
AC 2009-2159: INTEGRATING ROBOT SIMULATION AND OFF-LINE
PROGRAMMING INTO AN INDUSTRIAL ROBOTICS COURSE

Kevin Devine, Illinois State University
Dr. Kevin L. Devine is an Assistant Professor in the Department of Technology at Illinois State
University. He currently teaches courses in robotics, machining and CNC programming, and solid
modeling. Email: kldevin@ilstu.edu.

© American Society for Engineering Education, 2009

P
age 14.768.1

Integrating Robot Off-Line Programming and Simulation

Into an Industrial Robotics Course

Background

The importance of robotics in the manufacturing workplace is a given in many industries today.

Because of the increased pressures brought on by fierce global competition, it is likely that

companies will seek to increase the use of robotics in the foreseeable future
1, 2

.

 While the

automotive industry was the first major industrial base for robotics, new application growth areas

of note include such industries as aerospace
3
, machining

3, 4, 5
, and medical

2
. To support the

increased use of robots in a greater variety of workplaces, industry will need experts in the

application of robotics
7,8

.

Of increasing importance to the users of industrial robots is the use of off-line programming and

simulation tools. Systems integrators and end-users of robot systems are finding that the current

generation of off-line programming software has a rich set of programming tools that offer great

time and cost savings
6
. Today’s off-line robot programming and simulation tools offer many

advantages to engineering technology programs, making it possible to augment limited hands-on

instruction with almost unlimited virtual-robot instruction
7
. It is the author’s opinion that

modern off-line programming and simulation programs provide many opportunities to improve

classroom efficiency and student learning. This paper will (1) briefly describe on-line and off-

line robot programming methods; (2) describe how off-line programming and simulation

software was successfully integrated into an existing hands-on robotics course at Illinois State

University; and (3) discuss the benefits of using these software tools in an educational setting.

On-Line Robot Programming

Most industrial robots are equipped with a hand-held teach pendant that is used to manually

interact with the robot. Traditionally, the teach pendant has been used to create robot programs

using the on-line teach method which requires the programmer to manually jog the robot to

physical locations in the work cell. These locations are then recorded and text-based program

instructions are created to command the robot to move to the recorded locations. Various non-

motion instructions are then added to do things such as control program flow (i.e. if-then

instructions), increment counters and variables, and to work with inputs and outputs (I/O). Once

written, the program is debugged using the teach pendant and physical robot. The on-line

programming method has long been the primary means of robot programming. Figure 1 shows a

robot and teach pendant.

P
age 14.768.2

Figure 1. Industrial Robot with Teach Pendant

While still commonly used in industry, on-line programming has many shortcomings. The most

obvious drawback is that while the programmer is developing and debugging a program the

robot cannot be used for production. On-line programming can also expose the programmer to

physical dangers such as hazardous fumes from painting and welding operations and pinch

points often found in automated work cells. Also, costly problems with work cell layout, end of

arm tooling (EOT) and work holding devices are often not discovered until after they are

physically built and the programmer attempts to teach a program
6
.

The exclusive use of teach pendants and on-line programming has many drawbacks in

instructional settings as well. In many, but not all cases
8
, there is no practical way to project the

teach pendant screens and menus, presenting logistics problems during instruction. Further, due

to cost constraints, most engineering technology programs have very few industrial robots

available for instruction, effectively creating an instructional bottleneck when lab activities rely

heavily on the use teach pendants. Further complicating matters is the fact that the all too scarce

hands-on time using real robots is often used inefficiently because students are not well practiced

in the robot procedures they have previously used.

From a class management perspective, relying exclusively on physical robots for instruction

makes it difficult to assign meaningful homework and hold students accountable for their

learning. Students assigned a programming project, for example, can spend a large amount of

class time teaching points and performing simple program debugging tasks such as syntax

checking. This makes it difficult to spend time working on more complex issues such as systems

integration. Finally, because most teach pendants are small and operated by a single user, it is

difficult for students to stay actively engaged when working in groups
8
.

