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Abstract

This paper presents a senior capstone design project to design a remote asset tracking and
monitoring system platform by using an organization’s local network as a cost-effective alternative
solution to a traditional global positioning system (GPS). The proposed system utilizes an existing
local area network (LAN) infrastructure to train a machine learning (ML) model to predict and map
the locations of an asset, such as a university shuttle. The proposed system was developed and
implemented by using a Raspberry Pi single-board computer with an external Wi-Fi antenna to
collect a pool of media access control (MAC) addresses and the relative signal strength indicator
(RSSI) values as a fingerprint for each location. Furthermore, the latitude and longitude (GPS) data
were captured at each of the collection points to train the machine learning models. Once the
collected MAC, RSSI and logistical data, features were generated, processed, and exported to
Elastic. To determine which model was suitable, we overlaid our chosen Decision Trees, Extra
Trees, and Random Forest models on a map to visualize any deviations from our initial GPS data
points. The results showed that the Decision Trees model performed the best, with most of the
predicted points having an acceptable margin of error relative to our collected data. In the
field-testing phase, the plan is to attach the prototype design onto a university shuttle to track its
routes around the campus. The results will provide the feasibility of the proposed concept, and it will
improve our community’s transportation needs by providing more efficient shuttle stops on campus.
The long-term goal of the proposed collaborative research between Engineering, Computer
Information Systems and Cybersecurity students is to provide safe and healthy spaces by integrating
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real-time indoor air quality (IAQ) data within the shuttles to support the community in making
informed decisions on daily actions such as catching the shuttle timely on campus.

Introduction

The goal of this project is to explore a cost-effective solution for conventional GPS tracking systems
through a new approach to asset tracking. The traditional use of GPS for asset tracking requires that
an organization pay for installation, and then a monthly fee for maintenance. In addition, the control
the organization has over the hardware is dependent on the software provided from the vendor. This
project’s process requires only one round of training a machine learning model using gathered data
points. Once this initial training is completed, the model generates predictions that effectively
identify and address any discrepancies that may occur during asset movements, allowing
organizations to monitor their assets throughout their journeys and facilitating the implementation of
adjustments to enhance operational efficiency. Multiple techniques have been proposed before that
make use of CAZAC sequences such as Zadoff-Chu. These techniques are currently constrained to
applications that utilize cellular networks1. This project’s proposed method bypasses the requirement
of a cellular network connection by making use of established on-campus network infrastructure.
Similar to other proposed methods, this project’s approach requires prior knowledge of signal
strengths observed from different access points for the defined anchors. Previous works have made
use of Cramer-Rao lower bound for RSS-based positioning with a given signal strength value2.
Additionally, other attempts have been made to locate objects using RSSI values. However, such
attempts were indoors and only incorporated the use of RSSI in a controlled environment3.
Comparatively, this project’s approach makes use of tailored machine learning models to estimate
the position based on the observed signal strengths for each BSSID. These stochastic models allow
for the use of randomization as a feature, not as a bug in comparison to deterministic methods. This
allows variability management within the dataset produced by different weather conditions (for each
specific anchor). In a campus setting, where assets such as a shuttle would follow a predetermined
route, Wi-Fi signals emitted by access points can be used for a dual purpose. Multiple access points
emit multiple Wi-Fi signals simultaneously through the same channel, and clients connect to their
network of choice by simply activating their Wi-Fi. The same Extended Service Set Identifier
(ESSID) is associated with multiple access points, while each Wi-Fi module within the access point
holds a unique Basic Service Set Identification (BSSID). We hypothesize that by identifying the
signal strength associated with different BSSIDs across select reference points (Anchors) in the
campus, a base platform could be established to predict a current location through the observation of
different signal strengths. Calculating the distance observed from each of the different Anchors
previously associated with a specific location (longitude and latitude), a module could be
implemented that predicts a new set of coordinates based on the observed signal strengths from each
of the observed BSSIDs.

