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Incorporating Uncertainty Into Learning Curves:  

A Case Study in Oil Drilling Estimates 
 

 

Abstract 

 

In capital projects that contain repeated activities, and in manufacturing processes, it is common 

for cost and schedule performance to improve over time. This trend in improvement is 

commonly referred to as a “learning curve.” When learning is anticipated, cost and schedule 

estimates may be reduced dramatically relative to an assumption of no learning. Therefore, it is a 

best practice to account for a learning effect.  

 

In cases where comparison projects exist, estimating a learning curve for a prospective project 

can be done with some certainty. This form of deterministic learning is a well established topic 

in engineering education. However, in cases where the sample of comparison projects is small, 

there may be significant uncertainty in the rate and magnitude of learning over time, and some 

form of probabilistic learning is more appropriate. This form of learning is not well established 

in the research literature nor in the educational domain.   

 

This paper employs a case study approach to investigate options for systematic integration of 

learning curves in cost and schedule estimates. Deterministic and probabilistic learning are 

discussed and demonstrated. All computations are made using off-the-shelf spreadsheet software. 

The results provide engineers and decision-makers with a refined representation of uncertainty, 

and can improve capital investment valuation and decision-making. 

 

This case study is intended to be used in an undergraduate course in engineering economy or 

project economics and addresses several educational objectives: it introduces the basic concept 

of a learning curve, it provides an opportunity to reinforce basic curve fitting methods, and it 

highlights the value of a probabilistic approach to engineering and economic problems. 

 

 

Introduction 

 

In capital projects that contain repeated activities, and in manufacturing processes, it is common 

for cost and schedule performance to improve over time. This trend in improvement is 

commonly referred to as a “learning curve.” In the oil drilling industry many projects contain 

multiple well drilling campaigns, and learning curves are prevalent.
3
 When learning is 

anticipated, cost and schedule estimates may be reduced dramatically relative to an assumption 

of no learning. Many operators consider the use of learning curves a best practice, and provide 

procedures for estimation and implementation in their estimating guidelines. 
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In cases where comparison projects exist, estimating a learning curve for a prospective project 

can be done with some certainty. This form of deterministic learning is a well established topic 

in engineering education. However, in cases where the sample of comparison projects is small, 

there may be significant uncertainty in the rate and magnitude of learning over time, and some 

form of probabilistic learning is more appropriate. This form of learning is not well established 

in the research literature nor in the educational domain. 

 

This paper employs a case study approach to investigate options for systematic integration of 

learning curves in cost and schedule estimates. Brief reviews of probabilistic estimating methods 

and learning curves are provided. Deterministic and probabilistic learning are discussed and 

demonstrated. For each method, the key assumptions are itemized and discussed and a 

demonstration is provided. While no single procedure will fit every situation, it is concluded that 

the general method is straightforward, transparent, and can be implemented using off-the-shelf 

spreadsheet software. The proposed procedures generate results that provide engineers and 

decision-makers with a refined representation of uncertainty, and can improve capital investment 

valuation and decision-making. 

 

This case study is intended to be used in an undergraduate course in engineering economy or 

project economics and addresses several educational objectives: it introduces the basic concept 

of a learning curve, it provides an opportunity to reinforce basic curve fitting methods, and it 

highlights the value of a probabilistic approach to engineering and economic problems. 

 

 

Probabilistic Estimating  

 

Before introducing the concept of learning curves, it is helpful to review current practice in 

probabilistic estimating. Probabilistic cost and schedule estimating is often employed in 

industries where uncertainty in outcomes is large and where the variance in estimates can 

influence decision-making. The oil well drilling engineering community is familiar with 

probabilistic analysis in well construction estimating, and in some drilling organizations, 

probabilistic estimating is a required practice. There are numerous papers that focus on theory, 

methods, and implementation.
2,9,14

 Other research reports on empirical investigations.
1,4,8,11,12,15

     

 

Conventional Methods. The conventional approach for probabilistic estimating is to first define 

a dependent variable of interest (typically a cost or time metric). The dependent variable is 

defined based on the purpose of the estimate. In oil drilling, estimates can be made for specific 

well activities, for an entire well interval, or for a whole well. Second, independent variables are 

specified as random variables based on an analysis of past performance. Third, the independent 

variables are sampled in a repetitive fashion and then used to develop simulated observations on 

the dependent variable. For example, the engineer may specify the rate of penetration (ROP) as a 

random variable, and then use a simulated result for ROP and the footage for a specific interval 

to compute interval drilling time. The procedure yields a simulated distribution of possible 

outcomes. The distribution of outcomes provides the engineer and other decision-makers with 

information not available from a deterministic estimate. In some decision settings, the range of 

outcomes can be more important than the expected value of the distribution.  
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The main challenges in implementing probabilistic estimating are data collection and 

specification of the independent variable probability distributions (shapes and parameters). 

