iterative and recursive methods and knowledge of complexity.
3) Concurrency, with methods of threading in software and knowledge of hardware

provided parallel execution.

The course overall is intended to reinforce knowledge of mathematics, specifically calculus and
discrete math, while introducing students to vector, matrix methods for linear systems and data
processing. At the same time, students are expected to use programming skills from prior
coursework and combine that with new methods of parallel programming introduced in the
course.

The strategy has been a balance of coverage of the three topic areas, with emphasis on
applications that benefit from the combination of the three. Students are shown the value of this
approach to scientific computing, high performance computing and emergent application areas
such as computer vision. Through a series of challenging exercises (six in total), they are
introduced to combined numerical, parallel problems and methods to speed-up programs. The
exercises include simple problems, but each problem set also has a final problem that is a
significant challenge to implement and realize speed-up. Students are challenged at the end of
the course to pick a program to design or re-design and to show significant speed-up, comparing

results to Amdahl’s law5,6, based on parallel hardware used. Modern systems hardware can
make selection of the appropriate value for scaling factor used in Amdahl’s law, “S”, a non-
trivial decision. The value for S can be based on SMT (Simultaneous Multi-Threading), super-
scalar multi-instruction features, vector instructions, and the potential to use co-processor cores.
Generally, in this course the goal is to keep the scaling factor S simple, with focus on the number
of cores per node (ignoring SMT) and the number of nodes in a cluster. However, this
simplification can be pessimistic given micro-parallel features most CPU systems now
incorporate by default7,8,9. Based upon micro-parallel features and node scaling with MPI where
memory and cache are scaled in addition to number of cores, some students see super-linear
results, which exceed the speed-up expected. More time is needed by students to master their
understanding of speed-up obtained.

To deal with this challenge and to ensure that distance requirements of COVID-19 do not dilute
this final parallel programming effort, students were asked to produce a short 30-minute video,
explaining their design, their code, and the speed-up attained. The video presentation allows all
students to share their final parallel program work in good detail, to view each other’s outcomes,
and for the instructor to hear their story as well as reading a report. This paper shares this
experience and presents preliminary results that characterize the pedagogical challenge of this
course and potential advantages and disadvantages of recorded presentations compared to
alternatives (written, presentation, traditional final exam).

2. Course Structure and Challenges

Numerical and Parallel Programming is designed to leverage student programming skills
obtained in three previous courses, to build upon calculus and discrete mathematics, and to
introduced significantly new numerical methods and parallel programming for shared memory
and distributed memory systems. The class is a challenge well suited to interactive teaching
methods with problem-based and active learning approaches that enhance student
engagement10,11.

Students are shown two shared memory parallel programming methods. The first is OpenMP, a
method that uses compiler pragmas (directives) to generate concurrent threading programs for
loop bodies and functions, with a high level of abstraction. While this approach makes
adaptation of sequential algorithms to parallel simpler, it is however opaque, and exactly how the
compiler generates the parallel code is not directly studied. This approach allows students to
think of parallelism at a block level, e.g., one thread per loop iteration, or multiple threads
executing the same block or function with different parameters, that must be later combined.
The second method is POSIX threading, known as “Pthreads”12, which requires students to more
directly determine how threads will divide work, execute in parallel, and combine results, with
very explicit thread creation, control, and synchronization. Both methods allow for shared
memory scaling, where scaling is determined by the parallel hardware (processor cores and
thread microarchitecture) on one computing node.

Students are also introduced to cluster scaling, and programing for distributed memory parallel
processing using MPI (Message Passing Interface). The MPI programs can execute on a single

node in distinct process address spaces as well as on physically distinct address spaces on
different computer nodes that are networked together. A key learning objective is to clearly
understand the differences, advantages and disadvantages of distributed memory scaling
compared to shared memory. Students are provided strategies and methods to time code
sections, to analyze code tracing and profiles, and to determine the speed-up that can be achieved
for a range of algorithms that vary from easy to make parallel (embarrassingly parallel, e.g.,
thread gridded image transformation) to very difficult to make parallel (algorithms with data
dependencies and requirements for data access and resource locks). The distributed approach
has an advantage of node scaling, where the scaling factor includes memory, cache, and
processing for each additional node, but with overhead of message passing. By comparison,
shared memory has lower overhead for data sharing, but more potential pitfalls associated with
race conditions and data integrity.

