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Integrating Computer Programming Technologies into the Industrial 

Engineering Curriculum 
 
 
Abstract 

 
Incorporation of powerful “scripting languages” in engineering modeling software is becoming 
increasingly common.  Unfortunately, while most engineering curricula include one or two 
programming-related courses at the freshman and/or sophomore level, students generally show 
weak computer programming skills when they reach the core curriculum courses. This project 
seeks to develop an innovative set of classroom modules involving computer programming for 
use throughout the Industrial Engineering curriculum.  The modules are in response to our belief 
that the main cause of the problem is not the specific material covered in the computer 
programming courses but the lack of reinforcement that the students receive from other 
engineering courses with regard to computer programming skills. This project’s goal is to 
investigate whether significant, formal, well-designed reinforcement of the programming skills 
outside of traditional programming courses will lead to students more proactively using their 
programming skills in situations that would benefit from their use.  Five modules have been 
developed and tested during the first year of the project. In this presentation, we will discuss the 
preliminary results stemming from the use of these modules in our undergraduate courses. This 
project is being funded by the Division of Undergraduate Education of the National Science 
Foundation under Grant DUE-0836260. 
 

Introduction 

As educators, it is our responsibility to provide the necessary knowledge and skills for 
engineering students to be successful in their workplace.  In this regard, we must examine the use 
of computer technologies in today’s business and engineering environments.  Experts agree that 
most of the engineering modeling software used today in the industry requires some knowledge 
of a computer programming language such as FORTRAN, C, C++, Java, or Visual Basic (VB).  
Moreover, the incorporation of powerful “scripting languages” in most of these modeling tools 
has significantly increased the capability of integrating them and knowledge of these scripting 
capabilities is becoming more important for engineering students. 
 
Most current engineering curricula include one or two courses at the freshman and/or sophomore 
levels that cover general computer programming using one or two computer languages.  In the 
industrial engineering (IE) curriculum at Auburn University there are two courses dedicated to 
teaching the basics of computer programming.  COMP 1200, which is offered at the freshman 
year, teaches MATLAB and COMP 1210 covers Visual Basic and it is generally taken during the 
sophomore or junior year.  However, despite successfully completing these courses, the students 
generally show weak computer programming skills when they reach the core IE courses during 
their junior and senior years.  In response, we have revised the content of these two courses on 
several occasions (changing them from teaching the programming language C to C++ and then 
to Java), but the problem persists.  Last year, our department decided to again change the content 
of COMP 1210 from Java to VB.  The new course was initially offered during the fall semester 
of 2008. The reason for teaching VB is that the preferable computer modeling tool used by the 
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majority of IE instructors and practitioners is Microsoft Excel.  Excel is a spreadsheet modeling 
tool considered to be a de facto standard.  Excel and similar tools reduce the programming 
burden by providing large sets of pre-programmed functions.  However, in many modeling 
situations it is necessary to create new functions or modify macros, which requires knowledge of 
the VB programming language.  Furthermore, VB and related scripting languages/tools can be 
used to significantly enhance the power of many of today’s engineering computer applications.  
In addition to Excel, the functionalities of Arena (simulation modeling), Visio (flowchart 
development), AutoCAD (computer-aided design) and MS Access (database management) can 
all be expanded through the use of VB and these applications are very commonly used by 
industrial engineers. 
 
However, if we do not reinforce the computer programming-related learning throughout the 
entire curriculum, the latest change in programming language from Java to VB will probably 
have limited success once again.  We have come to believe that the main cause of the problem is 
not the specific material covered in the computer programming courses but the lack of 
reinforcement that the students receive from other engineering courses with regard to computer 
programming skills.  Only one or two of the courses in the IE curriculum include computer 
modeling assignments that explicitly involve programming.  As such, students do not learn to 
think of their programming skills when faced with a problem that would benefit from their 
application.  To address this problem, we have developed with the support of the NSF Division 
of Undergraduate Education, a set of instructive modules for some IE professional courses in our 
curriculum.  Our long term goal is for the students to learn to recognize opportunities to apply 
their programming skills in solving engineering problems without having to be explicitly told to 
do so.  During Phase 1 of the project, we are exploring the feasibility of our framework and have 
developed and evaluated five instructive modules for four IE professional courses in our 
curriculum.  
 