Several of the aforementioned papers address this issue and provide guidance. There are also 

other hurdles to implementation of probabilistic estimating. A survey of the global drilling 

community conducted in 2004 indicated that a large majority of respondents believed that 

probabilistic analysis has value. But the survey also revealed that respondents felt the analysis 

took more time, that support tools were lacking, and that additional training was required.
4
 If the 

use of probabilistic analysis is to increase, it is important that workflows and methods remain 

simple in structure, easy to use, and transparent regarding the assumptions. One means to address 

these concerns is to perform the analysis using desktop spreadsheet tools. The advantage of this 

approach is that all of the assumptions and computations are transparent and subject to review 

and discussion.  

 

Other Methods. There are other methods that can be used to make probabilistic estimates. One 

of these alternatives is regression analysis. There is a limited literature on regression analysis as 

applied to drilling operations.
7,10,13

 But regression analysis can also be used to make probabilistic 

estimates.
6
 The advantage of a regression based approach is that less information and fewer 

assumptions are typically required. For example, there is no need to specify independent variable 

distribution shapes and parameters. When a more abstract specification of the problem is 

acceptable, regression analysis may be the preferred alternative.   

 

Statistical Dependence. One of the more complicated aspects of implementing a probabilistic 

analysis is the issue of statistical dependence. For example, when simulating sequential intervals 

on an individual well, one must specify whether the outcome for a deeper interval is conditional 

on the outcome of a shallower interval, or if they are independent of each other. In most 

empirical studies, the simulated variables are often assumed to be statistically independent to 

simplify the analysis, that is, Prob(A|B)=Prob(A). In many cases, this assumption is reasonable. 

That is, even in cases where one interval has significant problems, the next interval can be 

assumed to be independent after the previous interval is secured (with steel casing and cement). 

However, this is not always an appropriate assumption. For example, problems in a shallow 

interval may lead to an early casing setting depth and compromise performance in subsequent 

intervals. The same issue arises when modeling a drilling campaign, that is, explicit specification 

of inter-well dependence.  

 

The challenges in implementing an analysis with dependence originate in data collection and 

estimating relationships, and deciding how to systematically incorporate these assumptions into 

the analysis. The data requirements are significant, relationships must be estimated, and 

assumptions must be specified for how new information will be incorporated into subsequent 

well plans. Researchers are actively investigating methods for incorporating statistical 

dependence into probabilistic modeling.
2
  

 

 

Learning Curves 

 

For the purposes of this discussion, it is helpful to distinguish between the aforementioned type 

of statistical dependence and more general time dependence. Drilling performance tends to 

P
age 15.716.4



   

improve over time as engineers and operators acquire additional information about the 

subsurface and streamline operational procedures. For example, a second well may be more 

likely to have a poor outcome if the first well had a poor outcome, but this does not preclude the 

likelihood that the second well will be more efficient in many ways than the first well. This type 

of improvement is commonly referred to as a learning curve. Learning can result in a dramatic 

reduction in drilling time and cost. Therefore, when developing estimates for drilling campaigns, 

it is a best practice to investigate the implications of this effect. Methods for making these 

estimates are varied, and the choice of method depends on the available resources and the 

decision that the estimate is being used for. All that is typically required is historical data on 

drilling performance from relevant offset campaigns. Most learning curve models abstract from 

the technical attributes of individual wells and therefore provide a high level means to model 

improvements in drilling performance. In the remainder of this section, a summary of the most 

common methods is provided.  

 

A Basic Model. It is straightforward to fit a curve to historical drilling data. Ikoku suggested a 

parsimonious specification as follows:
5
 

 
b

n any =       (1) 

 

yn = cost or duration metric of well n, n = order of well in drilling sequence, and a, b = parameters to 

be estimated. The parameters a and b can be estimated using non-linear regression. In some 

applications, this simple form of learning may be adequate. 

 

Brett and Millheim Model. Brett and Millheim propose an alternate learning curve specification 

in their influential paper on the subject.
3
 Their model is attractive because of its simplicity, and 

for the intuitive interpretation of the parameters. The Brett and Millheim specification is as 

follows: 

 
( )

3

1

1
2 CeCy

C n

n += −     (2) 

 

yn = cost or duration metric of well n, n = order of well in drilling sequence, and C’s = parameters to 

be estimated. The C2 parameter indicates the curvature or rate of learning. C3 is the asymptote for 

large n, and can be interpreted as a technical limit (for an otherwise static system). The sum C1 + C3 

represents the fitted value for the first well; thus, C1 is the quantity to be “saved” via learning between 

the first well and the technical limit. This model has gained wide acceptance and has been used 

extensively in practice.
10,15

 It is conceivable that more complex models could be specified. The 

incremental benefit of doing so, however, is probably small. The Brett and Millheim model appears to 

be adequate for drilling applications.  