The calculus and discrete math skills required have been previously learned by students in
prerequisite courses and linear algebra is introduced in the course, but leverages common
algebra, and furthers knowledge with vector, matrix approaches to linear systems. The calculus
focuses on numerical methods of integration, finite difference methods, and comparison to exact
solutions as well as simulation of systems where exact solutions are not known. For both
calculus and linear systems, tools such as MATLAB are used13, and students are encouraged to
check their work done by hand and implemented as programs with MATLAB and other online
“cloud-based” math tools14.

For all problems, students start with a sequential numeric program and verify correctness by
comparison to known and sometimes exact solutions. For example, the area under a sine
function of amplitude one over the 0 to 𝜋𝜋 interval is known to be 2.0 exactly, provable
geometrically and known as a calculus antiderivative. Methods such as a simple Riemann sum,
trapezoidal approximation, Simpson’s rule, and others are then used to show that the numerical
methods for approximation can be compared to definite integral solutions to gain insight into the
accuracy and precision of these methods15. Students should be familiar with definite integrals
such as the area of sin(x) over the interval x=0… 𝜋𝜋.

� 𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥)𝑑𝑑𝑑𝑑 = −𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥)]0𝜋𝜋 = 2.0
𝜋𝜋

0

The above can also be graphically proven by considering the velocity of a shadow cast vertically
(vertical projection) on the diameter of a unit circle, where-by the velocity of the projection as it
traces a unit circle is the integration of sin(x) over the interval x=0… 𝜋𝜋, and the distance from
one side of the unit circle to the other is exactly 2.0. In other words, students are encouraged to
use mathematically observable facts to verify numerical methods and to assess accuracy of
numerical methods for any precision (e.g., double precision floating point).

While calculus and discreate math are previously studied, linear systems are known from algebra
and solutions for simultaneous equations used in calculus and physics. A major goal for the
numerical learning objectives is demonstration of the value of approximations and numerical
methods for applied math uses such as image processing and solutions for simulations of real-

world problems from physics and engineering. The mathematics introduced in earlier courses
are reinforced and emphasized with simulation and applications such as image transformation.
These objectives require critical thinking, where students not only recall mathematical methods
and programming methods, but must also apply them, evaluate methods of making the programs
parallel, and create an overall solution.

3. Course Learning Objectives

The key program learning objectives for the course used to assess pedagogical goals include:

1) Application of computer science theory and software development fundamentals to
produce computing-based solutions.

2) Use of divide-and-conquer-algorithms for computation with identification of practical
examples where this can be applied.

3) Reinforcement of mathematics previously studied (calculus and discrete math) and
introduction to vector, matrix mathematics applied to data processing and linear systems.

Based on Bloom’s cognitive dimensions16, this is an ambitious goal that stresses higher level
reasoning to create, evaluate, analyze, and apply math and programming in a new way with the
parallel programming methods introduced in this class.

The most significant practical challenge of this course is that it is taken senior year, after a
sequence of three programming courses (CSCI 111 – Programming and Algorithms I, 211 –
Programming and Algorithms II, 311 – Algorithms and Data Structures), completion of
mathematics prerequisites, and operating systems. Most students are not in the mood for a final
challenge of this magnitude their senior year. So, the strategy taken to keep students engaged is
to show students the value of the knowledge and the power of these methods to solve high
impact problems. Further, the course provides evidence that this knowledge is useful for
industry, for scientific and high-performance computing, and emerging applications, such as
computer vision.

4. Course Challenges

Given the combined application of math, programming, and newly learned parallel processing,
many students are intimidated and sometimes overwhelmed. Often the class is split on
challenges such as mathematics, concurrent programming methods, and programming in general.
The pre-class survey includes questions on prior knowledge on a Likert scale17, and very often
the class is split as can be seen from student answers to the following questions. Table 1 shows
that perhaps much of the perception that this course is hard is based upon lack of familiarity with
calculus used. Table 1 shows that 50% of students disagree or strongly disagree that they are
familiar with the mathematics they will need to succeed in this course. Only 37.5% believe that
they are familiar with mathematical methods that will be used. These statistics indicate the value
of more formative learning, allowing students more time to re-learn math skills prior to
summative assessment of them. The skills must also be combined with new methods of
programming. Given this extra challenge, where students must combine math learned much
earlier (typically freshman and sophomore year) with advanced programming in their final

semester of their senior year, it is not surprising many students worry about succeeding in this
course.

