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Abstract 

Computer tools have been integrated into two sophomore-level Engineering Mechanics courses 
at The Pennsylvania State University DuBois Campus.  Those two courses are strength of 
materials and dynamics.  In the prerequisite statics course, computer tools are not used because 
the author believes that doing so could compromise the students’ understanding of basic 
engineering concepts.   In strength of materials, the computer tools were directly integrated into 
the existing course.  In particular, the students used Microsoft Excel to graph, numerically 
integrate, and perform composite moment of inertia calculations.  In the dynamics class, the 
computer-tool integration was accomplished through an additional honors section.  In this case, 
students studied numerical approaches to differentiation, integration, and differential equation 
solution, and wrote their own programs to perform these operations.  It was found that the 
students used computer tools, even when it was optional.  The students are much more likely to 
use the computer tools when they understood two important facts.  Namely, that the tools 
provide a release from tedious repetitive tasks and the opportunity to solve problems that would 
be extremely difficult or impossible to solve without them.  The decisions about computer tool 
usage in the courses were based upon the author’s 14 years of experience as a practicing 
engineer.  This experienced included both using and developing computer-aided engineering 
tools.  A number of general concerns and choices relate to the use of computer tools in any 
engineering class.  The general concerns include the aforementioned possible compromise of the 
students’ basic engineering understanding, plus student computer background and fitting 
additional content into an already full curriculum.  The choices are between general purpose and 
discipline specific software, as well as between the use of existing applications or the use of 
programs that the students write themselves. 
 
I.  Introduction 

The use of computer applications in engineering practice has grown significantly in the past 15 
years.  At the same time, the nature of computer applications has changed.  The mass adoption of 
desktop personal computers and the development of powerful applications for them have 
provided many useful alternatives and/or replacements for traditional mainframe applications 
that have existed since the mid 1960's.  At the same time, the need to understand traditional 
analytical engineering theory and problem solving techniques has not diminished.  This presents 
a dilemma to for instructors teaching basic sophomore-level engineering mechanics courses.  
Namely, early introduction to computer-aided engineer tools is more important than ever, 
however, the curriculum of the courses is already full with subject matter that is absolutely 
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essential to the students’ education.  This dilemma is further complicated by the fact that choices 
of computer-aided engineering tools continue to expand.  Furthermore, 20 years ago, this issue 
would generally have been dealt with in the junior year, because using computer tools required 
that students know a computer language, usually FORTRAN.  The students would be introduced 
to it during their sophomore year.  Now, students can use personal computers with easy to use 
generic applications in their freshman year.  The purpose of this paper is threefold.  First, to 
discuss the philosophical considerations that guided the decisions the author made relative to 
computer tool usage in three sophomore-level engineering mechanics classes; statics, dynamics, 
and strength of materials.  Second, discuss the tools integrated into the strength of materials and 
dynamics courses.  Third, discuss insight that the author gained during that integration. 
 
II.  Philosophical Concerns 

The author believes that there are three basic philosophical considerations affecting an 
instructor’s decisions about integrating computer-aided engineering tools into engineering classes 
in general, and a fourth that applies specifically to existing theory courses, such as sophomore-
level engineering mechanics courses. 
 
First, the use of computer tools must not compromise the students understanding of any basic 
engineering concepts.  This concern generally limits the use of computer-aided tools to the 
performance of tasks that the students already know how to do, or ones than can only be done 
with computational tools.  This limitation should not be of great concern, as these two categories 
permit removing tedious repetitive hand operations, and expanding the complexity of problems 
that students can solve.  The concern does limit the opportunities to integrate computer-aided 
tools into the lowest level courses. 
 
Second, the instructor must choose between general-purpose programs or discipline specific 
programs.  Given the inter-disciplinary nature of students in sophomore-level engineering 
mechanics courses, this concern drives the instructor in the direction of general-purpose 
programs. 
 
Third, the instructor must choose between the use of existing applications or ones that the 
students write themselves in some computer language.  This concern is closely tied to the 
students’ computer programming background and the amount time that the students can be 
reasonably expected to put into computational assignments.  
 