Off-line Robot Programming

Driven by the needs of industrial robot users, robot manufacturers and software vendors have

developed a new generation of offline robot programming and simulation tools. Unlike CAM

packages that have been used to program and simulate CNC machine tools for decades, off-line

P
age 14.768.3

programming and simulation systems for industrial robots were not widely used until recent

years
6
.

Most modern off-line programming and simulation software allows users to import user-created

CAD geometry and vendor-supplied robotic components to create a virtual robotic workcell. A

virtual robot can be jogged in the virtual workcell to conduct reach studies to verify that the

physical robot will be capable of reaching the required locations using the EOT and work

holding fixtures as designed. Problems found with the workcell layout can be resolved before

the cell is physically built. Some programs allow users to layout an entire plant floor or

assembly line while others focus exclusively on developing individual workcells.

Once the workcell layout and EOT designs have been verified, robot programs are developed

using a variety of programming tools. Individual robot targets and complete robot paths can

easily be created from the imported CAD geometry. A variety of software tools are provided to

allow the programmer to make adjustments to robot targets and paths and insert non-motion

instructions into the program.

Most software applications provide simulation tools that allow the programmer to simulate robot

programs in the virtual workcell. Collision detection, I/O simulators, and cycle time monitors

are standard features of many simulation programs. Finished programs are deployed by

downloading a text-based program to the physical robot. Downloaded programs are then

calibrated from virtual to physical space using user-defined coordinate systems. Because of

minor differences between the as-designed virtual workcell and the as-built physical workcell,

minor program touch-ups are not uncommon. Once the program is running as desired in the

physical world, it may be uploaded back into the off-line programming software, and the virtual

workcell can then be modified to match the physical workcell. By modifying the virtual

workcell to match the physical workcell, future programs will require less tweaking when

downloaded.

There are many compelling reasons why industry is rapidly adopting off-line programming and

simulation software. Chief among the benefits is the increased productivity that results from

keeping the physical robot in production while programming is underway. Furthermore,

problems with inefficient workell layouts and EOT designs can be identified and resolved much

earlier and without physical build-up. Programmer safety and job satisfaction is increased

because the programmer is no longer required to spend many hours working in the sometimes

inhospitable physical work space. Travel expenses can also be greatly reduced because robot

programming activities are no longer tied to the physical location of the robot. One systems

integrator recently described a project where the robot programs were created in Colorado then

emailed to Brazil where they were successfully deployed by a technician after only minor

program modifications. The systems integrator estimated it would have taken several months

on-site to develop the programs using traditional on-line programming methods.

Implementing off-line programming in an academic setting

This section describes how off-line programming and simulation software was successfully

integrated into an existing hands-on robotics course at Illinois State University. Because the

P
age 14.768.4

author teaches using ABB robots, this section includes descriptions of functions found in

RobotStudio
9,

the off-line robot programming and simulation software developed by ABB. Off-

line programming and simulation software from other sources will likely have functions similar

to those found in RobotStudio.

The initial approach taken was to add new units of study to the end of an existing robotics

course. The thought was that it would be helpful for students to have experience programming

and operating physical robots before attempting to learn off-line programming. This would

allow the students to recognize the application of RobotStudio functions in the real world,

making the software easier to learn. Unfortunately this first attempt yielded less than

satisfactory results. The most obvious problem with this plan dealt with time constraints and

competing class priorities. Because the instruction on off-line programming came at the end of

the semester, many students were still struggling to complete other assigned hands-on projects in

the class. Furthermore, workloads from final projects assigned in other classes also prevented

students from spending quality time working on the RobotStudio lab activities that may have

been perceived as being “tacked on” the end of the class. Some students also commented that it

was difficult for them to complete the assignments in a timely manner because RobotStudio was

only available on-campus. For a variety of reasons, it was evident that students did not spend

enough time to work with RobotStudio, and student learning in the area of off-line programming

suffered. It was obvious that a new strategy was needed to effectively teach off-line

programming in the course.

The next time the course was offered, a revised strategy for teaching off-line programming and

simulation was implemented. The revisions revolved around improving student access to

RobotStudio, developing more structured RobotStudio learning activities and tutorials, and

teaching off-line programming principles in parallel with hands-on robotics instruction.