Table 1. Pre-Course Student Familiarity with Calculus Used in Course

I am familiar with numerical integration and difference equations.

40 students polled Percent Answered

Strongly Agree 8.3%

Agree 29.2%

Neither Agree nor Disagree 12.5%

Disagree 33.3%

Strongly Disagree 16.7%

Unanswered 0.0%

While all students have studied integration and differentiation, they are split on whether they
have familiarity with numerical integration and difference equations, with more than a third
agreeing that they are familiar, half in disagreement, and a small fraction undecided. This may
in part be due to terminology unfamiliar to them, but perhaps also based upon prior struggles
with mathematics.

5. Course Adjustment for Distance Learning (COVID-19)

Prior to the 2020/2021 academic year, taught entirely via video conference for Computer Science
students at California State University Chico, Numerical and Parallel programming had the
following formative and summative learning assessment strategy18, 19, 20.

1) Seven quizzes on basic concepts and methods – 20% of total grade
2) Five major programs – 40% of total grade
3) A two-hour final exam covering all learning objectives – 30% of total grade.
4) Attendance and participation – 10% of total grade

The final exam and the challenge of the programing assignments resulted in an unofficial
reputation for the course as a “difficult final hurdle for graduation”, and many students appear to
have delayed taking the course based on this reputation. The department encouraged re-design
of the course in 2020/2021. With COVID requiring distance teaching, the re-structuring was
based upon student feedback and a more formative approach for learning with programming
exercises and quizzes.

With higher stakes assessments such as mid-term exams and most of the summative assessment
deferred and determined by a final parallel program. This final parallel program is not a new
“project” and can be refinement for mastery of an existing programming problem. For many

students, they have indicated that they have not fully understood or completed exercises on their
first try, earlier in the semester. The new strategy is summarized as follows:

1) Five low-stakes quizzes to provide formative attainment of key concepts and methods.
Quizzes are timed, making look-up while completing difficult, questions are randomized,
but answers shown, and students can re-attempt. Scores are averaged and students are
expected to achieve 100% accuracy on their last try. Quizzes are given every third week
during the semester – 15% of total grade.

2) Six major programming exercises, with challenge such that the last problem is not
expected to be fully solved by most of the students. These are given every 2 weeks and
due after non-quiz weekends – 30% of total grade.

3) One mid-term exam with focus on parallel programming methods and numerical methods
at a fundamental level – 15% of total grade.

4) A high stakes final parallel program, with detailed design and speed-up analysis,
presented as a design, code, and result walk-through video – 40% of total grade.

The re-design was based upon formative and active learning principles where students can
attempt hard problems early. Based on their challenge experienced, they can then choose a
program to re-attempt as they learn more. This re-attempt allows students to bring questions to
class for problem-based learning and hands-on programming practice with the instructor. The
re-design was based upon unanimous concern about online programming exams and a final exam
with programming.

Another key pedagogical theory employed is based upon low stakes grading early. Students are
encouraged to take on hard problems and analyze, evaluate, and create parallel programs that
will provide significant improvement over sequential programs solving the same problem. Very
often, students will achieve success in one or two of the three learning objectives for parallel
programs:

1) Correct numerical methods with verified mathematical accuracy and precision.
2) Correct C and C++ programs that run without error.
3) Parallel programming that provides significant speed-up on parallel hardware.

The value of the course re-design to de-emphasize the exam-based programming frees up time
for students to repeat a programming problem with greater mastery (speed-up achieved,
numerical accuracy and precision, algorithmic correctness, and efficiency). The value of this
approach is reflected in their mid-course survey from fall 2020. Students had a negative reaction
to the word “project” and preferred the idea of more singular pursuit of mastery of a program,
not a semester-long project.

The mastery approach allows students to re-attempt a problem from earlier exercises, completed,
and explained more fully than time allowed during their first attempt. The elimination of a final
exam and/or final project, frees up time as well at the end of the semester. Time regained has
been used for more formative learning exercises such as the quizzes. Based upon polling in the
fall 2020 semester, students found the quizzes useful by clear majority, summarized in Table 2.

Table 2. Mid-Course Student Sentiment Regrading Quiz Style Used

I have found the take 3x and average quizzes to be helpful for achieving learning objectives.

40 students polled Percent Answered

Strongly Agree 58.8%

Agree 29.4%

Neither Agree nor Disagree 5.9%

Disagree 0.00%

Strongly Disagree 0.00%

Unanswered 5.8%

Table 3 shows that while formative exercises are time consuming and challenging for students,
the majority found them useful for achievement of course learning objectives.