Fourth, in order to add something to an existing course, something else must be taken away, 
unless addition class time can be made available.  As mentioned earlier, the basic content of 
statics, dynamics and strength of materials hasn’t changed in over 20 years and the curriculum 
for each is already quite full.  As a result, new computational aspects added directly to an 
existing course must have very low overhead.  An alternative is to make more class time 
available, one possibility is through a special honors section.  Another option for gaining 
additional class time would be to make the course worth more credits; this is not possible for at 
least two reasons.  First, the author/instructor is not responsible for overall curriculum changes.  
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Second, even if he were, requiring additional credits in baccalaureate degree programs already 
requiring up to 137 credits, at Penn State, would be very difficult to justify.  
 
III.  Course Specific Integration Decisions 

In light of the proceeding philosophical discussion the author decided not to integrate computer-
aided tools into his engineering statics course.  Given that the only prerequisite course is 
differential calculus, the engineering concepts may all be new.  As a result, the possibility of 
compromising the students understanding of these basic concepts exists. 
 
For the strength of materials course is was decided to add the use of personal computer 
spreadsheet applications directly to the existing course.  The students learned to perform the 
following tasks: graph stress-strain diagrams, numerically integrate the stress-strain diagrams to 
obtain the modulus of toughness, and perform composite moment of inertia calculations.  In each 
case, the task performed was either a purely mathematical operation, or a skill from a 
prerequisite course.  Use of an existing generic application was chosen for three reasons; 
computer language programming is not a prerequisite course, it is not discipline specific, and it 
has very low overhead. 
 
For the dynamics course it was decided to offer a special honors section.  This was necessary 
because it was decided to introduce the students to several numerical methods topics 
(Hornbeck1), which parallel analytical topics from the standard dynamics course.  The students 
demonstrated their understanding of these topics by writing computer programs to perform the 
various tasks: numerical differentiation, numerical integration, and solutions to 1st and 2nd order 
ordinary differential equations.  The honors section provided the opportunity to overcome 
several barriers that would prevent this from being done in the regular dynamics course.  First, 
the students could be limited to those who had prior programming experience; overcoming the 
fact that a computer-programming course is not a prerequisite for the regular dynamics course.  
Also, with additional class time, the new theory could be covered and the additional student 
workload could be justified. 
 
IV.  Spreadsheet Application Examples 

The first computer-aided application that was incorporated in to the strength of materials course 
was plotting stress-strain diagrams.  This was done using a problem from Hibbler2, where load 
and deflection data is given for a test specimen with an initial diameter of 0.503 in. and an initial 
length of 2.00 in.  Use of the spreadsheet frees the students from plotting as well as the repetitive 
calculation for stress and strain.  Figure 1 shows the spreadsheet used to calculate the stress and 
strain that was then plotted.  It also shows the calculation of the modulus of toughness using the 
trapezoidal rule, which will be discussed shortly.  In the spreadsheet, the shaded cells show 
values that were calculated by the spreadsheet using formulas provided by the user.  The stress-
strain data was then plotted to show both the entire stress-strain diagram (Figure 2) as well as an 
expansion of the linear region (Figure 3) as was specified in the problem statement.  All the 
stress-strain data is used in Figure 2, while a subset is used in Figure 3.  The calculation of the 
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modulus of toughness is shown in Figure 1 in the columns labeled energy/seg (psi) and sum (psi).  
The first of these columns uses the trapezoidal rule to calculate the area under the curve defined 
by the stress-strain pair at that row and the preceding one.  The second of these columns is the 
sum of all entries in the energy/seg column up to that row.  Thus, this represents the total area 
under the curve to the location of the stress-strain pair in that row.  As a result, the final entry 
corresponds to the modulus of toughness.  The last two rows of the spreadsheet show the values 
of constants used in the calculation of stress and strain. 
 

Figure 1 – Spreadsheet for Numerical Portion of Stress-Strain Diagram Problem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 – Complete Stress-Strain Diagram 
 
 
 
 
 

Modulus of Toughness

load (k ips) Elongation Strain (in/in) s tress (psi) energy/seg (ps i) sum (psi)

0 0.0000 0 0 diameter 0.5030
1.5 0.0005 0.00025 7548.58 0.944 0.944 initial length 2.0000

4.6 0.0015 0.00075 23148.99 7.674 8.618 Origional Area 0.1987

8 0.0025 0.00125 40259.11 15.852 24.470

11 0.0035 0.00175 55356.27 23.904 48.374

11.8 0.0050 0.00250 59382.18 43.027 91.401

11.8 0.0080 0.00400 59382.18 89.073 180.474
12 0.0200 0.01000 60388.66 359.313 539.787

