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Abstract 
 
 Efficient and timely development of control software is a challenge in deploying agile 
manufacturing systems.  This is also a challenge in the academic environment because control 
software used in student projects must be developed quickly and efficiently.  Instructors and 
students are required to have sufficient programming and software development background to 
change or modify a piece of control software. This introduces tedious programming tasks into a 
project and diverts students’ focus on issues fundamental to manufacturing systems and 
processes.  A component-based software development approach has been developed and utilized 
at Miami University that introduces flexible, adaptable, and user-friendly control software for 
manufacturing work cells.  This paper presents the design framework and implementation of the 
software, as well as preliminary instructional results using the software. 

 
Introduction 
 
 Modern manufacturing systems must be flexible, dynamic, and adaptive to meet the 
market demand1.  Manufacturing engineering education must adopt new technology and new 
approaches to address the new challenges.  A major problem facing manufacturing engineering 
education in addressing the problem is the inflexible and programming intensive nature of the 
control software.  This paper addresses our approaches in an attempt to solve this problem by 
using software components to construct flexible and adaptive manufacturing control software.  
 
Component-Based Software 
 

Component-based software development is a recent approach in software engineering.  In 
the component-based software paradigm, software systems are built with prefabricated software 
components2. These software components are well-defined precompiled building blocks with 
standardized interfaces and are well separated from their own development environment and 
from other components. A third party with no knowledge of a component’s internal design and 
implementation can construct complex software systems by assembling software components 
through the use of visual design tools.  Such characteristics make the component-based 
architecture an excellent choice for developing flexible control software for manufacturing 
systems3,4,5.  Using the component-based approach, a set of generic software components can be 
created and stored in a component library. The desired system can be assembled using 
appropriately configured software components.  Simulated components can be used in place of 
“real” components for testing and planning purposes. When changes occur in system 
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specifications, the components can be reconfigured, replaced, or “re-arranged”, and interfaces 
can be reconnected to meet the new requirements.  Reprogramming efforts are reduced in the 
process of adapting a system to a new configuration.  The potential benefit of using the 
component-based software in manufacturing systems could be enormous.   

 
There are a number of techniques and development tools available for creating and 

integrating software components.  We used the Java programming language and Sun 
Microsystems’ JavaBeans ™ component model to design and develop our software components.  
Java offers many advantages for manufacturing systems, such as being object-oriented, 
distributed, multi-threaded, having extensive class libraries, and platform independence6.  Java’s 
introspection mechanism allows a component interface to be exposed to application developers 
and component integration tools at run time and application design time.   A JavaBean software 
component interacts with other components through Java event objects. An event object is a 
notification generated by a component whenever there is a change in the component state.  A 
component can register to receive events generated by other components.  When an event occurs, 
methods contained in a listener component can be invoked to execute code contained in the 
component.  Java’s delegation event model provides a standard mechanism for a source 
component to generate an event and send it to a set of listener components. We designed and 
implemented all of our components using the established mechanism provided by Java’s event 
model and the JavaBeans component model. 
 
Experimental Set Up: the Miami Flexible Manufacturing Work Cell 
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Figure 1. Miami University Flexible Manufacturing Work Cell Layout. 
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We applied our modeling and design approach to the Miami work cell (Figure 1). The 
Miami work cell consists of a conveyor, an automatic storage and retrieval system, and a milling 
station. The station is equipped with a RM-501 Mitsubishi robot, an Emco CNC lathe machine, 
sensors, control circuits, devices that stop and clamp pallets, and an Intelligent Instrumentation’s 
communication device EDAS (Ethernet Data Acquisition System). The robot performs material 
handling functions by moving parts between the lathe and pallets.  The sensors monitor the 
arrival of pallets, the presence of parts on pallets, the position of the robot and the state of the 
robot, and the state of the lathe.  The control circuits are used to activate/deactivate pallet stops, 
clamp/unclamp pallets inside the station, move the robot between conveyor and the lathe, and 
start and stop the lathe machining cycle.  The EDAS communication device provides the 
interface between the cell and a local area network.  A PC connected to the network can be 
programmed to monitor sensor signals from the cell and set controls to operate the devices and 
machines at the cell via the EDAS.  