Table 3. Student Perceived Value of Assigned Exercises to Learning Objectives

I have found the assignments to be interesting and they have helped me to learn programming
methods (e.g., MPI, Pthreads, OpenMP) as well as numerical methods and processing.

40 students polled Percent Answered

Strongly Agree 29.4%

Agree 29.4%

Neither Agree nor Disagree 29.4%

Disagree 11.8%

Strongly Disagree 0.0%

Unanswered 0.0%

Finally, Table 4 shows that a strong majority of students “liked” the idea of re-attempting a
problem previously encountered. While some students liked re-attempting a parallel program
thinking that this is easier than a new project, the final program analysis and requirement to
explain fully with a video walk-through increases challenge. The 30-minute video seems long,
but this affords students ample time to walk through and explain every line of their code in
good detail. The ability to explain code in good detail helps to substantiate that the students
wrote the code, given their ability to fully describe it. Ideally these videos would not only be
made available to other students for viewing, but also for rating and providing peer reviews.
This was not done due to lack of time in 2020.

Table 4. Student Perceived Value of Final Parallel Program

I like the idea that the final project is my choice in terms of topic and that I can re-do and improve
a prior assignment problem OR choose any creative programming problem I wish that requires
parallel programming, demonstrates speed-up, and allows me to explain my code in good detail.

40 students polled Percent Answered

Strongly Agree 52.9%

Agree 35.3%

Neither Agree nor Disagree 5.8%

Disagree 5.8%

Strongly Disagree 0.0%

Unanswered 0.0%

6. Course Re-Design Hypothesis

The hypothesis for the course re-design with no final exam and/or final project, is to instead
require mastery of a final parallel program - an idea that was well received by students, with
unanimous agreement by ZOOM interactive poll in fall 2020. Students felt that an exam was not
a good final assessment of learning, and the majority in fall 2020 supported having a choice
between re-doing and mastering a prior problem or choosing a creative programming problem.
As this approach was determined by a ZOOM poll, these questions were again repeated in a new
documented Likert survey poll in spring 2021. The pedagogical theory is that by delaying final
assessment with a high stakes event announced way in advance, students will achieve learning
objectives earlier, with more challenging problem-based learning first, and that they will do
better overall in attainment of learning outcomes at the end.

To ensure that the high-stakes final parallel program is in fact mastered, students are required to
create a video to be shared with the instructor and all other students via CSU’s learning
management system (Kaltura and Blackboard). Emphasis is placed upon design quality, code
quality with a required walk-through of the design, code, and speed-up results.

Students are asked to analyze their design and program performance two ways. The first way is
to measure speed-up, using scaling factor “S” based on number of nodes and cores per node, and
then solve for “P”, the parallel portion of the program, and “(1-P)”, the sequential portion of the
program. This approach using measured speed-up is an indirect method to estimate how much
parallelization their design provides. Time is measured for the parallel and sequential version of
the program to determine Speed-up actual below.

1) Speed-up actual = Tsequential / Tparallel, e.g., 3.0, with S=4 for a 4-core system
2) 1

(1−𝑃𝑃)+𝑃𝑃4
 = 3.0, so 3.0 �(1− 𝑃𝑃) + 𝑃𝑃

4
� = 1.0, or 3.0 − 9𝑃𝑃

4
=1.0, 9𝑃𝑃

4
=2.0

3) 𝑃𝑃 = 8
9

= 88.88%, (1-P)=11.11%

Second, they are asked to examine their code and estimate P and (1-P) based upon the threaded
section of code and non-threaded using compiler assembly output instruction count. Based upon
P and (1-P), the expected speed-up can be computed, given S and Amdahl’s law.

1) Amdahl’s Law = 1
(1−𝑃𝑃)+𝑃𝑃𝑆𝑆

 , if P=0.8, S=4, (1-P)=0.2

2) Speed-up = 1
0.2+0.8

4
=2.5x

Students observing anything that was above linear speed-up, super-linear, must justify their
measurements based upon memory, cache, and other node scaling advantages for MPI. Having
previously developed and tested programs, most students can leverage sequential numerical
programs from prior exercise work and focus intently on methods of parallelization. Making an
existing program faster with parallel programming is a major course learning objective along
with methods to determine the accuracy and precision of results.