The first day of the second semester, students were given a copy of RobotStudio to install on

their home computer and a RobotStudio lab assignment that was due at the beginning of the next

class period. The first lab assignment was very structured, directing students to explore various

RobotStudio screens and find definitions and descriptions using the online help files. By

requiring students to load and run RobotStudio the first day of class, software installation

problems were addressed in a timely manner and the message was sent that RobotStudio was

going to be an integral part of the class.

Throughout the course RobotStudio was often used to introduce robot principles before hands-on

instruction, rather than after students had worked with physical robots as was done in the

previous semester. During most class periods students were given a RobotStudio lab

assignment that was to be completed before coming to class the next period. In order to reserve

in-class time for hands-on instruction, the RobotStudio labs were designed to be completed at

home with minimal in-class time. Rather than giving extensive software demonstrations in-class,

brief (2-5 minute) video tutorials were created to accompany each lab. Because each

RobotStudio lab required students to submit answers to questions, students generally completed

the labs before coming to class. The written work and in-class summary discussions allowed the

author to monitor student progress and hold students accountable for keeping up with their

RobotStudio work.

P
age 14.768.5

In their first RobotStudio lab, students were introduced to the concepts of robot axes and jogging

modes by jogging virtual robots at home. Specific procedures and questions accompanying the

RobotStudio lab were designed to help students focus on the important concepts for that lab.

The premise was that prior student experience with virtual robots would allow the instructor to

spend less time introducing concepts in-class, and more time reinforcing and applying previously

introduced concepts. As suggested in the literature, deliberate attempts were made to help

students make connections between related concepts in the virtual and physical robot

environments
10

.

As the course progressed, the emphasis shifted away from basic programming and operating

principles towards more challenging topics such as program logic/flow and interfacing with

peripheral devices. During the later stages of the course, students used RobotStudio to develop

their own virtual robot workcell within which they created and debugged robot programs.

Ultimately the robot programs were deployed on physical robots using the same procedures used

in industry.

Benefits of using off-line programming and simulation tools in an academic setting

Because RobotStudio uses a virtual teach pendant that is a very accurate replica of the real teach

pendant, students were able to interact with virtual robots at home using the same menus, screens

and procedures used on a real ABB robot. Figure 2 shows a screen captured image of the virtual

teach pendant and virtual robot. The author found the virtual teach pendant very helpful for

instruction in a number of ways. First, the virtual teach pendant can easily be projected for all

students to see, making in-class demonstrations much more effective. The virtual teach pendant

also made it possible for the instructor to develop customized handout materials with screen

captured images that exactly match what is seen on the real teach pendant. Furthermore, the

virtual teach pendant allowed the instructor to create virtual robot lab assignments that allowed

students to program and operate virtual robots outside of class. The virtual labs were designed to

provide opportunities for students to practice procedures used in class as well as introduce new

procedures and concepts before coming to class. The homework exercises were often designed

in such a way as to allow students to learn though experimentation and discovery, which is

sometimes problematic for safety reasons when working with real robots. Experience has shown

that using the virtual teach pendant outside of class enables students to work more efficiently

when working on the real robots.

P
age 14.768.6

Figure 2. A virtual teach pendant and robot.

In addition to the virtual teach pendant, RobotStudio has a rich set of graphical programming and

simulation tools which have proven to be effective teaching tools. For example, new robot

programmers must become familiar with many robot motion control parameters, some of which

are difficult to visualize. Program simulations can help students see abstract concepts with

clarity. For example, Figures 3a and 3b are a screen images from RobotStudio that illustrate how

program motion parameters can affect the path of the robot. Students are able to rotate the

virtual robot and watch the virtual robot from several vantage points while the simulation is

playing. In this example, the student intended to have the robot weld around the top perimeter of

the block as indicated by the red path with straight lines. The black, curved path is the actual

path taken by the robot when the program was simulated. Figure 3a illustrates an incorrect robot

path. Through experimentation, the student was able to modify a variety of motion parameters to

improve the welding process, as shown in figure 3b, and gain a better understanding of the

related motion parameters.