Modeling Framework   

The methods that are commonly used to achieve educational objectives include: lectures, 
experimental laboratory, design projects, case studies, games, and internships1.  All of these 
methods are used in teaching IE courses in the Industrial and Systems Engineering Department at 
Auburn University.  However, the lecture method is by far our most common approach for 
instruction.  This is also the case at most other engineering academic departments.  One of the 
drawbacks of the lecture method is that it relegates students to a passive role in the classroom.  
One approach to overcome this deficiency and engage students in a more active role is to add 
case studies to the teaching2.  In industrial engineering, a case is usually a description of an 
actual situation that commonly involves a problem and/or a decision faced by a person or group 
of people in an organization.  As engineers, we are constantly confronted to solve problems.  We 
usually have a large set of data and use a “problem solving technique” to find a “solution” to the 
problem.  In order to solve the problem, we are likely to apply the following steps: understand 
the problem, analyze its causes, identify alternatives, formulate a model to assess the 
alternatives, select one alternative, implement it, and evaluate the results in order to determine 
whether or not the problem has been solved.  It is interesting to note that students know these 
steps by heart but usually have only a vague understanding on how to apply the steps in formal P
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or well-defined way.  Case studies that involve problem solving skills are therefore of great value 
to the students as they provide practical experience in real problem solving.  
 
In our framework, we use the case studies approach as the pillar to fully integrate computer 
programming in the IE curriculum.  Figure 1 illustrates our framework.  The framework includes 
three levels.  The first level corresponds to the development of two comprehensive case studies.  
We focus the cases on two fundamental areas of industrial engineering – manufacturing and 
services.  For the manufacturing case, we will concentrate on the automotive manufacturing 
industry.  The reason for the choice of this industry is that due to business incentives, rural 
development, and low-cost and plentiful labor available in the southeastern United States, many 
automakers and their corresponding tier 1, 2, and 3 suppliers have recently established 
manufacturing complexes southeastern states.  In Alabama, these include industry leaders such 
as Mercedes Benz, Toyota, Honda, Hyundai, and KIA.  As these facilities move into the 
southeast, the automotive industry is fast becoming one of the primary employers of our 
graduates.  For the services industry case, our focus will be on health care organizations such as 
hospitals, clinics, and managed care providers.  The reason for this choice is that health care is 
the fastest growing service industry in the US.  Currently, there is a great demand for 
professionals that can analyze, manage, and operate healthcare systems and industrial engineers 
can supply that need.  As the baby-boom generation ages, this growth is expected to continue for 
the foreseeable future. The second level in the proposed framework includes the instructive 
modules.  The third level specifies all of the professional courses from the IE curriculum that 
will use the modules.   
 

 

Figure 1:  Case study-based framework for integrating computer programming 
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Module Design 

In this exploratory phase of the project, we have designed modules that deal with the components 
of an automotive manufacturing system. We have categorized the modules along two 
dimensions: the level of guidance that they require; and the level of difficulty that they involve.  
Thus, a module is denoted by two superscript letters.  Figure 2 illustrates the model in detail.  For 
example, a GLDL module consists of a problem of low guidance (level L) and low difficulty 
(level L).  We set three values (High, Medium, and Low) for both guidance and difficulty levels.  
In a GH module, the student is asked to program a particular task using a specific computer 
programming language (a high level of guidance).  These types of modules are be used to assess 
the retention of the concepts learned in COMP 1200 and COMP 1210.  In a GM module, the 
student is asked to solve a problem using a computer tool.  In this case, the student has to 
determine the most appropriate computer programming language for the problem since the 
guidance level will be less.  Similarly, a GL module consists of open-ended problems, which may 
have many correct answers and several different ways to be solved and the student must make 
many design and implementation decisions.  It is our hope that the students will recognize the 
potential applicability of their programming skills for these modules.  As such, GL and GM type 
modules are used to measure the increase students’ cognizance of and proactiveness in using 
computer modeling skills.  The level of difficulty of a module is related to the level of effort 
required to complete the assignment.  Faculty feedback is used to set and control these values.  
As we have just completed the initial module offering, we will be reviewing these values. 
 