Based on COVID-19 restrictions, all students have had to either access the California State
University Chico cluster remotely and/or use home equipment. Home systems can be used for
shared memory parallel programming (OpenMP and Pthreads) and even at-home clusters using
Raspberry-Pi21 to support students who want to better understand the hardware. This has been
largely successful, and while students can just use the remotely accessible university hardware,
most have interest in building their own at-home solutions too.

In fact, the Computer Science department is adding two new Raspberry Pi clusters for remote
access and a Jetson Nano cluster as well to replicated what students can build at home. Open-
source tools for parallel computing are widely available, with OpenMP and Pthreads supported
by GNU tools and Linux by default, and MPI supported with open-source tools for small
clusters22, including the newer OpenHPC tools23.

7. Course Re-Design Formative Problems

Up front hard problems are a key to the hypothesis that problem-based learning with a high-
stakes assessment at the end for refinement and improvement of solutions has advantage over
timed exams. The course has six programming exercises with the following summary of
challenge by learning objective noted in Table 5. Students have more time during office hours to
get help with exercises they found most challenging with the re-do for mastery approach. Many
of the problems involve simulation and algorithms that are not easy to make parallel. The
challenge most often is due to data sharing and data dependencies inherent in the problems such
as physical simulation. Tackling simulation and more involved numerical applications rather
than exercises allows students to understand that not all problems are “embarrassingly parallel”.
The challenge of the problems that students attempt and can later re-do for mastery include
programming, numerical methods, and parallel programming for each problem described in
Table 5 is significant.

Table 5. – Six Parallel Programming Exercises that Deal with “Hard” Problems

Exercise Description Programming Numerical Parallel
1 Image

transformation with
PSF convolution and
Discrete Cosine
Transform

3D color image
arrays, addressing
and application of
pixel neighborhood
operations

Convolution,
transcendental
functions, inverse,
and forward
transformation
(lossy, lossless)

OpenMP and
Pthreads, thread
gridding and
thread blocks

2 Image
transformation
(rotation) and prime
number theorem

Vector, matrix
operations, large
numbers, primality
testing, and search

Vector matrix
operations and
prime number
theorem

OpenMP and
Pthreads, thread
gridding and
locks for critical
sections

3 Simulation of a train
trajectory given
linear acceleration
profile

Simulation and
analysis of physical
problems

Numerical
integration,
accuracy
verification, and
precision

Pthreads shared
memory scaling
and MPI
distributed
memory node
scaling

4 Simulation of a train
trajectory given
non-linear
acceleration profile

Simulation and
analysis of physical
problems

Numerical
integration,
comparing
methods, accuracy
verification, and
precision

Pthreads shared
memory scaling
and MPI
distributed
memory node
scaling

5 Linear systems
solvers for
engineering systems

Iterative (e.g.,
Gauss-Seidel and
vector, matrix row
operations for
linear systems
solving (LU
decomposition)

Iteration and
automation of LU
decomposition
with analysis of
accuracy and
issues of
truncation and
cancellation

OpenMP and
MPI scaling and
speed-up

6 Numerical
integration with
Root Solving to find
intersection (e.g.,
times when trains
pass each other)

Numerical
integration and
methods of
bisection, and
intervals with slope,
to precisely
determine roots of
error equations

Methods of
bisection, Newton-
Raphson to
precisely
determine roots of
error equations

OpenMP and
MPI scaling and
speed-up

The train problems, from Table 5, are harder than most students expect, with challenges based
upon data dependencies in integration and programming to abstract functions for features such as
root solving. To provide an idea of design complexity students face, Figures 1 and 2 show

diagrams provided by the instructor to document one potential strategy for speed-up using MPI.
Students can re-attempt this problem improving their MPI solution or can try a new method of
parallelization such as OpenMP, or even use of more advanced methods such as CUDA and GP-
GPU co-processors.

Figure 1 shows the first parallel pass to integrate an acceleration profile, which can use a
function generator or look-up table with interpolation (complicating the problem).

Figure 1. Program Design for Parallelization of Acceleration Profile Integration

Figure 2 shows the second parallel pass to integrate a velocity profile, derived from the first pass
integration of acceleration, which must be used in a second look-up table with interpolation (for
the most general use) or a second function generator. While students have most likely seen
linear interpolation before, they have perhaps not used it with integration and to model functions
for physical simulation.

