
 Session 2163

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright ã2002, American Society for Engineering Education

Incorporating Component-Based Control Software In

Manufacturing Engineering Instruction

Yu T. Morton, Douglas A. Troy, George A. Pizza, Osama Ettouney

Miami University, Oxford, OH.

Abstract

 Efficient and timely development of control software is a challenge in deploying agile
manufacturing systems. This is also a challenge in the academic environment because control
software used in student projects must be developed quickly and efficiently. Instructors and
students are required to have sufficient programming and software development background to
change or modify a piece of control software. This introduces tedious programming tasks into a
project and diverts students’ focus on issues fundamental to manufacturing systems and
processes. A component-based software development approach has been developed and utilized
at Miami University that introduces flexible, adaptable, and user-friendly control software for
manufacturing work cells. This paper presents the design framework and implementation of the
software, as well as preliminary instructional results using the software.

Introduction

 Modern manufacturing systems must be flexible, dynamic, and adaptive to meet the
market demand1. Manufacturing engineering education must adopt new technology and new
approaches to address the new challenges. A major problem facing manufacturing engineering
education in addressing the problem is the inflexible and programming intensive nature of the
control software. This paper addresses our approaches in an attempt to solve this problem by
using software components to construct flexible and adaptive manufacturing control software.

Component-Based Software

Component-based software development is a recent approach in software engineering. In
the component-based software paradigm, software systems are built with prefabricated software
components2. These software components are well-defined precompiled building blocks with
standardized interfaces and are well separated from their own development environment and
from other components. A third party with no knowledge of a component’s internal design and
implementation can construct complex software systems by assembling software components
through the use of visual design tools. Such characteristics make the component-based
architecture an excellent choice for developing flexible control software for manufacturing
systems3,4,5. Using the component-based approach, a set of generic software components can be
created and stored in a component library. The desired system can be assembled using
appropriately configured software components. Simulated components can be used in place of
“real” components for testing and planning purposes. When changes occur in system

P
age 7.651.1

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright ã2002, American Society for Engineering Education

specifications, the components can be reconfigured, replaced, or “re-arranged”, and interfaces
can be reconnected to meet the new requirements. Reprogramming efforts are reduced in the
process of adapting a system to a new configuration. The potential benefit of using the
component-based software in manufacturing systems could be enormous.

There are a number of techniques and development tools available for creating and

integrating software components. We used the Java programming language and Sun
Microsystems’ JavaBeans ™ component model to design and develop our software components.
Java offers many advantages for manufacturing systems, such as being object-oriented,
distributed, multi-threaded, having extensive class libraries, and platform independence6. Java’s
introspection mechanism allows a component interface to be exposed to application developers
and component integration tools at run time and application design time. A JavaBean software
component interacts with other components through Java event objects. An event object is a
notification generated by a component whenever there is a change in the component state. A
component can register to receive events generated by other components. When an event occurs,
methods contained in a listener component can be invoked to execute code contained in the
component. Java’s delegation event model provides a standard mechanism for a source
component to generate an event and send it to a set of listener components. We designed and
implemented all of our components using the established mechanism provided by Java’s event
model and the JavaBeans component model.

Experimental Set Up: the Miami Flexible Manufacturing Work Cell

Local Area Network

Networked PC

CNC LatheRobot
Controller

EDAS

C
on

ve
yo

r

Pallet Robot

EDAS digital input port
connects to sensors, robot
and CNC lathe

EDAS digital output port
connects to control circuits
and CNC lathe

Ethernet Hub

Pallet stops

RS232

Part

Part loading and
unloading station

RS485

1

2

Figure 1. Miami University Flexible Manufacturing Work Cell Layout.
 P

age 7.651.2

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright ã2002, American Society for Engineering Education

We applied our modeling and design approach to the Miami work cell (Figure 1). The
Miami work cell consists of a conveyor, an automatic storage and retrieval system, and a milling
station. The station is equipped with a RM-501 Mitsubishi robot, an Emco CNC lathe machine,
sensors, control circuits, devices that stop and clamp pallets, and an Intelligent Instrumentation’s
communication device EDAS (Ethernet Data Acquisition System). The robot performs material
handling functions by moving parts between the lathe and pallets. The sensors monitor the
arrival of pallets, the presence of parts on pallets, the position of the robot and the state of the
robot, and the state of the lathe. The control circuits are used to activate/deactivate pallet stops,
clamp/unclamp pallets inside the station, move the robot between conveyor and the lathe, and
start and stop the lathe machining cycle. The EDAS communication device provides the
interface between the cell and a local area network. A PC connected to the network can be
programmed to monitor sensor signals from the cell and set controls to operate the devices and
machines at the cell via the EDAS.