16.6 0.0400 0.02000 83537.65 719.632 1259.418

20 0.1000 0.05000 100647.77 2762.781 4022.199

21.5 0.2800 0.14000 108196.35 9397.985 13420.185

19.5 0.4000 0.20000 98131.57 6189.838 19610.022

18.5 0.4600 0.23000 93099.18 2868.461 22478.484

Modulus of ToughnessModulus of Toughness

load (k ips) Elongation Strain (in/in) s tress (psi) energy/seg (ps i) sum (psi)

0 0.0000 0 0 diameter 0.5030
1.5 0.0005 0.00025 7548.58 0.944 0.944 initial length 2.0000

4.6 0.0015 0.00075 23148.99 7.674 8.618 Origional Area 0.1987

8 0.0025 0.00125 40259.11 15.852 24.470

11 0.0035 0.00175 55356.27 23.904 48.374

11.8 0.0050 0.00250 59382.18 43.027 91.401

11.8 0.0080 0.00400 59382.18 89.073 180.474
12 0.0200 0.01000 60388.66 359.313 539.787

16.6 0.0400 0.02000 83537.65 719.632 1259.418

20 0.1000 0.05000 100647.77 2762.781 4022.199

21.5 0.2800 0.14000 108196.35 9397.985 13420.185

19.5 0.4000 0.20000 98131.57 6189.838 19610.022

18.5 0.4600 0.23000 93099.18 2868.461 22478.484
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Figure 3 – Expanded Stress-Strain Diagram Highlighting the Linear Region 
 
 

Figure 4 – Spreadsheet for Numerical Portion of Composite Moment of Inertia Problem 
 
The use of spreadsheets to perform composite moment of inertia calculations is shown in figures 
4 and 5.  Figure 4 shows the calculations performed, and Figure 5 shows the coordinate system 
used to define the input parameters.  As before, shaded cells correspond to calculated values.  
Note that only four entries are required for each piece of the composite area.  This example 
shows the number of hand calculations that can be eliminated in this type of problem using a 
spreadsheet application.  In addition, the last section of the spreadsheet shows the calculation of 
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b h A y’bar A*y’bar dy a*dy**2 Izz bar Izz

1 0.012 0.376 4.512E-03 0.2 9.024E-04 0.000E+00 0.000E+00 5.316E-05 5.316E-05

2 0.150 0.012 1.800E-03 0.394 7.092E-04 1.940E-01 6.774E-05 2.160E-08 6.777E-05

3 0.150 0.012 1.800E-03 0.006 1.080E-05 -1.940E-01 6.774E-05 2.160E-08 6.777E-05

sum 8.112E-03 1.622E-03 1.887E-04

ybar 2.000E-01

b h A z’bar A*z’bar dz a*dz**2 Iyy bar Iyy

1 0.012 0.376 4.512E-03 -0.006 -2.707E-05 3.062E-02 4.231E-06 5.414E-08 4.285E-06

2 0.150 0.012 1.800E-03 -0.075 -1.350E-04 -3.838E-02 2.651E-06 3.375E-06 6.026E-06

3 0.150 0.012 1.800E-03 -0.075 -1.350E-04 -3.838E-02 2.651E-06 3.375E-06 6.026E-06

sum 8.112E-03 -2.971E-04 1.634E-05

zbar -3.662E-02

Product of Inertia

A dy dz A*dy*dz

1 4.512E-03 0.000E+00 3.062E-02 0.000E+00
2 1.800E-03 1.940E-01 -3.838E-02 -1.340E-05

3 1.800E-03 -1.940E-01 -3.838E-02 1.340E-05

sum 0.000E+00
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possible product of inertia terms.  While the z and y axes may be principle axes for each piece of 
the composite cross-section, they may not be for the composite cross-section itself.  If not, then 
the final entry, which results from the use of the parallel axes theorem for products of inertia, 
would not be zero.  This spreadsheet can easily be changed to accommodate more rectangular 
pieces.  This values for this example come from a problem in reference [2]. 
 