Figure 2. Program Design for Parallelization of Acceleration Profile Integration

The MPI programming requires use of advanced features to compute global sums that are
synchronized to divide up the work over a large number of MPI nodes (up to 31 in the CSU
cluster). Making this simulation parallel and testing it for any acceleration profile, linear or non-
linear, is not trivial. For students wanting more challenge, the problem can be extended to model
more physical details (e.g., friction, over longer periods or time, etc.).
Students may design a creative problem of their own interest, or simply re-do one of the major
problems with a goal for mastery. The improvements for mastery must be significant and
clearly demonstrate speed-up in the final reporting and video overview. Whether a new creative
program is proposed, or an old problem is re-done for mastery, all students must clearly analyze
speed-up and present a clear design and code walk-through to demonstrate what they learned.
The videos created take students significant time after completion of their programming,
analysis, and testing (at least 3 to 4 hours) and force them to reflect upon the correctness and
clarity of their work. Often students think of ways to improve code while explaining, and many
indicated they had to re-do their videos.

8. Course Final Parallel Program Results

Several students achieved speed-up higher than expected by Amdahl’s law and linear scaling
based upon number of cores and nodes used. Most students achieve speed-up that can be
explained by Amdahl’s law with credible parallel portions in the 80% or better range. Students
who explain their speed-up comparing to Amdahl’s law with their estimated parallel and
sequential code portions with accurate and precise results have mastered programs that gave
them difficulty when the first attempted them. Only a few students were below expectation in
fall 2020, and while some did drop the course based upon COVID-19 rules at California State
University Chico, the majority performed above expectation. The results are summarized below.

Table 6. – Final Parallel Program Outcomes for Students

Above Expectation
for Learning
Outcomes

Expected Learning
Outcomes

Below Expected Not Completed

60.6% 23.7% 2.7% 13.0%

Final overall course grades were not quite as successful. Some students had difficulty with
quizzes, exercises, and the mid-term exam, perhaps based upon workload and time challenges, or
just based upon learning and making mistakes on the first try. Overall, the outcomes for the
course for fall semester can be summarized as follows.

Table 7. – Final Course Grade Outcomes for Students

Above Expectation
for Learning
Outcomes

Expected Learning
Outcomes

Below Expected Not Completed

23.7% 60.5% 15.8% 0.0%

9. Future Work

Based on success and student interest in this approach, the persistence of COVID-19 and need
for distance learning this spring, the new design has been repeated in spring 2021. An effort to
collect a second sampling of pre-course, mid-course, and post-course data has been repeated to
determine if results are repeatable. The original design was taught by another instructor, so the
only way to obtain a control comparison would be reversion to the older approach, away from
this new approach described here. However, this only seems ethical and viable if students
support this approach and it is unlikely that this course will ever be offered online only again. It
is the author’s opinion that the re-design should instead be adapted to in-person instruction and
fine-tuned, perhaps to better scaffold the final parallel program work and to provide some earlier
assessment of this final high-stakes exercise. With 40% of the grade all assessed by one final
report and a video, for more than fifty students, is a serious challenge for the instructor to grade
the last week of the semester. Ideas to have students help with peer assessment and other
methods such as automated program testing and assessment may also be investigated in the

future. Overall, the strategy appears to be successful enough to warrant more study and
refinement.

10. Summary

The outcome, where most students designed, implemented, explained, and analyzed a non-trivial
parallel program for a numerical simulation or analysis at the end of the course, appears to
support the hypothesis of low-stakes formative learning early and high-stakes summative
assessment later in the semester along with refinement of a previously attempted problem and
solution. The idea is that mastery in upper division courses is important to student success and
attainment of learning objective outcomes, and that this also allows more students to complete
this important course their senior year.

One hazard of this approach is that many students are not satisfied with their grades prior to the
final parallel program grading, with lower grades computed up to that point. One method to
repair this is to perhaps break the final parallel program into two parts, one delivered earlier than
the other, perhaps as an early submission and then the final video. However, this creates more
work for students while they are trying to concentrate on the formative learning.