System Design
In the initial phase of this project, the objective was to collect data from multiple access points
around the university’s campus and simulate the route of the campus shuttle by driving along it in a
car. This allowed live code adjustments to accurately extract the data for the machine learning
model. In addition, the Raspberry Pi was able to collect live RSSI values from each of the access
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points, as visualized in figure 1. While the hardware was successful in collecting the data, it had
computational limitations that made it difficult to utilize in processing our data.

Figure 1 - Diagram showing concept for network-based tracking with campus shuttle

Figure 2 - Flowchart symbolizing the flow of data from collection to visualization
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Figure 2 shows the flow of data from the collection to visualization. In order to address the issue of
computational resources, a Google Collab environment was utilized to test different machine
learning models and training methods. The three training methods that were targeted were decision
trees, random forest, and extra trees. In the proposed system, there were a total of six models
generated based on the training data of separate latitude and longitude models for each of the
training methods. The evaluation code provides readouts of the actual and predicted coordinates in
lists. Finally, the Elastic code takes the predicted lists, pairs them together in a document called
“predicted_location”, then creates an index in an Elastic environment. In the deployment,
visualizations were created for each model, with varying degrees of accuracy. It was determined that
the Decision Trees training method is the most applicable for our use case.

Methods & Prototype
In this section, we first describe RSSI techniques in detail and their working principles in wireless
localization. RSS is the calculation of real signal power received by a receiver, which is typically
expressed in decibel milliwatts (dBm) or milliwatts (mW)4,5. RSS can be used to measure the
distance between transmitter (Tx) and receiver (Rx) devices based on the transmitted and received
signal power differences. Generally, two propagation models have been used in RSSI-based wireless
sensor networks: (1) free-space models and (2) log-normal models. Free-space models are simple
(ideal) but are often limited in real applications because they do not consider obstacles between
receivers and transmitters. Therefore, log-normal models are more practical than propagation models
and are suitable for indoor and outdoor environments based on their flexibility in different
environmental settings4,6. Mathematically, the free-space propagation model is defined as follows4,7:

(1)
where Pr is the received power, Pt is the transmitted power, Gt is the transmitter antenna gain, Gr is
the receiver antenna gain, λ is the wavelength of the radio waves, d is the distance between the
transmitter and receiver, and L is the propagation loss in the channel, which is a function of fading.
The log-normal propagation model is defined as follows4,6:

(2)
In (2), α is the path loss exponent, which depends on a specific propagation environment, Lp (d0) is
the path loss at a reference distance d0 , and Ca is a normally distributed random number with zero
mean and a variance of σ2 considering shadowing and other sources of uncertainty (Ca ∼ N (0, σ2 ))
[unit: dB]4,6. The RSSI representing the RSS level at a receiver device has an arbitrary range of
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values that the chip supplier primarily characterizes. For example, a receiver device may translate
dBm values into RSSI values ranging from 0 to 60, 0 to 100, or −100 to 0, depending on the chip
vendor. RSSI is one of the simplest and most widely used indoor positioning tools in the literature4,8,
but can be applied as a solution for outdoor asset location. Although RSSI-based solutions have
advantages such as lower device requirements, better accessibility, and cost-effective system design,
they also suffer from numerous problems in indoor and outdoor environments4,9. These problems
include significant path loss, multipath fading loss, indoor noise and interference, absorption loss,
and the unavailability of some APs during localization. Various building materials also affect RSS
levels, as shown in Table 1. To address these issues, several solutions have been proposed in the
literature, including various filtering and averaging methods, RSS cutoff and self-calibration
techniques, the use of an increased number of APs or reference points (RPs), and ML-based
schemes. In particular, ML-based schemes such as wireless signal recognition using ML and channel
modeling using ML are promising candidates for solving RSSI-based outdoor and indoor
localization issues4,10-12.