Guidance Level  

High Medium Low 

 

High GHDH GMDH GLDH DH 

Medium GHDM GMDM GLDM DM 

D
if

fi
cu

lt
y
 

Low GHDL GMDL GLDL DL 

 GH GM GL  

Figure 2:  Module type description model 

Module Structure  

A module consists of student-related material and instructor-related material.  The student 
material contains the module objectives, problem description, requirements, and any required 
data sets.  The instructor material includes the problem solution, a handout describing the 
technical subjects involved in the assignment, and a survey to provide feedback on the module.  
This survey is used to measure the success of engaging faculty members in the process.  The 
surveys are also used to adjust the guidance and difficulty levels of the modules for subsequent 
offerings.  It is important to mention that not all people learn in the same way.  We learn by 
listening, seeing, and doing, one of which is more dominant in each person.  In fact, each 
individual learns by using a complex combination of these three elements3.  Therefore, we have 
included in some of the modules audio-visual material.  To illustrate our approach, two 
developed modules are described below.  The first module requires the use of the Matlab 
programming language, while the second one requires the Visual Basic for Applications (VBA) 
for Excel programming language. 
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Module Example 1 

 

Module Title: Making Decisions using Markov-chain theory  
 
Guidance Level: High            Difficulty level: Low 
 
Course: Stochastic Operations Research, INSY 3400 
 

Module Aim:  The aim of this module is to increase students’ cognizance of and proactiveness 
in using computer modeling skills. 

Module Objectives: Upon completion of this module, students should be able to 
 

1. Design an algorithm to compute the steady state probability of a Markov Chain 

2. Code the algorithm using Matlab programming language 

3. Use the algorithm to evaluate economic decisions 

Problem Description: Tiger Motor Company’s Auburn facility produces several different 
vehicle types such as two and four door sedans. The plant uses many different robotic weld guns 
(see Figure 3) to assemble all body types  produced. The robotic weld guns have a current of 12 
to 14,000 amperes per weld and can make 20 or more welds per minute.  The temperatures on 
these robotic welders reach anywhere from 150 degrees fahrenheit to over 500 degrees 
fahrenheit. Given this temperature range, it is extremely important  to maintain proper cooling 
systems. With the large amount of welds performed and the resulting high temperature 
conditions, the robotic weld guns will produce defective welds and can fail frequently. Tiger 
Motor Company must replace the entire gun if it fails at a cost of $7,000 excluding downtime 
and labor costs. It takes 1 ½ hours to replace the gun, and the maintenance worker installing  the 
new gun earns $60 an hour. The facility produces 20 vehicles per hour with a profit of $1,000 per 
vehicle.  Tiger Motor Company considers the downtime cost as the potential profit lost when 
vehicles cannot be produced. The Tiger Motor Company is deciding which tool replacement 
policy to use in order to reduce costs. The policies determine how long the replacement cycle is 
and are based on monthly replacements. The robotic weld guns have a 1/12 chance of breaking 
down during the first month of operation and this probability increases linearly by 1/12 each 
month until 12 months. After 11 months, if the robotic weld gun has not failed it is replaced by a 
new weld gun.  The robtic weld gun has a monthly maintence cost of $4,000 after this first 
month of operation and increases by $2,000 each month over the lifetime of the machine.  The 
company wants to evaluate the cost of the replacement policies from 2 to 10 months and find the 
replacement policy with the lowest expected cost.  
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Figure 3:  Robotic Welding Gun 

Requirements: The managers at Tiger Motor Company have defined the Markov chain to be the 
age of the machine at the beginning of the month, i.e. 0, 1, 2, … They need a computer program 
to assess each replacement policy. You are asked to: 

 
1. Design and code an algorithm in Matlab that is able to: 

a) Input the number of months in the replacement cycle or policy 
b) Generate a transition probability matrix for the given number months. As an 

example, Figure 4 shows the transition probability matrix for the 3-month 
replacement police while Figure 5 shows the matrix for the 6-month policy 

c) Store these values in a matrix called “ProbMatrix”  
d) Calculate the steady state probabilities for this Markov chain by raising 

“ProbMatrix” to the power of 100 and store the result in a vector called 
“SteadyState” 

e) Compute the expected cost for this policy using the giving cost information 
 

2. Use the code to evaluate the expected cost for the policies ranging from 2 to 10 
months and find the policy with the smallest expected cost 
 

 0 (new) 1 2 3 

0 (new) 1/12 11/12 0 0 

1 2/12 0 10/12 0 

2 3/12 0 0 9/12 

3 1/12 11/12 0 0 

     Figure 4: Transition Probability Matrix (P) for 3-month Policy 
 

 