 
State-based Modeling Approach 
 

In order to have a set of generic software components that can be easily configured to 
adapt to an arbitrary work cell, we developed a state-based approach for modeling work cell 
control. The approach is inspired by the framework proposed by Adiga and Cogez’s for object-
oriented modeling of manufacturing system control software7.  We modified Adiga and Cogez’s 
model to contain three interacting components: (1) a State Table that combines the work cell 
state information, state transition rules, and physical system parameters, (2) a Decision 
component that encapsulates generic work cell control logic function and adapts to work with a 
specific physical system by retrieving and utilizing information stored in the State Table, and (3) 
a Communication component that provides all interface functions between the decision 
component and the work cell (Figure 2).  Morton el al described the architectural and detailed 
designs of these software components8.   

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The General Framework for Manufacturing Control System. 
 
Figure 3 depicts the composition of control software using software components and the 

interactions among these software components.  In addition to the Decision, Communication, 
and State Table, we also implemented two simulated components to support off-line design and 
testing: SimulatedSensor and SimulatedControl. The simulated components can interact with the 
Decision and Communication components by providing simulated sensor signals and control 
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actions.  They have been proven to be a useful tool in trouble shooting software and hardware 
problems in the system. The Start and Stop components are standard Java Swing Buttons. When 
a user presses the Start or Stop button, a Java ActionEvent will be generated to invoke public 
methods defined in the Communication component to initiate or terminate communications 
between the control software and work cell.  The EDAS and the work cell are also shown in the 
figure to indicate the direct interactions between the control software and the manufacturing 
work cell hardware.  The rectangles with rounded corners inside a software component represent 
public interface methods defined for the software component.   Arrows represent events that 
facilitate interactions and message exchanges between components.  The root of an arrow 
indicates the source of the event, while the head indicates the receiver of the event. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Control Software                          Work Cell Hardware 
 

Figure 3.  Component-Based Control Software for Miami FMS Work Cell. 
 
 Two classes of events are defined to encapsulate the interactions and message exchanges 
between our software components: Input and ControlAction.  Both event class objects contain 
information that identifies the event object source and receiver. An Input event class object 
identifies a change in a sensor or a device state and the sensor that generated the change, while a 
ControlAction event class object carries commands or instructions issued by the control 
software.   
 
 The above software components have been successfully tested using the Miami work 
cell.  The Decision, Communication, SimulatedSensor, and SimulatedControl components are 
created as pre-packaged software components.  The State Table is the only component that 
contains parameters and data that pertains to specific work cell layout and product operation 
procedure.  The key in applying our approach to manufacturing engineering instruction is a 
systematic approach to develop the State Table.  This approach should emphasize manufacturing 
systems and processes, while avoiding intensive programming procedures.  The following 
section describes the approach we developed to achieve this goal. 
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Systematic Approach to Develop the State Table 
 

The State Table contains complete information about a work cell’s state information, 
state transition rules, and physical system parameters.  A systematic approach for establishing 
the State Table for a work cell can be achieved in three stages: (1) establishing a state transition 
diagram that describes the work cell operation in terms of its state and state transition rules, (2) 
specifying the relationship between the entities in the state model and the physical system 
parameters in the form of a look-up table, and (3) combining the state transition diagram and the 
look-up table to form a State Table that describes the work cell operation state and state 
transition rules in terms of the physical system parameters.   

 
A typical work cell operation can be described by a sequence of states.  At each state, the 

work cell waits for a specific event to occur.  When the event occurs, the cell will perform one or 
more tasks and then enter the next state.  An existing technique for analyzing a system that can 
be modeled in terms of states and state transitions is the state transition diagram, commonly used 
in the finite state machine analysis9. A state transition diagram uses nodes and arcs that connect 
the nodes to represent the states of a system and transitions from one state to another, 
respectively.  The state transition rule can be defined by the general form: 

 
Current state and Input Event and Predicates => Next state and Action 
 

The event that triggers a transition from one state to another, the conditions of the 
systems under which the transition is allowed to happen, and the control actions associated with 
the transition are all presented in the state transition diagram. Students can analyze and 
determine operation procedures and create a state transition diagram for a given work cell and 
product.  Figure 4 is an example milling procedure state transition diagram at the Miami work 
cell.  The states are denoted as ovals and a number is assigned to each state for quick reference. 
State transition triggering events, conditions, and actions are marked on the arcs connecting the 
states in the form of input/predicates/action.  A lack of a predicate for a state transition is shown 
in the form of input/ /action in the diagram. 