State-based Modeling Approach

In order to have a set of generic software components that can be easily configured to
adapt to an arbitrary work cell, we developed a state-based approach for modeling work cell
control. The approach is inspired by the framework proposed by Adiga and Cogez’s for object-
oriented modeling of manufacturing system control software7. We modified Adiga and Cogez’s
model to contain three interacting components: (1) a State Table that combines the work cell
state information, state transition rules, and physical system parameters, (2) a Decision
component that encapsulates generic work cell control logic function and adapts to work with a
specific physical system by retrieving and utilizing information stored in the State Table, and (3)
a Communication component that provides all interface functions between the decision
component and the work cell (Figure 2). Morton el al described the architectural and detailed
designs of these software components8.

Figure 2. The General Framework for Manufacturing Control System.

Figure 3 depicts the composition of control software using software components and the

interactions among these software components. In addition to the Decision, Communication,
and State Table, we also implemented two simulated components to support off-line design and
testing: SimulatedSensor and SimulatedControl. The simulated components can interact with the
Decision and Communication components by providing simulated sensor signals and control

Computer Software Environment
Decision
component

Communication
Component

State Table

Physical System

P
age 7.651.3

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright ã2002, American Society for Engineering Education

actions. They have been proven to be a useful tool in trouble shooting software and hardware
problems in the system. The Start and Stop components are standard Java Swing Buttons. When
a user presses the Start or Stop button, a Java ActionEvent will be generated to invoke public
methods defined in the Communication component to initiate or terminate communications
between the control software and work cell. The EDAS and the work cell are also shown in the
figure to indicate the direct interactions between the control software and the manufacturing
work cell hardware. The rectangles with rounded corners inside a software component represent
public interface methods defined for the software component. Arrows represent events that
facilitate interactions and message exchanges between components. The root of an arrow
indicates the source of the event, while the head indicates the receiver of the event.

Control Software Work Cell Hardware

Figure 3. Component-Based Control Software for Miami FMS Work Cell.

 Two classes of events are defined to encapsulate the interactions and message exchanges
between our software components: Input and ControlAction. Both event class objects contain
information that identifies the event object source and receiver. An Input event class object
identifies a change in a sensor or a device state and the sensor that generated the change, while a
ControlAction event class object carries commands or instructions issued by the control
software.

 The above software components have been successfully tested using the Miami work
cell. The Decision, Communication, SimulatedSensor, and SimulatedControl components are
created as pre-packaged software components. The State Table is the only component that
contains parameters and data that pertains to specific work cell layout and product operation
procedure. The key in applying our approach to manufacturing engineering instruction is a
systematic approach to develop the State Table. This approach should emphasize manufacturing
systems and processes, while avoiding intensive programming procedures. The following
section describes the approach we developed to achieve this goal.

Input Event

ControlAction

Input Event

ControlAction

Java AWT ActionEvent

Start

EDAS

Work Cell

Communication

StartCommunication()

SetOutput(ControlAction Y)

PollInput()

Disconnect()

Stop

Decision
InputChanged
(Input X)

SimulatedSensor

ActionPerformed

SimulatedControl

ActionPerformed State Table

CNC
Lathe

Robot

Sensors
&
Controls

P
age 7.651.4

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright ã2002, American Society for Engineering Education

Systematic Approach to Develop the State Table

The State Table contains complete information about a work cell’s state information,
state transition rules, and physical system parameters. A systematic approach for establishing
the State Table for a work cell can be achieved in three stages: (1) establishing a state transition
diagram that describes the work cell operation in terms of its state and state transition rules, (2)
specifying the relationship between the entities in the state model and the physical system
parameters in the form of a look-up table, and (3) combining the state transition diagram and the
look-up table to form a State Table that describes the work cell operation state and state
transition rules in terms of the physical system parameters.

