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Abstract

Rose-Hulman’s Integrated First Year Curriculum in Science, Engineering and Mathematics consists of
a sequence of three one-quarter twelve-credit courses, which incorporate all the traditional technical courses
of the first year: differential, integral and multivariate calculus, mechanics, electricity and magnetism, two
quarters of general chemistry, engineering statics, graphical communication, computer science and
engineering design. It has served approximately one fourth of the entering class of first year students for the
last six years. From the inception of the program, many of the synchronicities between mechanics and
differential calculus have been well-exploited. In the past two years, additional opportunities to coordinate the
treatment of chemical kinetics, electricity and magnetism, and integral calculus have been identified, and a
number of classroom, laboratory and homework experiences have been designed to assist students in
understanding the relationships between these topics. A number of these activities are described.

Introduction

Students are often presented with similar problems in different surroundings, and it is not uncommon to
find a student who can solve a problem easily in a physics class but is completely stymied when presented
with the same problem in calculus class. Most students eventually make the connection between calculus and
mechanics, but other connections are harder. Making those connections is vitally important to the student’s
ability to learn rather than merely be taught. Rose-Hulman’s Integrated First Year Curriculum in Science,
Engineering and Mathematics’ was developed in part to assist students in learning by making those
connections explicit.

Integration can be a difficult subject to integrate. Techniques of integration appear to be essentially
unrelated to the traditional applications of integration, and the introduction of computer algebra systems can
make them seem essentially unmotivated. Over the last two years motivating examples have been collected
and explicit connections have been made to other disciplines in the areas of

● rates (orders) of chemical reactions and separable differential equations,
● work and other traditional applications of integration and Riemann sums, and
● electric field and trigonometric substitution.
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Connections With Chemistry
. .

As the mathematicians in the integrated curriculum begin the study of integral calculus, the physicists -

in the program are still using the differential calculus developed in the previous quarter, but the chemists are
beginning to look at the rates of chemical reactions. Consequently, the initial mathematical thrust is
antidifferentiation.

Chemists use the (differential) rate law for a reactant A: Rate = -d[A] / d = k [A]”, where [A] is the
concentration, in moles per liter, of substance A. From the point of view of the mathematician, this is a
straightforward, separable differential equation, with A(t) being the concentration of substance A at time t.

There are two general forms for the solution, one in the case where n = 1, and the other for all other values of
n.

When n = 1, the steps of the solution are:

1. Setup the differential equation: -dA(t) / dt = k A(t).
2. Separate: (1 / A(t))  (dA(t) / dt) = -k
3. Integrate both sides with respect to c ln(A(t)) = -k t + C.
4. When t = O, the value of C can be determined: ln(A(t)) = -k t + ln(A(0)).

The mathematician then wants to proceed to the final step and solve for A(t), but the chemist values the
information in its present form. It is apparent that the graph of the natural log of the concentration of
substance A at time t versus time should be a straight line. Rearranging the terms of this equation yields
ln( A(0)/ A(t)) = k t. In this form, we can easily obtain information about the half-life of the reaction, that is,
the time when the concentration of substance A is half of A(0). Since chemists speak of the half-life of a
reaction even when the half-life is not constant, it is useful to use this form of the solution to demonstrate that,
if tln is the time at which A(t) = 1/2A(0), then tln = in(2) / ~ and thus is constant for first-order chemical
reactions. In addition, students discover that no amount of calculation will allow them to obtain a value for k.
It can only be found through experimentation.

For all n # 1, the steps of the solution are:

1. Setup the differential equation: -dA(t) / dt = k [A(t)]”.
2. Separate: [A(t)]- (dA(t) / dt) = -k.
3. Integrate both sides with respect to t [A(t)]-*’/ (-n+ 1)= -k t + C.
4. Simplify: 1 / [A(t)]*’= k t (n - 1)+ C (1 - n).
5. When t = O, the value of C (1 -n) can be determined: 1 / [A(t)]*l  = k t (n - 1)+ 1 / [A(0)]w1.

Once again, the mathematician wants to solve for A(t), but the chemist wants to examine the current equation
to determine the half-life of an nth order chemical reaction. In this case, we find that
tln = (2w’ - 1)/ (k [A(0)]~’(n - 1), so the half-life is not constant, but depends on the initial concentration A(0).
The special case of n = 2 also yields a quick test for second order reactions, based on the plot of 1 / A(t) versus
time.

The extensive use of computer algebra systems often causes students - and faculty -to question the
importance of by-hand skills. In making this connection with chemistry, the usefulness of by-hand skills is
reinforced.

----- . . -

%iiiii’> 1996 ASEE Annual Conference Proceedings
@lyy’:.

P
age 1.263.2



Applications With Riemann Sums. — . .

Soon after the start of the second quarter, the physicists begin to discuss work. Work is one of the
classic applications of integration, but in a typical course in integral calculus, the applications are covered
after the techniques have been developed. In the integrated first year curriculum, we take advantage of the
computer algebra system to introduce and extensively use Riemann sums to solve applications problems. We
find that the early emphasis on Riemann sums, which is made significantly less tedious with the computer
algebra system, pays off later when the students are very comfortable with the idea of slicing. Thus they find
modeling complex integration problems to be a routine task rather than a challenging one.

The Mathematica code

rightsum [f_, a_, b_, n_l : =  S u m [ ( b - a ) / n  *  f[a+i(b-a) /nl, {i, l,nll

computes a Riemann sum. Once the students have had a little experience computing area under the curve,
they can begin to solve applications problems using this Riemann sum.