Figure 5 – Depiction of Coordinate System used for Composite Moment of Inertia Problem 
 
V.  Numerical Methods Overview and Examples 
 
With the additional class time afforded by establishing an honors section for the dynamics 
course, more in-depth computational subjects were pursued.  The topics of numerical 
differentiation, numerical integration, and solutions to ordinary differential equations were 
covered.  First the students were introduced to a dominant issue associated with numerical 
approaches, namely that only function values are available.  This was followed by a discussion 
of numerical differentiation, which covered, forward, backward and central differences as well as 
step-size.  The students were asked to write a program to calculate the derivative of a simple 
function using the three approaches for two different step sizes.  The function and step sizes 
were: 

sin( )y x=    where x is in radians and for the following step sizes, h:  
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The results of this investigation are shown in figures 6 and 7.  Figure 6 shown the estimate of the 
derivative, ( )y x′ , for the three approaches and the larger step size.  Figure 7 shows the plot for 
the smaller time step.  These two figures show the following basic characteristics associated with 
numerical differentiation.  Backward and forward differences have comparable accuracy (order 
of h), while central differences have greater accuracy (order of h2).  Backward differences lag the 
correct solution while forward differences lead the correct solution.  A curve that is to the right 
of the solution is said to lag the solution because it predicts the correct behavior at a larger value 
of the independent variable.  Of course the reverse is true for a curve that is to the left of the 
correct solution, to which the term lead is applied 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 – Comparison of Numerical Differentiation Approaches (large ∆x) 
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Figure 7 – Comparison of Numerical Differentiation Approaches (small ∆x) 
 
The students were next introduced to numerical integration.  The detailed part of this discussion 
was limited to the trapezoidal rule and Simpson's rule along with improvements to each with end 
correction.  Other popular approaches, such as quadrature, were mentioned but not discussed in 
depth due to time limitations.  The students wrote programs to evaluate the integral of a simple 
function for the second order trapezoidal rule, as well as two 4th order approaches, trapezoidal 
rule with end correction, and Simpson's rule.  They were instructed to do this for an increasing 
number of panels (number of discretizations) and to compare the results.  These can be seen in 
figure 8.  The integral the students were asked to evaluate was 

0

sin( )x dx
π

∫ , where x is defined in radians. 

 
Figure 8 shows the absolute values of the percentage difference between the approximate answer 
and the correct analytical answer.  The two 4th order approaches show much more accurate 
solutions than the 2nd order approach.  This figure also shows the effect of round off error, which 
begins to degrade the solution after a certain number of panels.  The round-off effect becomes 
significant for the two 4th order approaches between 1,000 and 10,000 panels.  For the 2nd order 
approach this does not appear to occur until after 100,000 panels.  For all three approaches, the 
round off error dominates the solution and they all have equal accuracy by 1 million panels. 
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Figure 8 – Accuracy versus number of Panels for Several Numerical Integration Approaches 
 
The honors section also dealt with the subject of numerical solution to ordinary differential 
equations.  This included 1st and 2nd order linear and nonlinear equations.  Extensions to higher 
order equations were discussed.  The in-depth discussion focused of Euler's method and Runge-
Kutta methods.  More complex, but commonly used approaches were also mentioned.  The 
students wrote programs to solve 1st order and 2nd order ordinary differential equations using a 
4th order Runge-Kutta formula. 
 
VI.  Unexpected Student Resistance and It's Resolution 
 
This paper discusses the author's initial experience integrating computational tools into 
sophomore-level engineering mechanics courses.  He was generally pleased with the students' 
acceptance of the tools and their willingness to use them.  While integrating computational 
composite moment of inertia calculations into the strength of materials course; an unexpected 
roadblock, which was resolved, arose that deserves discussion.  The students were very reluctant 
to use the spreadsheet application to perform composite moment of inertia calculations.  This 
reluctance was due to the their concern that use of the application would make them less 
proficient on similar questions on an examination.  Given this concern and the fact that 
composite moment of inertia calculations were introduced in a prerequisite class, the 
author/instructor chose to remove composite moment of inertia calculations from the scope of 
possible examination questions.  With this minor change in the testing procedure the students 
enthusiastically embraced the use of the application in the solutions of homework problems.   
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VII.  Summary 
 
Integration of computer tools into sophomore-level engineering mechanics courses has been 
discussed.  This discussion included the philosophical underpinnings behind the decisions that 
have been made, including a course where such tools were not integrated.  The tools included 
generic applications integrated into the existing strength of materials course, as well as user 
written programs in a special honors’ section in the dynamics course.  Examples of the tools used 
and the results generated have been presented.  In addition, an unexpected roadblock to student 
usage and the resolution of it have been discussed.  In closing the author believes that the 
computer tool integration was successful and the students have benefited from the experience.       
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