Table 1 - Decline of RSS power level proportionate to material that signal travels through to reach
antenna4,13

The data collection hardware consisted of a single-board Raspberry Pi 4B computer, an LCD1602
I2C display unit, and an Alfa AWUS036H 2000mW Long-Range WiFi USB adapter, as seen in
figure 3 below. For the purposes of collecting geographical points, information was consolidated
from phones with GPS and a Garmin GPS watch, displayed on a map in figure 4. During early
testing it was determined that a more compact solution, such as a Raspberry Pi Zero did not have the
computing power necessary to execute the collection code. Additionally, the on-board Wi-Fi module
on neither computer was consistently strong enough to detect the signal being produced from Wi-Fi
access points. This hardware was able to collect mac addresses, RSSI values over the course of
twenty seconds, and GPS coordinates of each successful access point connection site.
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Figure 3 - Hardware for data collection displaying MAC and RSSI values

Figure 4 - Map showing the collected GPS points at every successful access point connection
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Dataset
During the data collection process, signal strength information was received from one access point at
a time. We used a Garmin watch to determine GPS coordinates, and collected 20 RSSI values from
our Raspberry Pi over the course of 20 seconds. The linear relationship between features and
numerical values facilitates the models in recognizing this pattern, contributing to predictions with
limited ambiguity. Upon examination of the model's predictions against the ground truth, minor
differences in the Mean Standard Error (MSE) were noted, as observed in both table 2 and 3. For a
thorough comparison with results from other studies, expanding the dataset and retraining the
models with additional data is recommended. This approach aims to provide a more realistic MSE
and distance error, enhancing the evaluation of our findings.

Table 2 - Mean squared error (MSE) and proportion of variance (R2) for the latitude train (T) and
validation (V) stages

Latitude MSE (T) MSE (V) R2 (T) R2 (V)

DecisionTree 3.946408e-29 3.420501e-29 1.0 1.000000

ExtraTrees 9.174901e-18 9.181227e-11 1.0 0.999809

RandomForest 2.010522e-27 2.010522e-27 1.0 1.000000

Table 3 - Mean squared error (MSE) and proportion of variance (R2) for the longitude train (T) and
validation (V) stages

Longitude MSE (T) MSE (V) R2 (T) R2 (V)

DecisionTree 2.533891e-28 1.913461e-28 1.0 1.000000

ExtraTrees 1.640730e-26 3.026475e-11 1.0 0.999979

RandomForest 1.643708e-26 1.644112e-26 1.0 1.000000

Machine Learning Models
The dataset consists of 500 data points with 25 features, each representing a different level, and 2
labels representing latitude and longitude coordinates. The data were divided into training and
testing sets using an 80-20 split, with 80% (400) of the data points allocated for training and 20%
(100) for testing. Three training methods, namely DecisionTree, ExtraTrees, and RandomForest
regressors, were trained on the preprocessed data. The training process involved 10-fold
cross-validation to assess the models' performance on multiple subsets of the training data.
Following the completion of the cross-validation loop, we calculate the average R2 values over all
folds to provide a comprehensive assessment of model performance. The following figures depict
graphic visualizations of our Decision Tree model.
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Figure 5 - Visualizations of truncated Decision Tree models. Latitude (left) and Longitude (right).

Figure 6 - Visualization of complete models. Latitude (top) and Longitude (bottom).
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Results
Each training method generated two models, one for latitude and one for longitude. Using the Elastic
python library, both models were combined into the appropriate format, then ingested them into an
index created in the code. Despite the relatively simplistic dataset, each model performed with
varying degrees of accuracy. As indicated in tables one and two, the decision tree and random forest
models performed more accurately than the extra trees model. However, due to the lower MSE
value, the decision tree model was chosen. As indicated in figure 7, this model predicted the location
with a miniscule difference compared to the original collected coordinate points.

Figure 7 - Map showing the Decision Tree model predicted location at each access point

Conclusion
This project offers a cost-effective solution for asset tracking within an organization's network. It
eliminates the need for additional architecture to be installed or a GPS device to be implemented.
The initial data collection for the machine learning model sets the baseline, allowing it to generate
insights for optimizing asset movement. In its current state, the project is the first phase of a larger
system. The second phase of this project involves a more robust training data set as well as
multioutput machine learning models. This work will expand into incorporating a previously created
Air Quality Index (AQI) device and include its measurements into the generated telemetry14. All
collected data will then be exported to the cloud for visualization on a computational system. The
AQI telemetry generation will be facilitated by an Arduino equipped with sensors, with data
exportation integrated into the Raspberry Pi 4B utilized in this project.
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