 0 (new) 1 2 3 4 5 6 

0 
(new) 1/12 11/12 0 0 0 0 0 

1 2/12 0 10/12 0 0 0 0 

2 3/12 0 0 9/12 0 0 0 

3 4/12 0 0 0 8/12 0 0 

4 5/12 0 0 0 0 7/12 0 

5 6/12 0 0 0 0 0 6/12 

6 1/12 11/12 0 0 0 0 0 

Figure 5: Transition Probability Matrix (P) for 6-month Policy 
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Module Example 2 

 
Module Title:  Creating Control Charts 

 

Guidance Level:  Medium   Difficulty Level:  High 
 

Course:  Statistical Quality Control, INSY 4330 
 
Module Aim:  The aim of this module is to increase students’ cognizance of and proactiveness 

in using computer modeling skills. 
 
Module Objectives:  Upon completion of this module, students should be able to 
 

1. Design an algorithm to group sampled data into subgroups and detect when the process is 
out-of-control  

2. Plot the sub-grouped samples onto a control chart 
3. Code the algorithm using Visual Basic for Excel programming language 

 
Problem Description: Tiger Motor Company is always on a mission to meet superior quality 
vehicle standards.  One component of their vehicles that Tiger Motor Company is especially 
proud of is the performance and lifetime of their engines.  The most popular engine assembly 
used at Tiger Motor Company is the 2.3 liter engine which is used in their SE 500 sedan and 
their K-300 small truck.  Piston rings are an essential contributor to ensure an extensive engine 
lifetime, so the quality control department has chosen to monitor the variance of the 2.3 L engine 
piston ring widths.  Pistons have rings that wrap tightly around the piston to assure no leakage of 
the high temperature gases produced during power stroke in the combustion chamber.  If the 
piston rings do not fit well enough, it is possible that the engine will consume more oil than is 
necessary, and on an extreme level it could cause an engine fire.  The piston rings also help keep 
the pistons from overheating when the combustible mixture explodes to power the vehicle.  The 
piston rings help maintain lubrication between the pistons and the cylinder walls so that there is 
less wear and tear between them.  The performance of the piston rings can greatly affect the 
overall performance, lifetime, and safety of the entire engine during its lifetime. 
 

 

Figure 6:  Piston and piston rings 

The piston rings used in the 2.3 liter engine assembly are being scanned by a computer vision 
system that computes (measures) and records the piston ring widths every 1 second.  After a 
phase 1 statistical analysis, the Quality Department of Tiger Motor Company has determined that 

Piston Ring Width 
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when the process is in-control the ring widths are normally distributed with mean 0.0775 inches 
and standard deviation 0.000373 inches.  The quality control management needs a computer 
program that will be implemented in their engine assembly facility to monitor (second phase) the 
performance of the piston ring molding process.  They want the program to take width 
measurements of the piston rings and generate an Xbar chart to display the process performance. 
The computer program will assist management in the engine component quality department to 
monitor the performance of molding processes and help prevent rings that are the wrong size 
from being installed on engines.  This prevention will help decrease engine failures and prevent 
the company from spending money on replacing engines and pistons. 

 
Requirements: The company managers need a computer program to generate a control chart for 
this process.  The computer vision data will be generated with a function that is provided to you 
in Figure 7.   

Figure 7: Computer Vision Function 
 
This function will generate random piston ring width measurements once every second, 
simulating the sampling process in real time.  You are asked to: 
 

1. Compute the Upper Control Limit (UCL) and the Lower Control Limit (LCL) for a sample 
size of 5 observations (use equation 6.14 from the textbook)   

2. Create an empty chart in Excel to plot the data. The chart should also include lines on the 
graph for the centerline, UCL, and LCL 

3. Code an algorithm to sample the pistons’ widths and group them into a sample of 5 
observations. Compute and plot the averages of each group of 5 observations onto the Xbar 
control chart. The chart should be updated every 5 seconds to include the new sampled 
measurements and should show just the last 20 groups 

4. Add a code to detect whether the process is or is not in-control according to the Western 
Electric Handbook’s rules for detecting nonrandom patterns on control charts.  Indicate with 
a message when the process is out-of-control giving the rule number that was broken and 
stop monitoring the process; otherwise, stop the program after 200 seconds. The rules for an 
out-of-control process are given below 

5. Emulate a shift of the mean of the process by changing in the computer vision function the 
value of the mean to 0.0779 and run the program again.  How many seconds does it take to 
detect that the process is out-of-control? 