 
The work cell operation as outlined by the state transition diagram in Figure 4 has twelve 

discrete states identified by numbers 0 through 11.  In the initial state (state 0), the station is 
empty.  When a sensor signals the arrival of a pallet, a control action deactivates the entrance 
stop to allow the pallet to move inside the station (state 1).  When a second sensor signal verifies 
that the pallet has stopped inside the station, a control signal activates a clamp to lock the pallet 
in position (state 2).  When a sensor signal indicating that the pallet has been secured, the system 
examines whether or not a part is on the pallet.  If the part is present, the control action will send 
a command to the robot to pick up the part from the pallet (state 3).  If a part is not detected on 
the pallet, the control action will deactivate pallet stop 2 to let the pallet out of the station (return 
to state 0).  At state 3, the system waits for a signal from the robot to indicate that it has 
completed its task of picking up the part from the pallet.  Once the signal is received, the robot 
will be moved to the lathe (state 4).  The rest of the operation is self-explanatory from the 
transition diagram and will not be discussed in detail here.   
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Figure 4. State Transition Diagram for MU FMS Work Cell Operation. 
 

The above work cell operation and state diagram are specific to the Miami work cell.  
Many of the underlying mechanisms, however, are fundamental to all work cells.  For example, 
the sensors that monitor the work cell translate the physical changes in the system into digital 
signals for the control computer via the communication device.  Control actions are sent from the 
control computer as instructions to devices and equipment in the work cell.  From the perspective 
of the control computer, the input sensor signals and output control actions are generic digital 
signals that are common to all systems.  What makes one system different from another is the 
interface connecting the sensor and control circuits to the ports and channels of the 
communication device, the system and signal protocols, and the control logic of the work cell 
operation.   For example, in the Miami work cell, a sensor located at pallet stop 1 is connected to 
the bit 4 of an input port in the EDAS. If a pallet arrives at pallet stop1, the bit 4 of the EDAS 
input port receives a digital high signal.  This signal corresponds to the pallet arrived input event 
in the state transition diagram in Figure 4.   Our approach in mapping the events, conditions, and 
actions in the state model to physical parameters is to create a look-up table such as Table 1.    

 
The State Table is obtained by combining the information provided by the state transition 

diagram and the look-up table.  Table 2 is the State Table developed for the milling procedure at 
the Miami work cell using this approach.  The State Table provides all the necessary system 
specific information needed by the decision component. Currently, Table 2 is created using a 
manual procedure from the state transition diagram and the look-up table.  It is feasible for 
instructional purposes since most laboratory work cell contains limited number of sensor, and 
control functions.  For industrial applications, it would be necessary to develop computer-aided 
tools to perform this procedure. 
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Table 1. Miami Work Cell Milling Procedure State Model Attributes Look-up Table.  
(The port and bit numbers in the table refer to the EDAS I/O ports and channels.) 

 
 

 
Table 2. The State Table for Miami Work Cell Milling Procedure Operation. 

 

Work cell parameter State model indicators 
Input port 0, bit 0 signal high Robot arrived at the lathe 
Input port 0, bit 1 signal high Robot arrived at conveyor 
Input port 0, bit 2 signal high Station open  
Input port 0, bit 3 signal high Lathe status intermediate stop 
Input port 0, bit 4 signal high Pallet arrived at station 
Input port 0, bit 5 signal high Pallet inside station  
Input port 0, bit 6 signal high Lathe tailstock extended 
Input port 0, bit 7 signal high Part present on pallet 
Input port 2, bit 0 signal high Robot completed a task 
Output port 1, bit 0 set to high Move robot to conveyor 
Output port 1, bit 1 set to high Move pallet out of station  
Output port 1, bit 2 set to high Move robot to the lathe 
Output port 1, bit 3 set to high Close pallet station  
Output port 1, bit 4 set to high (low) Deactivate (activate) pallet stop 2 
Output port 1, bit 5 set to high (low) Deactivate (activate) pallet stop 1 
Output port 1, bit 6 set to high Start the lathe cycle 
Robot1.txt Robot picks up part from pallet 
Robot2.txt Robot places part on the lathe 
Robot3.txt Robot grabs part on the lathe 
Robot4.txt Robot arm moves away from the lathe 
Robot5.txt Robot places part on pallet 