In another example RobotStudio was used to reinforce their understanding of coordinate systems

and help students better understand the procedures used to create them on robots. Figure 4a is an

Figure 3a. Incorrect motion parameters Figure 3b. Correct motion parameters

P
age 14.768.7

image from RobotStudio illustrating the location of a coordinate system that was created by

selecting three points along the edge of a workpiece. RobotStudio was then used to illustrate the

coordinate system that would be created by selecting the same three points in a different order

(Figure 4b). From this simple exercise, students can clearly see that the order in which the three

points are selected affects the orientation of the resulting coordinate system. To help students

see the implications of incorrect coordinate system orientation in robot applications, a welding

torch was positioned at four robot targets using both the correct and incorrect coordinate

systems. As Figures 5a and5b clearly show, the results of an incorrect coordinate system on a

physical robot can be quite dramatic.

In one final example, RobotStudio proved to be a very effective tool to augment instruction in

the areas of program logic/flow. Because most students in the robot course have no prior text-

based programming experience, many students struggle to understand program logic. Powerful

and essential programming tools such as variables and counters, while-do loops, and if-then

statements are challenging for some to learn. The debugging tools built in to RobotStudio

proved to be very effective at making these abstract concepts visible. Of great assistance were:

the ability to run programs one line at a time, the visual display of the program pointer and

current robot location within the robot program code, the variable watch window that shows the

current value of program variables, and the I/O simulator that shows the current status of virtual

Figure 4a. Correct coordinate system Figure 4b. Incorrect coordinate system

Figure 5a. Tools positioned using

correct coordinate system

Figure 5b. Tools positioned using

incorrect coordinate system

P
age 14.768.8

digital outputs and allows users to change the value of virtual digital inputs. Figure 6 illustrates

these RobotStudio debugging tools. While at first glance the illustration may look somewhat

cluttered, the combination of these tools, along with the real-time movement of the virtual robot,

made RobotStudio very helpful during instruction.

Figure 6 RobotStudio debugging tools.

Conclusion

Although the first attempt to integrate off-line programming and simulation software into a

hands-on robot course yielded less than satisfactory results, the second attempt proved to be very

successful. Without question, the revised instructional strategy was more effective than the first

when it came to teaching students about off-line programming and simulation techniques.

Although this was the primary goal of the revision, it was not the only benefit observed.

Throughout the entire course, students demonstrated an improved understanding of robot

programming and operating concepts and were able to complete hands-on lab activities more

efficiently and with greater success. The questions asked by the students throughout the course,

performance on written and performance assessment measures, and the quality and complexity

of student projects using both virtual and physical robots, clearly demonstrated that the use of

off-line programming and simulation software had a positive impact on student learning.

Bibliography

1. Schneider, R. (2005). Robotic Automation Can Cut Costs. Manufacturing Engineering. Vol. 135 No. 6.

2. Jones, T. (2006). Trends and Motivations for Robot Purchases. www.robotics.org, posted 11/06/2006.

3. Morey, B. (2007). Robotics Seeks Its Role in Aerospace. Manufacturing Engineering. Vol. 139 No. 4.

Virtual robot moves as

the program is executed

Virtual I/O may be

monitored and

simulated

Current value of program

variables are displayed

Program pointer showing the

next instruction to be executed
Current robot position

is displayed

P
age 14.768.9

4. Nieves, E. (2005). Robots: More Capable, Still Flexible. Manufacturing Engineering. Vol. 134 No. 5.

5. Tolinski, R. (2006). Robots Step Up to Machining. Manufacturing Engineering. Vol. 137 No. 3.

6. Robotic Industries Association. (2008). Reduce Start-up Costs with Off-line Programming, www.robotics.org,

posted 10/01/2008.

7. Devine, K., Reifschneider, L. (2009). Agile Robotic Work Cells for Teaching Manufacturing Engineering.

Proceedings from the 2009 American Society for Engineering Education Illinois/Indiana Section Conference,

Valparaiso, IN.
8. Stienecker, A. 2008. Applied industrial robotics: a paradigm shift. In Proceedings, American Society for

Engineering Education Annual Conference. Pittsburgh, PA.
9. www.abb.com/robotics

10. Devine, K. 2006. Improving the knowledge transfer skills of industrial technology students. Journal of

Industrial Technology, 22(2), 1-10.

P
age 14.768.10