A typical work cell operation can be described by a sequence of states. At each state, the

work cell waits for a specific event to occur. When the event occurs, the cell will perform one or
more tasks and then enter the next state. An existing technique for analyzing a system that can
be modeled in terms of states and state transitions is the state transition diagram, commonly used
in the finite state machine analysis9. A state transition diagram uses nodes and arcs that connect
the nodes to represent the states of a system and transitions from one state to another,
respectively. The state transition rule can be defined by the general form:

Current state and Input Event and Predicates => Next state and Action

The event that triggers a transition from one state to another, the conditions of the
systems under which the transition is allowed to happen, and the control actions associated with
the transition are all presented in the state transition diagram. Students can analyze and
determine operation procedures and create a state transition diagram for a given work cell and
product. Figure 4 is an example milling procedure state transition diagram at the Miami work
cell. The states are denoted as ovals and a number is assigned to each state for quick reference.
State transition triggering events, conditions, and actions are marked on the arcs connecting the
states in the form of input/predicates/action. A lack of a predicate for a state transition is shown
in the form of input/ /action in the diagram.

The work cell operation as outlined by the state transition diagram in Figure 4 has twelve

discrete states identified by numbers 0 through 11. In the initial state (state 0), the station is
empty. When a sensor signals the arrival of a pallet, a control action deactivates the entrance
stop to allow the pallet to move inside the station (state 1). When a second sensor signal verifies
that the pallet has stopped inside the station, a control signal activates a clamp to lock the pallet
in position (state 2). When a sensor signal indicating that the pallet has been secured, the system
examines whether or not a part is on the pallet. If the part is present, the control action will send
a command to the robot to pick up the part from the pallet (state 3). If a part is not detected on
the pallet, the control action will deactivate pallet stop 2 to let the pallet out of the station (return
to state 0). At state 3, the system waits for a signal from the robot to indicate that it has
completed its task of picking up the part from the pallet. Once the signal is received, the robot
will be moved to the lathe (state 4). The rest of the operation is self-explanatory from the
transition diagram and will not be discussed in detail here.

 P
age 7.651.5

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright ã2002, American Society for Engineering Education

Lathe completed work cycle/ /
Set robot to grab part on lathe

Robot grabbed part on lathe/ /
Retrack Lathe tailstock; Set robot to move away from lathe

1
Pallet entering

station

0
Station
empty

3
Robot picking

up part

4
Robot moving

to Lathe

6
Lathe extending

tailstock

5
Robot placing part

on lathe 7
Lathe working

on part

8
Robot holding part

on Lathe

9
Robot arm moving
awary from lathe

11
Robot putting
part on pallet

Pallet arrived/Station empty/
Let pallet enter station

Pallet clamped/
Pallet Part present/
Set robot to pick up part

Robot picked up part/ /
Move robot to lathe

Robot moved to Lathe/ /
Set robot to place part on lathe

Robot placed part on Lathe/ /
Set lathe to extend its tailstock

Lathe tailstock extended/ /
Lathe start working cycle

Robot arrived at conveyor/ /
Set robot to place part on pallet

Part on pallet/ /
Move pallet out of station

2
Clamping

pallet

Pallet stopped inside station/ /
Clamping pallet

Pallet clamped
No part on pallet/
Move pallet out of station

10
Robot moving to

conveyor
Robot arm moved away from lathe/ /

Move robot to conveyor

Figure 4. State Transition Diagram for MU FMS Work Cell Operation.

The above work cell operation and state diagram are specific to the Miami work cell.
Many of the underlying mechanisms, however, are fundamental to all work cells. For example,
the sensors that monitor the work cell translate the physical changes in the system into digital
signals for the control computer via the communication device. Control actions are sent from the
control computer as instructions to devices and equipment in the work cell. From the perspective
of the control computer, the input sensor signals and output control actions are generic digital
signals that are common to all systems. What makes one system different from another is the
interface connecting the sensor and control circuits to the ports and channels of the
communication device, the system and signal protocols, and the control logic of the work cell
operation. For example, in the Miami work cell, a sensor located at pallet stop 1 is connected to
the bit 4 of an input port in the EDAS. If a pallet arrives at pallet stop1, the bit 4 of the EDAS
input port receives a digital high signal. This signal corresponds to the pallet arrived input event
in the state transition diagram in Figure 4. Our approach in mapping the events, conditions, and
actions in the state model to physical parameters is to create a look-up table such as Table 1.