 

 

Proposed Methods for Incorporating Learning Curves In Probabilistic Estimates 

 

In this section, a general framework and specific procedures are proposed for incorporating 

learning curves in probabilistic estimates. This proposal is, in part, a response to Zoller, Graulier, 

and Paterson, who suggest that “more research is required from the well engineering community 
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on the application of learning curves to probabilistic data.”
15

 In this section, a three-step 

procedure is proposed and demonstrated.  

 

Step 1: Probabilistic Estimate Without Learning (Base Case). In this step, the engineer makes a 

probabilistic estimate for each well, ignoring the learning effect. This can be done using a 

conventional probabilistic approach or a regression based approach described above. In 

conventional practice, an underlying performance metric is often simulated (e.g. ROP, running 

times, etc.) and then applied to wells whose individual characteristics vary. If instead a 

regression approach is used, the distribution of the forecast error is sampled repeatedly.  

 

For this demonstration, a simplified conventional probabilistic approach is used. It is assumed 

that the decision-maker’s objective is to model total campaign duration for a 9-well campaign of 

identical wells. It is assumed the wells are statistically independent, and that analysis of past 

performance suggests that the duration of a well is a normally distributed random variable with a 

mean of 45 days and standard deviation of 3 days (this is synthetic data, but is a realistic 

representation of drilling performance). Results from a 1000 trial Monte Carlo simulation are 

presented in Figures 1 and 2. Each trial results in one potential 9-well campaign. The sample 

mean equals 405 days and has converged to the specified mean as expected (9 wells x 45 

days/well = 405 days). The P10 and P90 values are 394 days and 416 days. This scenario defines 

the “no learning” base case. 

 

 

Figure 1: Sample of 50 Simulated 

Campaigns (out of 1000 trials) Without 

Learning 
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Figure 2: Histogram of Total Duration of 

Simulated Campaigns (1000 trials) 

Without Learning 
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Step 2: Incorporating Learning. For this demonstration, the Brett and Millheim model of 

Equation (2) is employed. The learning curve can be applied to the previous result in a 

deterministic or probabilistic manner. The choice depends on the level of confidence that the 

engineer has in estimating the learning parameters.  

 

Deterministic Learning. If there is small uncertainty in the estimates of the learning equation’s 

parameters, then deterministic learning is appropriate. For example, if the engineer is confident, 

based on analysis (learning curve estimation) of past performance of similar projects, that the 
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parameters are C1 = 7, C2 = 0.5, and C3 = 38  then a vector of deterministic learning factors can 

be computed using Equation (2). These factors are then applied to each of the simulated 

campaigns from the previous step. Note, these parameter values are consistent with a first well 

duration of 45 days from Step 1. The results of this step are presented in Figures 3 and 4. Visual 

inspection reveals the learning trend, but considerable scatter remains in each campaign because 

of the underlying uncertainty in drilling duration. The sample mean is decreased from 405 days 

to 360 days because of the learning effect. The P10 and P90 values are 350 days and 370 days. 

The impacts are significant in this example, and in practice, such a result is likely to affect 

economic analysis and decision-making. 

 

 

Figure 3: Sample of 50 Simulated Campaigns 

(out of 1000 trials With Deterministic 

Learning 
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Figure 4: Histogram of Total Duration of 

Simulated Campaigns (1000 trials) With 

Deterministic Learning 
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Probabilistic Learning. If there is large uncertainty in one or more estimates of the learning 

equation’s parameters, then probabilistic learning is appropriate. For example, if the engineer is 

uncertain about the estimate of the parameter, say C2, then this parameter can be defined in the 

simulation as a random variable. For example, assume that C2 is a normally distributed random 

variable with a mean equal to 0.5 and standard deviation equal to 0.1. A new set of learning 

factors can be computed and applied to each of the simulated campaigns (holding the other 

parameters constant at their previous values). The results of this step are presented in Figures 5 

and 6. A visual inspection of Figure 5 reveals more dispersion in the simulated campaigns as a 

result of the differential rates of learning in each iteration (relative to Figure 3). To be clear, there 

are two sources of variation in these simulations. The first source is the variation in the 

underlying drilling process, which exists regardless of how learning is occurring. The second 

source is the variation in the rate of learning. The sample mean is changed slightly to 362 days 

because of sample variation. The P10 and P90 values are also slightly changed to 349 days and 