Public Function Sample_from_Computer_Vision() As Double 

    Mean = 0.0775   

    StdDev = 0.000373 

    Ring_Width_Sample = Application.WorksheetFunction.NormInv( Rnd( ), Mean, StdDev ) 

    Application.Wait ( Now + TimeValue("0:0:1") ) 

    Sample_from_Computer_Vision = Ring_Width_Sample 

End Function 
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Module Evaluation and Findings 

The evaluation of this exploratory phase of the project is based on the performance of the 
students and the experiences of the faculty members that used the developed modules4. Before 
and during data collection, we adhered to the human subject-related procedures and policies of 
Auburn University.  Data were collected in terms of surveys and participant’s academic 
performance.  Participants were clearly informed the purpose of the data collected to how the 
results would be used.  While all students were required to complete the modules as part of the 
respective courses, students were given the option for their scores to not be used in the analysis 
of the modules.  To date, no students have made this request.  Table 1 gives information about 
the modules that were developed and used during the initial offering (fall semester of 2009).   
 

Table 1:  Modules developed and offered during fall semester of 2009 

Module Code Course 

Making Decisions using Markov Chain Theory 
(Module Example 1, above) 

GHDL 
INSY 3400 – Stochastic 
Operations Research 

Queuing Analysis GMDM 
INSY 3400 – Stochastic 
Operations Research 

Coding the Simplex Method GMDM 
INSY 3410 – Deterministic 
Operations Research 

Control Charts (Module Example 2, above) GMDH INSY 4330 – Quality Control 

Assembly Line Balancing GLDH 
INSY 4700 – Manufacturing 
Systems 

 
The modules were developed with the assistance of the faculty members responsible for teaching 
these courses.  The assignment, grading, and student advising associated with the modules were 
all done by the project investigators and graduate students. The full content of these modules are 
available at the website developed for this project http://sim.auburn.edu/ccli. Videos were also 
taped to provide a better understanding of the requirement of the modules. They are also 
available at the project website.  
 
Students were given two weeks to complete each module. After each module was due, an in-
class announcement requesting that students complete a feedback survey was made. The 
feedback survey included course and module information, attitudes toward the class, and module 
feedback. More specifically, students were asked to identify the module they just completed, the 
course of enrollment and whether they had previously completed any instructional modules in 
their coursework. The remaining items were used to form four measurement scales.  
 
There were 19 items pertaining to student attitudes toward the class. Of these 19, eight were 
aimed at measuring students’ self-efficacy, six regarded the value of the course, and 5 sought 
information about the extent to which students were required to think critically in the class. 
Finally, 14 items were included to gain feedback about each module in terms of guidance 
provided to students to complete the module, fit with course, and benefits of the module.  
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Reliability estimates were very supportive, ranging from 0.806 for critical thinking to 0.923 for 
course value. 
 
Feedback pertaining to each module was gathered through 14 items, using a five-point Likert-
scale. Overall, student feedback has been moderately supportive.  The average feedback response 
was below the scale midpoint of “3” for three of the five modules, with averages ranging from 
2.25 to 4.25. This information is summarized for each module in Table 2. 
 
Table 2: Module Feedback 

Module Survey Responses Feedback - Mean (SD) 

Creating control charts 36 2.33 (0.70) 
Coding the LP simplex algorithm 16 3.13 (0.92) 
Markov-chain theory application 14 2.92 (0.89) 
Balancing the assembly line with 
COMSOAL heuristic 

26 2.25 (0.85) 

Studying the effects of system parameters 
of M/M/s queuing model 

2 4.25 (0.86) 

 
 
More detailed information is provided by student responses to each of the 14 items. These 14 
items are presented below: 
 

1. I understood what was expected of me in completing this module. 
2. I was NOT prepared with the skills necessary to complete the module successfully. 
3. The directions were easy to follow. 
4. The module demonstration was very helpful. 
5. There was NOT enough information provided to successfully complete the module. 
6. This module helped me develop my computer programming skills. 
7. I will be able to use what I learned from this module in future courses or a job. 
8. This module did NOT seem to fit with the rest of the class content. 
9. I enjoyed working on this module. 
10. More modules like this should be integrated in existing courses. 
11. This module difficulty was appropriate for the class. 
12. I struggled to complete this module successfully. 
13. This module made effective use of audio and visual features. 
14.  I look forward to completing more modules like this in other courses. 
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The average response to each item for each module is summarized in Table 3.  
 