The State Table is obtained by combining the information provided by the state transition

diagram and the look-up table. Table 2 is the State Table developed for the milling procedure at
the Miami work cell using this approach. The State Table provides all the necessary system
specific information needed by the decision component. Currently, Table 2 is created using a
manual procedure from the state transition diagram and the look-up table. It is feasible for
instructional purposes since most laboratory work cell contains limited number of sensor, and
control functions. For industrial applications, it would be necessary to develop computer-aided
tools to perform this procedure.

P
age 7.651.6

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright ã2002, American Society for Engineering Education

Table 1. Miami Work Cell Milling Procedure State Model Attributes Look-up Table.
(The port and bit numbers in the table refer to the EDAS I/O ports and channels.)

Table 2. The State Table for Miami Work Cell Milling Procedure Operation.

Work cell parameter State model indicators
Input port 0, bit 0 signal high Robot arrived at the lathe
Input port 0, bit 1 signal high Robot arrived at conveyor
Input port 0, bit 2 signal high Station open
Input port 0, bit 3 signal high Lathe status intermediate stop
Input port 0, bit 4 signal high Pallet arrived at station
Input port 0, bit 5 signal high Pallet inside station
Input port 0, bit 6 signal high Lathe tailstock extended
Input port 0, bit 7 signal high Part present on pallet
Input port 2, bit 0 signal high Robot completed a task
Output port 1, bit 0 set to high Move robot to conveyor
Output port 1, bit 1 set to high Move pallet out of station
Output port 1, bit 2 set to high Move robot to the lathe
Output port 1, bit 3 set to high Close pallet station
Output port 1, bit 4 set to high (low) Deactivate (activate) pallet stop 2
Output port 1, bit 5 set to high (low) Deactivate (activate) pallet stop 1
Output port 1, bit 6 set to high Start the lathe cycle
Robot1.txt Robot picks up part from pallet
Robot2.txt Robot places part on the lathe
Robot3.txt Robot grabs part on the lathe
Robot4.txt Robot arm moves away from the lathe
Robot5.txt Robot places part on pallet

Current
State

Next
State

Input Event Predicates Control Actions

0 1 Port 0 bit 4 high Port 0 bit 5 low Port 1 bit 5 high, bit 0,1,2,3,5,6 low
1 2 Port 0 bit 5 high None Port 1 bit 0,3,4,5 high, bit 1,2,6 low
2 0 Port 0 bit 2 low Port 0 bit 7 low Port 1 bit 0,1 high, bit 2,3,4,5,6 low
2 3 Port 0 bit 2 low Port 0 bit 7 high Port 1 bit 0,3 high, bit 1,2,4,5, 6 low

Send Robot1.txt through serial port to robot controller
3 4 Port 2 bit 0 high None Port 1 bit 2,3 high, bit 0,1,4,5,6 low
4 5 Port 0 bit 0 high None Port 1 bit 3 high, bit 0, 1,2,4,5,6 low

Send Robot2.txt through serial port to robot controller
5 6 Port 2 bit 0 high None Port 1 bit 3, 6 high, bit 0,1,2,4,5 low
6 7 Port 1 bit 6 high None Port 1 bit 3, 6 high, bit 0,1,2,4,5 low
7 8 Port 0 bit 3 high None Port 1 bit 3 high, bit 0, 1,2,4,5,6 low

Send Robot3.txt through serial port to robot controller
8 9 Port 2 bit 0 high None Port 1 bit 3, 6 high, bit 0,1,2,4,5 low

Send Robot4.txt through serial port to robot controller
9 10 Port 2 bit 0 high None Port 1 bit 0, 3 high, bit 1,2,4,5,6 low
10 11 Port 0 bit 1 high None Port 1 bit 3 high, bit 0,1,2,4,5,6 low

Send Robot5.txt through serial port to robot controller
11 0 Port 0 bit 7 high None Port 1 bit 1 high, bit 0,2,3,4,5,6 low

P
age 7.651.7

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright ã2002, American Society for Engineering Education

Conclusions

We adopted and modified Agida and Cogez’s framework to model component-based
work cell control software in terms of three basic components: a State Table containing the work
cell operation state transition rules and system parameters, a Decision component responsible for
the control logic of the work cell operation, and a Communication component representing the
interface between the decision component and the physical system. Separating the control logic
from interface functions made it possible to design and implement the decision component as a
generic software component. This generic component retrieves system specific information from
the State Table stored in a database on the control computer and applies the information to its
control logic. The use of the State Table provides a flexible way to upgrade and change the
control software. Instead of reprogramming the software components, changes in work cell
operation procedure and equipment updates can be absorbed by modifications of the State Table
data, allowing the control software to be adaptive in a dynamic environment. The
Communication component is hardware dependent. Our implementation of the communication
component for the EDAS provides a prototype for other similar devices.