376 days, and the difference between these two values has increased relative to the deterministic 

case. P
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Figure 5: Sample of 50 (out of 1000) 

Simulated Campaigns With Probabilistic 

Learning 
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Figure 6: Histogram of Total Duration of 

Simulated Campaigns (1000 trials) With 

Probabilistic Learning 
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In this demonstration, the comparison of deterministic and probabilistic learning has revealed 

much about the problem. For example, it is observed that the specification of the C2 parameter as 

a deterministic or random variable has an almost negligible impact on the probability distribution 

of the simulated campaigns. Therefore, if the engineer is confident in the estimate of the mean 

and standard deviation of C2, then proceeding with the simpler deterministic approach would be 

reasonable in this case. Note that this is not a general result and in some cases the differences 

may be significant (e.g. when C2 is specified with a large variance). Other specifications that 

investigate the other learning equation parameters, in isolation or jointly, are also possible but 

not presented here. For example, one could define the sum Ș = C1 + C3 as a random variable, 

specify the dimensionless ratio į = C1/(C1 + C3) as a random variable, use realizations on į and Ș 
to solve for C1 and C3, then compute the learning factors. 

 

Step 3: Post-Simulation Adjustments. Zoller, Graulier, and Paterson make the astute observation that 

when applying learning factors as described here, it is possible to predict a value for an individual well 

outside of the original range specified in the probabilistic analysis of Step 1.
15

 The authors then 

propose and implement a novel correction for this effect. But it is arguable whether or not this is a 

significant problem. In practice, the variance of the base probabilistic estimate does not typically 

include future learning effects. Also, one could argue that the original probabilistic estimate should be 

updated as wells are executed (mean and variance), although appropriate procedures in this regard will 

be case-specific. Other specifications of the correction are possible, for example: 

 

[ ]nnn fPPMaxy ,=     (3) 

 

yn = cost or duration metric of well n, P  = a user-specified cutoff for minimum values, 
nP  = the 

probabilistic prediction for well n, and 
nf  = the learning factor for well n. In this case the engineer P

age 15.716.8



   

specifies the minimum value, or absolute technical limit, to be expected during the campaign. In the 

end, whether to adjust values is up to the engineer and will depend on the purpose of the estimate.  

 

To demonstrate the effect of post-simulation adjustments, the rule in Equation (3) was applied to the 

previous probabilistic results with P = 38 days. The results of the adjustment are presented in Figures 

7 and 8. A visual inspection clearly shows the baseline duration. The sample mean is increased to 

slightly to 367 days as expected. The P10 and P90 values are also slightly changed to 356 days and 

378 days. 

 

 

Figure 7: Sample of 50 (out of 1000) 

Simulated Campaigns With Probabilistic 

Learning and Cutoff 
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Figure 8: Histogram of Total Duration of 

Simulated Campaigns (1000 trials) With 

Probabilistic Learning and Cutoff 
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The results from all of the preceding computations are summarized in Table 1. This format for 

the results provides the engineer and decision-maker with a snapshot of the analysis and how the 

assumptions affect the variables of interest. As is the case in many decision-making settings, 

especially in drilling cost estimating, the analysis does not yield a recommendation. It only 

provides information that can be used to support a decision. Note, if an econometric analysis was 

also completed, the results could be added to this table in an identical manner to the probabilistic 

results. 

 

Table 1: Summary of Campaign Estimates 

Method for 

Individual Well 

Estimate

P10 

(days)

EV 

(days)

P90 

(days)

Deterministic 405
394 405 416

350 360 370

356 367 378

Learning Assumptions

Probabilistic 349 362 376

None
None

Deterministic
Probabilistic

Probabilistic with Cutoff  
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Conclusions 

 

Under certain conditions (e.g. where the sample of comparison projects is small) there may be 

significant uncertainty in the rate and magnitude of learning over time. When developing a cost 

or schedule estimate in this setting, a probabilistic analysis of learning may be more informative 

than a deterministic one. While deterministic learning is a well established topic, probabilistic 

learning is not well established in the research literature nor in the educational domain. 

 

This paper develops procedures for systematic integration of learning curves in cost estimates. 

Both deterministic and probabilistic learning are discussed and demonstrated. The results provide 

engineers and decision-makers with a refined representation of uncertainty, and can improve 

capital investment valuation and decision-making. For implementation of these methods to be 

successful, they should remain simple in structure, easy to use, and transparent regarding the 

assumptions. 

 

This case study is intended to be used in an undergraduate course in engineering economy or 

project economics. It contains several teaching points: it introduces the basic concept of a 

learning curve, it provides an opportunity to reinforce basic curve fitting methods, and it 

highlights the value of a probabilistic approach to engineering and economic problems. 
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