References

[1] Chandra, Rohit, et al. Parallel programming in OpenMP. Morgan Kaufmann, 2001.
[2] Pacheco, Peter. An introduction to parallel programming. Elsevier, 2011.
[3] Quinn, Michael J. "Parallel programming." TMH CSE 526 (2003): 105.
[4] Yang, Chao-Tung, Chih-Lin Huang, and Cheng-Fang Lin. "Hybrid CUDA, OpenMP, and MPI parallel

programming on multicore GPU clusters." Computer Physics Communications 182.1 (2011): 266-269.
[5] Amdahl, Gene M. "Computer architecture and Amdahl’s law." Computer 46.12 (2013): 38-46.
[6] Hill, Mark D., and Michael R. Marty. "Amdahl's law in the multicore era." Computer 41.7 (2008): 33-38.
[7] Sun, Xian-He, and Yong Chen. "Reevaluating Amdahl’s law in the multicore era." Journal of Parallel and

distributed Computing 70.2 (2010): 183-188.
[8] Gustafson, John L. "Reevaluating Amdahl's law." Communications of the ACM 31.5 (1988): 532-533.
[9] Shi, Yuan. "Reevaluating Amdahl’s law and Gustafson’s law." Computer Sciences Department, Temple

University (MS: 38-24) (1996).
[10] De Graaf, Erik, and Anette Kolmos. "Characteristics of problem-based learning." International Journal of

Engineering Education 19.5 (2003): 657-662.
[11] Hung, Woei, David H. Jonassen, and Rude Liu. "Problem-based learning." Handbook of research on

educational communications and technology 3.1 (2008): 485-506.
[12] https://computing.llnl.gov/tutorials/pthreads/
[13] Yang, Won Y., et al. Applied numerical methods using MATLAB. John Wiley & Sons, 2020.
[14] Many great cloud-based online math verification tools are available, including:

https://www.desmos.com/calculator , https://www.symbolab.com , https://handymath.com/calculators.html ,
and https://onlinemschool.com/math/assistance/

[15] Vandergraft, James S. Introduction to numerical computations. Academic Press, 2014.
[16] Sosniak, Lauren A. Bloom's taxonomy. Ed. Lorin W. Anderson. Chicago, IL: Univ. Chicago Press, 1994.
[17] Joshi, Ankur, et al. "Likert scale: Explored and explained." Current Journal of Applied Science and Technology

(2015): 396-403.
[18] Harlen, Wynne, and Mary James. "Assessment and learning: differences and relationships between formative

and summative assessment." Assessment in education: Principles, policy & practice 4.3 (1997): 365-379.
[19] Dixson, Dante D., and Frank C. Worrell. "Formative and summative assessment in the classroom." Theory into

practice 55.2 (2016): 153-159.
[20] Harlen, Wynne. "On the relationship between assessment for formative and summative purposes." Assessment

and learning 2 (2006): 95-110.

https://computing.llnl.gov/tutorials/pthreads/
https://www.desmos.com/calculator
https://www.symbolab.com/
https://handymath.com/calculators.html
https://onlinemschool.com/math/assistance/

[21] Alvarez, Lluc, Eduard Ayguade, and Filippo Mantovani. "Teaching HPC systems and parallel programming
with small-scale clusters." 2018 IEEE/ACM Workshop on Education for High-Performance Computing
(EduHPC). IEEE, 2018.

[22] https://magpi.raspberrypi.org/articles/build-a-raspberry-pi-cluster-computer
[23] Schulz, Karl W., et al. "Cluster computing with OpenHPC." (2016).
[24] Kalu, E. Eric. Numerical Methods with Applications: Abridged. Lulu. com, 2009

(http://nm.mathforcollege.com/topics/textbook_index.html)
[25] Doucet, Kevin, and Jian Zhang. "Learning cluster computing by creating a Raspberry Pi cluster." Proceedings

of the Southeast Conference. 2017.
[26] Sulistyoningsih, Margaretha. "Promoting Active Learning for Increasing Students’ Understanding of the

Teaching Materials: A Report on Teaching Experience in Computer Science." Indonesian Journal of
Information Systems 3.1 (2020): 64-74.

[27] Indriasari, Theresia Devi, Andrew Luxton-Reilly, and Paul Denny. "A Review of Peer Code Review in Higher
Education." ACM Transactions on Computing Education (TOCE) 20.3 (2020): 1-25.

[28] D. Battaglia, K. Sampigethaya, A. Almagambetov, M. Andalibi, T. Groh, K. Martin, M. Pavlina, S. Siewert,
A. Boettcher, “Integrating Research into Undergraduate Courses: Experiences from a Multi-Disciplinary
Faculty Learning Community”, ASEE Rocky Mountain Section Conference, Cedar City, Utah, October 2016.

https://magpi.raspberrypi.org/articles/build-a-raspberry-pi-cluster-computer
http://nm.mathforcollege.com/topics/textbook_index.html