Current  
State 

Next  
State 

Input Event Predicates Control Actions 

0 1 Port 0 bit 4 high Port 0 bit 5 low Port 1 bit 5 high, bit 0,1,2,3,5,6 low  
1 2 Port 0 bit 5 high None Port 1 bit 0,3,4,5 high, bit 1,2,6 low 
2 0 Port 0 bit 2 low Port 0 bit 7 low Port 1 bit 0,1 high, bit 2,3,4,5,6 low 
2 3 Port 0 bit 2 low Port 0 bit 7 high Port 1 bit 0,3 high, bit 1,2,4,5, 6 low 

Send Robot1.txt through serial port to robot controller 
3 4 Port 2 bit 0 high None Port 1 bit 2,3 high, bit 0,1,4,5,6 low 
4 5 Port 0 bit 0 high None Port 1 bit 3 high, bit 0, 1,2,4,5,6 low 

Send Robot2.txt through serial port to robot controller 
5 6 Port 2 bit 0 high None Port 1 bit 3, 6 high, bit 0,1,2,4,5 low 
6 7 Port 1 bit 6 high None Port 1 bit 3, 6 high, bit 0,1,2,4,5 low 
7 8 Port 0 bit 3 high None Port 1 bit 3 high, bit 0, 1,2,4,5,6 low 

Send Robot3.txt through serial port to robot controller 
8 9 Port 2 bit 0 high None Port 1 bit 3, 6 high, bit 0,1,2,4,5 low 

Send Robot4.txt through serial port to robot controller 
9 10 Port 2 bit 0 high None Port 1 bit 0, 3 high, bit 1,2,4,5,6 low 
10 11 Port 0 bit 1 high None Port 1 bit 3 high, bit 0,1,2,4,5,6 low 

Send Robot5.txt through serial port to robot controller 
11 0 Port 0 bit 7 high None Port 1 bit 1 high, bit 0,2,3,4,5,6 low 
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Conclusions 
 

We adopted and modified Agida and Cogez’s framework to model component-based 
work cell control software in terms of three basic components: a State Table containing the work 
cell operation state transition rules and system parameters, a Decision component responsible for 
the control logic of the work cell operation, and a Communication component representing the 
interface between the decision component and the physical system.  Separating the control logic 
from interface functions made it possible to design and implement the decision component as a 
generic software component.  This generic component retrieves system specific information from 
the State Table stored in a database on the control computer and applies the information to its 
control logic.  The use of the State Table provides a flexible way to upgrade and change the 
control software.  Instead of reprogramming the software components, changes in work cell 
operation procedure and equipment updates can be absorbed by modifications of the State Table 
data, allowing the control software to be adaptive in a dynamic environment.  The 
Communication component is hardware dependent. Our implementation of the communication 
component for the EDAS provides a prototype for other similar devices.  

 
The only component that is dependent on specific work cell layout and operation 

procedure is the State Table.  We developed a systematic approach to generate the State Table.  
In this approach, students analyze the work cell layout and required operation procedure.  Based 
on the analysis, students can develop a state transition diagram for the operation procedure and a 
look-up table that matches the work cell physical parameters with various indicators such as the 
conditions, predicates and controls appearing in the state transition diagrams.  From the state 
transition diagram and the look-up table, the State Table can be derived manually for 
instructional work cell.  This procedure requires students to develop a thorough understanding of 
manufacturing systems, methods, and processes, while avoids unnecessary programming effort. 

 
This method was developed and tested with an undergraduate student via a summer 

independent study.  The student had no prior knowledge of manufacturing systems.  Upon 
completion of the project, the student developed excellent understanding of the work cell 
operation, sensors and control hardware functions, and the manufacturing methods and processes 
involved in the project.  We plan to introduce this method to a senior level undergraduate course 
on Computer-Integrated Manufacturing at Miami in the fall of 2003. 
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