Some illustrative examples:

Problem: Find the work done hauling 40 feet of chain that is hanging from a window whose sill is 50 feet
above the street, if the chain weighs half a pound per foot.

Solution: Since work is force times distance, and the distance is different for each point along the chain, we
can approximate the work done with a Riemann sum. For each slice, we can approximate its distance to the
windowsill by using the furthest point on the slice - thus using the Riemann rightsum. The force is the weight
per foot times the length of the slice, or 0.5 (b -a)/ n, and the distance is a + i (b - a)/ n. In this case, we
want to make our slices between a = O (at the windowsill) and b = 40 (at the end of the chain). Thus, we want
our function~to  be ~(x) =x/2. For n = 40, we obtain 405 foot pounds of work. For n = 80, we obtain 404.
For
n = 1000, the sum is 400.4. Since rightsum is an over-estimate in this case, and leftsum gives au
underestimate, a little checking gives an answer of about 400 foot pounds.

Problem: Find the work done pumping water from a full hemispherical tank, having radius of 4 feet, to a
truck whose intake is located 10 feet above the top of the tank. Assume that the water weighs 62.4 pounds per
cubic foot.

Solution: Once again, we will make horizontal slices, and use rightsum. This time, the distance each slice
will be lifted is the easy part: 10 + a + i (b - a)/ n. The weight of each slice is the weight per unit volume
times the volume of the slice. The volume of the slice is given by n rz (b - a) / n, where r is (16 - i (b - a)/
rz)lD. So we want to sum (10+ a + i(b - a)/ n) (62.4@ (16 - i (b - a) /n) (b - a)/ n, and we want our slices
between a = O (at the top of the tank) and b = 4(at the bottom of the tank). Our function is thereforeflx)  = (10
+x) (62.4 @ (16 - x), and we obtain sums of 130842, and 130721 for n =20 and n = 100, respectively. A little
checking with Ieftsum suggests that the answer is about 130700 foot pounds.

Solving practical problems with Riemann sums not only enhances students’ problem formulation skills,
it also provides some motivation as the course progresses through various techniques of integration. A set of
well-chosen examples can be used to introduce all the techniques of integration.

----
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1
Motivating Trigonometric Substitution

. .

Trigonometric substitution is one of the most difficult techniques for students to master, in part because
the toehnique  consists largely of rules for substitution, and students memorize the rules with little sense of
why they work. Introducing trigonometric substitution by way of electric fields has the double benefit of
making trigonometric substitution seem perfectly reasonable and natural, and also of reinforcing the
usefulness of understanding the technique.

A simple problem in electricity and magnetism is to determine the electric field at a point charge, given
a line of charge. The magnitude of the electric field at a point charge ql, due to another point charge q2, is
given by 1/(4 z G) ql qz / P, where G is the perrnittivity of free space (a constant), and r is the distance
between the charges. The direction of the field is toward q2 if the signs of the charges are different, and away
from q2 if the charges have the same sign. The principle of superposition allows us to add the effects of many
point charges, and thus to integrate. However, when we add or integrate charges, we must be careful about
the direction of the resulting field; we cannot simply add magnitudes. Thus, we separate the field into its x
and y components, and then the magnitudes can be added.

Consider the problem% Charge is distributed uniformly along the positive x axis with charge density k.
Find the electric field at a point (O, y). To find the magnitude of the field in the x direction, we note that the
contribution of a slice of the line of charge is given by 1/(4 z &o) X / (XZ + yz) x / (XZ + ~)1~ dx, since, by
convention, the charge at (O, y) is +1. The integral from O to M can be found easily by a standard u-
substitution.

However, the magnitude of the electric field in the y direction is not so easily found. The contribution
of a slice is given by 1/(4 n G) h / (X

2+ ~) y I (XZ + y2)1n u!x, and no standard u-substitution will work. We
seek to evaluate k y / (4 z @ JO- u!x / (XZ + ~)s~. If we change our variable of integration from x to (1, and bring
y back inside the integral, we need only to evaluate A /(4 n @ ~tim sin(e) de. Equivalently, we could integrate
with respect to q, and work with cos(q) as q ranges from-n/2 to O.

----- .-
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‘~ce students are comfortable making the transition

‘1
between variables of integration, it is time to

examine exactly what trigonometric substitution was made: What did we substitute for x? In this case, we
substituted x = y tan(q). Teaching trigonometric substitutions to students who have already successfully done
a trigonometric substitution is a much easier task than introducing trigonometric substitutions as a technique.

Trigonometric substitutions can also be motivated strictly through the use of a computer algebra
system.
In introducing the technique of partial fractions, students can be asked to determine how the computer algebra
system found the antiderivative of 2/[(x - 1)(x+ 1)] to be ln(x - 1) - ln(x +1). Once students have puzzled it
out, they generally have little trouble establishing the rules for simple partial fractions. However, once they
encounter a rational function whose partial fraction decomposition includes a term with an irreducible
quadratic denominator, they often want to know how that antiderivative was obtained.

Summary

Rose-Hulman’s Integrated First Year Curriculum in Science, Engineering, and Mathematics provides
fertile ground for the development of cross-disciplinary approaches to teaching calculus. Although some of
these approaches depend upon the student’s taking certain other courses at the same time as calculus, many
require little or no background in other disciplines.
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