Table 3: Survey summary of questions regarding the modules 

Module1 
(n=36) 

Module2 
(n=16) 

Module3 
(n=14) 

Module4 
(n=26) 

Module5 
(n=2) 

Item Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

1 3.47 (1.06) 3.60 (1.40) 3.64 (1.08) 2.85 (1.41) 4.50 (0.71) 
2 1.78 (1.07) 2.94 (1.43) 3.07 (1.32) 2.12 (1.51) 5.00 (0) 
3 3.17 (0.91) 3.31 (1.14) 2.86 (0.95) 2.38 (1.36) 4.50 (0.71) 
4 2.56 (1.16) 3.44 (1.37) 3.07 (1.33) 1.52 (0.96) 4.50 (0.71) 
5 2.75 (1.11) 3.69 (1.01) 3.36 (1.22) 2.35 (1.44) 4.50 (0.71) 
6 2.56 (1.25) 3.00 (1.27) 3.36 (1.22) 2.77 (1.48) 4.50 (0.71) 
7 2.25 (1.08) 2.75 (1.29) 2.93 (1.44) 2.60 (1.56) 4.50 (0.71) 
8 2.94 (1.26) 3.88 (1.48) 3.36 (1.15) 2.81 (1.55) 4.50 (0.71) 
9 1.61 (1.02) 2.81 (1.33) 2.62 (1.50) 2.00 (1.33) 4.00 (1.41) 
10 2.00 (1.14) 2.69 (1.45) 2.36 (1.34) 2.08 (1.41) 4.00 (1.41) 
11 2.11 (1.06) 3.25 (1.24) 3.00 (1.04) 2.00 (1.33) 4.50 (0.71) 
12 1.92 (1.18) 3.13 (1.26) 2.21 (1.25) 2.69 (1.64) 3.50 (2.12) 
13 2.11 (0.95) 2.94 (1.24) 2.71 (1.14) 1.69 (0.97) 3.00 (0) 
14 1.47 (0.77) 2.44 (1.41) 2.43 (1.56) 1.62 (1.02) 4.00 (1.41) 

 
Further examination of the responses to specific feedback items reveals some findings.  These 
initial findings do not include information for module 5 because there are just 2 responses to 
date.  
 
Overall, the responses are most favorable for modules 2 and 3. For module 2, 8 items (out of 14) 
received an average response at or above the scale midpoint while 7 items received this level of 
response for module 3. It is important, however, to keep in mind that feedback for these modules 
is based on less than one-third of the enrolled students. While modules 1 and 4 received feedback 
from a greater percentage of enrolled students, the average responses were lower, with just two 
items receiving a response at or above the midpoint for module 1 and no items for module 4. 
 
Across all four modules, students understood what was expected of them as this item (item 1) 
received one of the top 3 highest rated items for each module.  Students also supported the 
validity of each module, including item 8 in their top 5 across all four modules. Other items 
receiving generally favorable responses included items 3, 5, and 6. That is, students generally 
believed that the directions were easy to follow, there was enough information to complete the 
module, and the modules helped develop their computer programming skills. On the other hand, 
students did not response favorably to items 9 and 14. That is, they didn’t enjoy working on 
modules and don’t look forward to completing more of them in other classes.   
 
 
Conclusions 

This paper describes an NSF-sponsored project involving the development of programming 
modules for professional classes in the undergraduate industrial engineering curriculum.  The 
goal of the project is to investigate whether significant, formal, well-designed reinforcement of 
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the programming skills through these modules and outside of traditional programming courses 
will lead to students more proactively using their programming skills in situations that would 
benefit from their use.     
 
While we are very early in the project and have data from only five modules, the results are 
interesting and we are pleased with the progress of the project and look forward to continuing the 
work over the next few semesters.  In general, the modules were well-received by the faculty 
members and, to a certain extent, the students.  We will use some of the module feedback to 
improve subsequent modules, where appropriate and we expect to be able to draw more 
significant and meaningful conclusions once we have more data from more modules and from 
multiple replications of the same modules. 
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