The only component that is dependent on specific work cell layout and operation

procedure is the State Table. We developed a systematic approach to generate the State Table.
In this approach, students analyze the work cell layout and required operation procedure. Based
on the analysis, students can develop a state transition diagram for the operation procedure and a
look-up table that matches the work cell physical parameters with various indicators such as the
conditions, predicates and controls appearing in the state transition diagrams. From the state
transition diagram and the look-up table, the State Table can be derived manually for
instructional work cell. This procedure requires students to develop a thorough understanding of
manufacturing systems, methods, and processes, while avoids unnecessary programming effort.

This method was developed and tested with an undergraduate student via a summer

independent study. The student had no prior knowledge of manufacturing systems. Upon
completion of the project, the student developed excellent understanding of the work cell
operation, sensors and control hardware functions, and the manufacturing methods and processes
involved in the project. We plan to introduce this method to a senior level undergraduate course
on Computer-Integrated Manufacturing at Miami in the fall of 2003.

Bibliography

1. NGMS-IMS (Next Generation Manufacturing Systems-Intelligent Manufacturing System) Research Reports,
“Scalable flexible manufacturing.” Advanced Manufacturing,
http://www.advancedmanufacturing.com/March00/research.htm, March, 2000.

2. Szyperski, C., Component Software, Addison-Wesley, 1998.
3. Buschmann, F., A. Geisler, T. Heimke, and C. Schuderer C., “Framework-based software architectures for

process automation systems.” Annual Reviews in Control, 24, P163, 2000.
4. Edwards, J., P. Clements, J. Gascoigne, and I. Coutts, “Component-Based Systems: the basis of future

manufacturing systems.” Component-based Software Engineering, Edited by Thomas Jell, P105, 1998. P
age 7.651.8

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright ã2002, American Society for Engineering Education

5. Naylor, A.W. and Volz, R.A., 1987, “Design of integrated manufacturing system control software.” IEEE Trans.
on Systems, Man and Cybernetics, 17, pp.881, 1987.

6. O’Neil J., JavaBeans Programming from the Ground Up, Osborne McGraw-Hill, 1998.
7. Adiga, S., and Cogez, P., “Towards an object-oriented architecture for CIM systems.” in S. Adiga (ed) Object-

oriented Software for Manufacturing Systems, pp. 44-64, 1993
8. Morton, Y. T., Troy, D. A., and Pizza, G. A., “An Approach in Developing Component-based Control Software

for Flexible Manufacturing Systems.” Proceedings of American Control Conferences, Anchorage, Alaska, May,
2002.

9. Schach, S. R., Classical and Object-oriented Software Engineering, 4 th edition, McGrill Hill, 1999.

Dr. YU MORTON is an Assistant Professor at the Manufacturing Engineering Department at Miami University.
Her research areas are software radio techniques, radar and satellite remote sensing, and component-based control
software for manufacturing systems. She holds a BS degree from Nanjing University, MS degree from Case
Western Reserve University, MS degree from Miami University, and Ph.D. from the Pennsylvania State University.

Dr. DOUGLAS TROY is a Professor and Chair of the Computer Science and Systems Analysis Department at
Miami University. His research interest is in programming for automated manufacturing and software development
environments. He holds a BS degree from Miami University, MS from Ohio State University, and PhD from The
University of Waikato.

GEORGE PIZZA is a junior Computer Science and Systems Analysis major at Miami University. His interests are
in artificial intelligence and software design and development. Tony will graduate in May of 2003 after which he
plans to work in the IT field and possibly attend graduate school.

Dr. OSAMA ETTOUNEY is a Professor and Chair of the Manufacturing Engineering Department at Miami
University. His research areas are control systems, engineering design, and computer-integrated manufacturing. He
received a BS degree from University of Cairo, MS degree from the MIT, and Ph.D. from the University of
Minnesota.

P
age 7.651.9

